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Oxidative stress in pediatric
diseases associated with the
origin of life and growth and
development
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The presence of oxidative stress and an imbalance in antioxidant mechanisms
have been demonstrated in numerous diseases. Furthermore, mounting
evidence suggests that the occurrence, progression, and prognosis of certain
pediatric diseases linked to the origin of life and growth and development are
also associated with oxidative stress. In this review, we systematically analyze the
relationship between oxidative stress and various pediatric diseases, proposing
new theoretical foundations and therapeutic targets for their treatment.
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1 Introduction

Oxidative stress (OS) happens when there is an uneven balance between harmful
oxidative processes and protective antioxidants in the body. This leads to inflammation,
more neutrophils, extra proteases being released, and a lot of oxidative substances being
produced. Oxidative stress is a deleterious effect caused by free radicals within the body
and is regarded as a crucial factor in aging and disease. The most significant contributors to
oxidative stress are reactive oxygen species (ROS), have established that oxidative stress plays
a role in numerous adult diseases, such as Cancer, chronic obstructive pulmonary disease
(COPD) and Alzheimer’s disease influencing their onset, progression, and even overall
prognosis hydroxyl radical (.OH), hydrogen peroxide (H2O2), and (.O2

−) etc. (Sies and
Jones, 2020) (Figure 1). Previous researches have established that oxidative stress playsmany
important roles in numerous adult disease systems, such as the nervous system, respiratory
system, digestive system, etc. (Valko et al., 2007). Recent evidence suggests that OS is also
related to children’s growth and pediatric diseases (Table 1). Thus, we will focus on the latest
advancements in understanding the molecular properties of OS in select pediatric diseases
linked to the origin of life and the processes of growth and development.

2 Oxidative stress in fetal diseases

The fetal period is a critically important phase in the early stages of life,
and diseases occurring during this period can significantly impact individual
health during early postnatal and even mature stages. Recent studies have
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FIGURE 1
ROS is an umbrella term for an array of derivatives of molecular oxygen which includes superoxide anion (. O2), hydroxyl radical (.OH) and hydrogen
peroxide (H2O2), etc. We demonstrate the conversion mechanisms among various key factors and their impacts on DNA, proteins, and lipids.

shown that various fetal diseases are closely associatedwith oxidative
stress events (Figure 2).

2.1 Intrauterine growth restriction (IUGR)

IUGR refers to a condition where fetal size does not reach its
genetic growth potential in utero. Specifically, fetal birth weight
is classified as being at a weight that is two standard deviations
lower than the average weight for the same age of development or
falling below the 10% of the typical weight for that age. Adverse
exposures during pregnancy, such as air pollution, smoking, and
malnutrition, can increase oxidative activity in pregnant women,
leading to a significant rise in endogenous ROS levels in the
placenta (Geca et al., 2022). Reports have linked the concentration
of 8-oxo-7,8-dihydro-20-deoxyguanosine (8-oxodG) in the urine
of mothers at 12 weeks of gestation with an increased risk of
IUGR (Potdar et al., 2009), indicating that oxidative stress may
occur before the symptoms of IUGR are noticeable. Consistent with

previous reports, Ashina et al. (2021) fended that in children with
IUGR, the levels of reactive oxidative derivatives, specifically d-
ROM, are elevated, while the biological antioxidant potential (BAP)
is diminished. In cases of IUGR related to maternal malnutrition,
concentrations of antioxidants in the plasma of both mothers and
newborns are significantly lower, contrasted by elevated levels of
oxidants (Saker et al., 2008; Dede et al., 2017; Gupta et al., 2004).
Moreover, mitochondrial swelling was observed in endothelial cells
derived from IUGRcells cultured in vitro (Formanowicz et al., 2019).

2.2 Gestational diabetes mellitus (GDM)

GDM is a short-term condition where the body has trouble
with carbohydrate metabolism, high blood sugar levels, insulin
resistance, and insufficient insulin secretion or effectiveness,during
pregnancy (ACOG Practice Bulletin, 2018). GDM is closely linked
to neonatal hypoglycemia and the developmental disorders of fetal
pulmonary surfactant. Studies have shown that pregnant women
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TABLE 1 List and supporting evidence of oxidative stress-related fetal and pediatric diseases.

Diease Test specimen Antioxidant stress indicators Ref

IUGR Maternal urine 8-oxodG + Potdar et al. (2009)

Infant serum d-ROM + Ashina et al. (2021)

BAP -

Plasma newborns Plasma total antioxidant activity
(ORAC)-,VC-,VE-

Saker et al. (2008)

Hydroperoxide and carbonyl protein levels +

Umbilical cord arterial blood MDA+; SOD-;catalase +; reduced glutathione + Dede et al. (2017), Gupta et al. (2004)

GDM Rat embryonic cells GSH- Trocino et al. (1995)

Maternal placenta 8-isoprostane+ Coughlan et al. (2004), Lappas et al. (2004)

cord arterial blood and placenta MDA+; GSH+; SOD- Kinalski et al. (2001)

Maternal placenta Nrf2+; catalase +; SOD1+ Manoharan et al. (2019)

Maternal placenta apolipoprotein D (apo D) + Navarro et al. (2010)

CHDs Mouse myocardial cells eNOS+ Feng et al. (2002)

Mice SOD1 Reversed 149 miRNAs that can cause
CHDs

Dong et al. (2016)

Mice NAC ∼ GSH+∼ROS- ∼ CHDs- Moazzen et al. (2014)

Mice SOD1∼wnt+∼CHD- Wang et al. (2015a), Wang et al. (2015b)

TTTS Ewes In pregnant ewes bearing twin
foetuses:GSH-;GSH-Px -;MDA +

Gur et al. (2011)

Pregnant women’s peripheral blood In twin pregnancies:TBARS+; CAT-;VC- Jantsch et al. (2020)

Fetal cord blood and amniotic fluid In smaller twins Mt DNA- Chang et al. (2013)

BPD Mice c-Abl + Singleton et al. (2009)

Mice NADPH oxidase (NOX 1 +) Carnesecchi et al. (2009)

Infant peripheral blood MnSOD - Asikainen and White (2004), Berkelhamer and
Farrow (2014)

Infant peripheral blood GSSG/GSH + Vento et al. (2009)

NEC Swiss webster mice pups; rat intestinal epithelial H2O2 +; IGF-1--H2O2 - Baregamian et al. (2011)

Human fetal intestinal epithelial cells

Cord blood of preterm newborns TH +; AOPP+; NPBI + Perrone et al. (2010)

Plasma newborns Total oxidant status (TOS) +; Oxidative stress
index (OSI) +

Aydemir et al. (2011)

Mice NOD-like receptor+; TLR-4 + Li et al. (2021), Zhao et al. (2018)

(Continued on the following page)
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TABLE 1 (Continued) List and supporting evidence of oxidative stress-related fetal and pediatric diseases.

Diease Test specimen Antioxidant stress indicators Ref

HIE Rat lipoxin A4 (LXA4) -; LXA4--IκB/NF-κB pathway Zhu et al. (2020)

Zebrafish RNA (lncRNA) LINC00938 -; SH-SY5Y - Zhao et al. (2023)

NACA-- LINC00938+

Rat Myricetin-- Nrf2+--ROS- Chen et al. (2023)

Mice Echinocystic acid (EA)--PI3K/Akt/Nrf2 +--ROS- Li et al. (2023)

IVH Rabbit cyclooxygenase-2(COX-2)+ Vinukonda et al. (2010)

Rabbit Nitrotyrosine +; 4-hyroxynonenal +; 8-OHdG + Zia et al. (2009)

O2·− +; H2O2 +

apocynin--NAD(P)H - --ROS -

Human multicenter clinical survey Mitochondrial quantity + Chang et al. (2017)

ROP Mice NO synthase + Wang et al. (2013)

Mice NAD(P)H oxidase + Al-Shabrawey et al. (2005)

Mice eNOS + Brooks et al. (2001), Beauchamp et al. (2004)

Bovine retinal endothelial cells Nitric oxide synthase (NOS3) +; peroxynitrite + Gu et al. (2003)

Obesity Children’s serum Total oxidant status (TOS) +, total anti-oxidant
status (TAS) +

Kilic et al. (2016)

Children’s plasma, erythrocytes, and urine TBARS + Lechuga-Sancho et al. (2018)

Children’s plasma Isoprostane + Correia-Costa et al. (2016)

Children’s plasma retinol-; β-carotene -;vitamin E − Stenzel et al. (2018)

Diabetes TIDM-Children’s serum Cu/Zn + Rychert-Stos et al. (2022)

TIDM-Children’s serum Cu/Zn +; MDA+; total antioxidant status (TAS) - Grabia et al. (2023)

T2DM-Children’s serum G6PD - Mahmoud and Nor El-Din (2013), Heymann et al.
(2012)

T2DM-Chang liver cells mitochondrial OS + Handy et al. (2009)

GHD Human fibroblasts SIRT1 - Haigis and Sinclair (2010), Yamamoto and Takahashi
(2018)

Mice SIRT1 - Shtaif et al. (2020)

In this table, we show the changes of some indicators related to oxidative stress in the nutrition and endocrine related diseases of fetuses, newborns and children, as well as the species origin of
the tested samples; (+) representing the increased expression level of corresponding indicators in diseases; (−) represents the reduction of the expression level of the corresponding indicators in
the disease.

with GDM experience a noticeable rise in lipid peroxidation and
oxidative stress levels in placental tissues compared to normal
control groups (Trocino et al., 1995; Coughlan et al., 2004;
Lappas et al., 2004). Interestingly, unlike other conditions, during
GDM, as oxidative stress products rise, there is also an increase
in antioxidant enzymes within the placenta (Coughlan et al.,
2004; Madazli et al., 2008; Kinalski et al., 2001; Chaudhari et al.,

2003). This may suggest that there is a possible defense system
against antioxidants in the placenta that is connected to nuclear
factor erythroid 2-related factor 2 (Nrf2). Activation of the
Nrf2/antioxidant response element (ARE) pathway leads to
heightened expression of SOD1 and other antioxidant enzymes
(Manoharan et al., 2019). Additionally, apolipoprotein D (apo
D) may also play an important role in the antioxidant defense
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FIGURE 2
In this Figure we show the changes of some important indicators of fetal oxidative stress related diseases; (+) representing the increased expression
level of corresponding indicators in diseases; (−) represents the reduction of the expression level of the corresponding indicators in the disease.

system of the placenta in GDM. Reports indicate that the levels
of apo D are significantly increased in trophoblastic and villous cells
surrounding large blood vessels in GDM placental tissue compared
to controls (Navarro et al., 2010).

Neural tube defects (NTDs) are a group of common and
devastating congenital malformations that appear in early
pregnancy due to the disturbance of normal neural tube closure.
Studies on the underlying mechanism of diabetic maternal
embryopathy have shown that oxidative stress is a major factor
in the formation of NTDs (Chang TI. et al., 2003; Yang et al., 2008;
Matough et al., 2012). The excessive apoptosis of cells caused by
oxidative stressmay be one of the importantmechanisms that induce
deformities (Marino et al., 2014).

2.3 Congenital heart defects (CHDs)

CHDs are the most prevalent structural anomalies at birth,
occurring in 1%–5% of live births (Pierpont et al., 2007; Gilboa et al.,
2016; Benjamin et al., 2018). This category includes conditions
such as ventricular septal defects and patent ductus arteriosus;
while they may not show obvious signs in the early stages,
the underlying issues can progressively worsen. CHDs account
for a significant portion of pediatric mortality in developed
countries (Cleves et al., 2003). The heart, being the first fully
functional organ developed during embryonic growth, is guided by
the interaction of conserved transcription factors responsible for
growth, morphogenesis, and contractility (DeRuiter et al., 1992).
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The onset of CHD is more closely associated with nitric oxide
(NO) signaling pathways. Nitric oxide synthase (NOS) facilitates
the conversion of L-arginine to nitric oxide through NADPH-
dependent reactions within the cellular context. Endothelial nitric
oxide synthase (eNOS), one of the three NOS isoforms that
typically binds to cell membranes, is responsive to changes in
intracellular calcium concentration and is predominantly expressed
in endothelial and myocardial cells (Knowles and Moncada, 1994).
Studies reveal that eNOS is expressed at high levels in embryonic
heart cells, underscoring its critical role in cardiogenesis (Liu
and Feng, 2012; Feng et al., 2002). In murine models, eNOS
expressionwas detected in embryonic cardiac structures at 9.5weeks
of gestation, peaking at 13.5 weeks and subsequently declining
(Liu and Feng, 2012). Vitro studies have indicated that NOS
inhibitors can elicit the differentiation of embryonic stem cells
into cardiomyocytes (Bloch et al., 1999). Furthermore, research
has documented that ROS regulates key genes and miRNAs that
influence heart development during fetal growth (Moazzen et al.,
2015; Dong et al., 2016). Further investigation of the fetal heart
indicates that disrupting ROS levels by overexpressing agents such as
N-acetylcysteine or the SOD1 gene can effectively reduce ROS levels,
consequently decreasing the incidence of CHDs (Moazzen et al.,
2014; Wang et al., 2015a; Wang et al., 2015b).

Thoracic aortic aneurysms (TAA) are abnormal aortic
dilatations and a major cardiovascular complication of Marfan
syndrome (MFS). Previous studies have shown that oxidative
stress is the main cause of TAA (Budbazar et al., 2023;
Phillippi et al., 2010; Asano et al., 2022).

2.4 Twin-to-twin transfusion syndrome
(TTTS)

TTTS is a rare complication that occurs in 10%–15% of
monochorionic multiple pregnancies. TTTS primarily arises from
an imbalance in oxygen andnutrient supply due to placental vascular
anastomoses between twins (Denbow et al., 2000; Quintero, 2003).
Research findings indicate that mothers carrying twins exhibit a
significantly increased expression of lipid peroxidation markers
malondialdehyde (MDA) etc. In peripheral blood and placental
tissues compared to those with singleton pregnancies (Gur et al.,
2011; Jantsch et al., 2020). These studies highlight the pivotal role
of lipid peroxidation in TTTS. Furthermore, evidence suggests that
oxidative stress can elevate mitochondrial DNA (mtDNA) levels,
thereby impacting fetal growth (Lee et al., 2000). Analogous to
findings in twin studies, elevatedmtDNA content has been observed
in smaller gestational age fetuses, further substantiating the role of
oxidative stress in TTTS (Chang et al., 2013).

3 Oxidative stress in preterm infants

Preterm infants face significant challenges. In recent years,
advancements in neonatal intensive care unit (NICU) techniques
have led to a gradual decline in mortality and long-term disability
rates among preterm infants. However, the influence of increasing
oxidative stress on the emergence and progression of various

systemic diseases in preterm infants is gathering increasing
attention (Figure 3).

3.1 Bronchopulmonary dysplasia (BPD)

BPD is a chronic lung disease that affects premature infants,
particularly those born extremely preterm (before 28 weeks of
gestation). Infants with BPD experience severe impairment of
oxygen transport and diffusion capabilities within the alveoli
(Nordlund et al., 2017). As early as 1967, the Northway team first
identified high oxygen exposure as a major risk factor contributing
to BPD (Northway, 1967). Recent studies have indicated that
exposure to any concentration of oxygen within the first few
hours of life can provoke oxidative stress, potentially heightening
the risk of BPD (Vento et al., 2009). The determination of
an appropriate oxygen concentration for mechanically ventilated
preterm infants in early life remains contentious (Saugstad, 2001).
Datta et al. (2015); Nardiello et al., 2017) demonstrated through
mousemodels that oxygen exposure at any concentration during the
initial stages can stunt or even impair alveolar development. High
oxygen concentrations can directly damage alveoli, particularly
alveolar type II epithelial cells, which are critical to both alveolar
development and repair (Nabhan et al., 2018; Budinger et al., 2011).
Even after the removal of high oxygen exposure, the functional
recovery of alveolar type II epithelial cells remains challenging
(Ilizarov et al., 2001). Singleton et al. (2009) validated through
mouse models that high oxygen environments can damage alveolar
epithelial cells and elevate their ROS production. Further research
shows that this increase in ROS production is facilitated by elevated
NADPH oxidase levels in hypoxic conditions, leading to damage
of alveolar epithelial cells (Carnesecchi et al., 2009; Wang et al.,
2007).The limited and imbalanced antioxidant defensemechanisms
are also pivotal factors contributing to oxidative stress damage
in preterm BPD. Mitochondrial or manganese SOD (MnSOD)
functions to convert superoxide radicals (O2·

-) into molecular
oxygen (O2) and hydrogen peroxide (H2O2). O2·- can facilitate the
formation of hydroxyl radicals (·OH) through the Fenton reaction,
whereas H2O2 decomposes into water and O2 via catalase (CAT)
and glutathione peroxidase, effectively mitigating oxidative damage
(Ighodaro and Akinloye, 2019). The expression capacity of MnSOD
is notably impaired in premature infants, rendering them more
susceptible to ROS during high oxygen exposure (Asikainen and
White, 2004; Berkelhamer and Farrow, 2014). The balance between
reduced glutathione (GSH) and oxidized glutathione (GSSG) serves
as a critical component of intracellular antioxidant systems involved
in regulating redox states and scavenging free radicals. In preterm
infants, initial exposure to hyperoxia elevates the GSSG/GSH ratio,
which persists through the early days of life and correlateswithworse
prognoses for BPD (Vento et al., 2009).

3.2 Necrotizing enterocolitis (NEC)

NEC arises from various factors damaging the intestinal
mucosa, with an incidence rate of approximately one in ten
extremely preterm infants (Hackam and Caplan, 2018; Neu and
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FIGURE 3
In this figure, we show the changes of some important indicators in neonatal oxidative stress-related diseases; (+) representing the increased expression
level of corresponding indicators in diseases; (−) represents the reduction of the expression level of the corresponding indicators in the disease.

Walker, 2011; Thompson and Bizzarro, 2008). Characteristic X-
ray findings show cystic air accumulation within the intestinal
wall. Baregamian et al. (2011) reported that ROS may be the
main cause of apoptosis in intestinal epithelial cells through a
rat NEC model. The sensitivity of small intestinal epithelial cells
in newborns, especially premature infants, to high oxygen is
extremely high. Exposure to high concentrations of oxygen can lead
to weakened barrier function in the small intestine, destruction
of tight junction structures (Wang et al., 2023), and a decrease
in Paneth cells (Underwood, 2012; McElroy et al., 2013), as
well as increased invasion of harmful bacteria that disrupt the
normal function of the small intestinal wall (Wang et al., 2023).
Investigations by Perrone et al. (2010); Aydemir et al. (2011)
identified potential biomarkers for oxidative stress risk in umbilical
cord blood, including biomarkers associated with oxidative stress
injuries, such as total hydroperoxides (TH) and advanced oxidation
protein products (AOPP) and non-protein-bound iron (NPBI; basal
superoxide anion, BSA; stimulated superoxide anion, USSA),with
NEC correlating significantly with heightened cord blood levels of
NPBI, AOPP, and TH. Liu et al. (2021) found that increased ROS can
affect intestinal cell outcomes and functions by altering the covalent
states of NO, leading to further dysregulation. Under conditions
of hyperoxia, intestinal ROS significantly increases, promoting
inflammatory cascades and facilitating the onset of inflammatory
bowel disease (Li et al., 2021; Zhao et al., 2018).

3.3 Hypoxic-ischemic encephalopathy
(HIE)

HIE also referred to as hypoxic-ischemic brain damage (HIBD),
is a common cause of mortality among infants, especially those
born prematurely (Dixon et al., 2012). Emerging research indicates
that the pathogenesis of HIE involves mechanisms such as iron
deficiency, inflammation, autophagy, cell necrosis, and apoptosis,
with oxidative stress representing a critical component (Zhu et al.,
2020; Chen et al., 2021). Zhao et al. (2023) validated using a zebrafish
model for HIE that increased ROS production Inhibiting the
expression of long-chain-non-coding RNA (lncRNA) LINC00938,
leading to mitochondrial dysfunction in SH-SY5Y cells and
propelling the progression of HIE. In support of this, pre-treatment
with the ROS inhibitor N-acetylcysteine amide (NACA) effectively
countered oxidative stress and mitochondrial dysfunction induced
by LINC00938 knockout, consequently reducing cellular apoptosis.
Furthermore, studies by Chen et al. on rats indicated that myricetin,
a naturally extracted flavanol compound, can mitigate apoptosis
and oxidative stress via the signaling pathway of Nrf2, offering
protective effects against HIE damage (Chen et al., 2023). Li et al.
(2023). Validated in neonatal mouse models that Echinocystic acid
(EA), a natural plant extract, improves apoptosis and oxidative stress
accompanied by activation of the PI3K/Akt/Nrf2 signaling pathway,
alleviating hypoxic-ischemic brain damage (HIBD).
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3.4 Intraventricular hemorrhage (IVH)

IVH is one of the most common neurological diseases
in premature infants, affecting tens of thousands of infants
worldwide each year (Courtney et al., 2002; Horbar et al.,
2002). Survivors of IVH often experience neurodevelopmental
disorders, which can include impairments in motor function,
cognition, speech, hearing, and vision. It is estimated that
approximately 15% of IVH survivors develop cerebral palsy,
while 27% exhibit moderate to severe neurosensory disorders by
the age of 18–24 months (Quintero, 2003). The occurrence of
IVH promotes the activation of microglia, which, in conjunction
with activated macrophages, stimulates the release of various
ROS, reactive nitrogen species, chemokines and pro-inflammatory
cytokines, thereby inducing inflammation and oxidative damage
(Vinukonda et al., 2010; Zia et al., 2009). Mesenchymal stem cells
(MSCs), which are the most commonly utilized cells in clinical
experimental research, also play a role in reducing ROS during the
pathological process of IVH (Luyt et al., 2020; van Velthoven et al.,
2014). Studies have reported that MSCs can enhance vascular
regeneration in areas affected by intracranial hemorrhage and
increase the number of mitochondria in undamaged regions
(Chang et al., 2017).

3.5 Retinopathy of prematurity (ROP)

ROP is frequently observed in premature infants and those
with low birth weight, and it represents a common cause of long-
term visual impairment and even blindness in this population
(Tran et al., 2018; Alajbegovic-Hali et al., 2015; Kim et al.,
2018a). High concentration oxygen supply during non-invasive or
invasive assisted ventilation with atmospheric oxygen inhalation
is a globally recognized exposure factor for ROP. Due to the
imperfect retinal blood regulatory system in premature infants, a
high oxygen state can produce excessive levels of superoxide to
promote the progression of pathological processes (Rivera et al.,
2017; Buonocore et al., 2002; Hellstrom et al., 2001). Interestingly,
recent studies have indicated that hypoxia can activate nitric
oxide synthase and nicotinamide adenine dinucleotide phosphate
oxidase, enzymes responsible for generating ROS, which are
implicated in oxygen-induced retinopathy (Wang et al., 2013; Al-
Shabrawey et al., 2005; Brooks et al., 2001). Furthermore, research
indicate that nitro-oxidative stress damage plays a key role in
microvascular degenerative diseases such as ROP (Rivera et al.,
2017). Under high oxygen conditions, NO production increases
and its activity are enhanced. NO and ROS undergo a series of
reactions, resulting an increase in the levels of nitrate, nitrite,
and peroxide, which subsequently damage microvasculature
(Beauchamp et al., 2004; Gu et al., 2003). The antioxidant effects
of vitamin E have been widely investigated in the prevention and
treatment of ROP. Although the precise therapeutic mechanisms
of vitamin E in addressing oxidative stress associated with ROP
remain unclear, polymorphisms in the cytochrome P450 4F2 gene
have been shown to positively influence vitamin E metabolism
(Tsang et al., 2019).

4 Oxidative stress in childhood
nutrition and endocrine system
diseases

The status of children’s nutrition and endocrine system diseases
is crucial for their growth, development, and long-term quality of
life. Recent researches have indicated thatOS is a significant factor in
both the onset and progression of nutritional and endocrine diseases
in children (Figure 4).

4.1 Obesity

Obesity is defined as the excessive accumulation of fat, which
may be an early risk factor for cardiovascular, cerebrovascular
diseases, diabetes, and other health issues in adulthood. With the
increasing prevalence of obesity among children year by year,
childhood obesity has emerged as one of the significant concerns
which influence public health. Increasing evidence suggests that OS
plays a critical role in the pathological processes associated with
childhood obesity. Kilic et al. (2016) found that both total oxidants
and antioxidant capacity were elevated in obese children. Lechuga
Sancho et al. (Lechuga-Sancho et al., 2018) reported that amarker of
lipid peroxidation, thiobarbituric acid reactive substances (TBARS),
were significantly elevated in obese children compared to those
in the normal control group. This finding also indirectly supports
the notion of compromised catalase activity in obese children.
Similar results were reflected in the research of Correia Costa et al.,
which indicated that another lipid peroxidationmarker, isoprostane,
was markedly upregulated in obese children and correlated with
HOMA-IR (HomeostaticModel Assessment for Insulin Resistance),
high-sensitivity CRP, urinary H2O2 and triglyceride levels (Correia-
Costa et al., 2016). Furthermore, antioxidants such as β-carotene,
vitamin E and retinol were found to be significantly reduced
in obese children (Stenzel et al., 2018). Another noteworthy
study demonstrated that the percentage of body fat and waist
circumference in adolescents is inversely related to their total
antioxidant capacity (Leo et al., 2016).

4.2 Diabetes

Diabetes is a metabolic disorder characterized by impaired
insulin biological effects or defective insulin secretion, or a
combination of both. The characteristics of T1DM are insufficient
insulin secretion and abnormal blood glucose levels, which
are caused by autoimmune damage to pancreatic beta cells
(ElSayed et al., 2023). Insulin and zinc ions coexist in the vesicles
of pancreatic β-cells, which play a pivotal role in the regulation
of insulin secretion (Zysk et al., 2018). Copper ions, as essential
cofactors for numerous enzymes, including superoxide dismutase
(SOD), are critical for enzyme activity (Jomova et al., 2022).
The study by Rychert-Stos et al. (2022); Grabia et al., 2023).
Demonstrated that in the body a positive correlation between
oxidative stress levels and Cu/Zn ratios, indicating that higher
Cu/Zn values are associated morbidity of T1DM in children.
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FIGURE 4
In this Figure, we show the changes of indicators related to oxidative stress in childhood nutrition and endocrine diseases; (+) representing the
increased expression level of corresponding indicators in diseases; (−) represents the reduction of the expression level of the corresponding indicators
in the disease.

Despite T1DM being more prevalent in children, the incidence of
T2DM among the pediatric population is rising, coinciding with
improvements in global living standards and dietary patterns. The
overall incidence of T2DM among children aged 10–14 years in
the United States is 8.1 per 100,000, while the total incidence
among adolescents aged 15–19 years is 11.8 per 100,000, with
the highest rates observed among Native American populations
(Mayer-Davis et al., 2018; Pulgaron and Delamater, 2014). There
is credible evidence suggesting that the incidence of T2DM in
children is expected to increase by approximately 50% in the
coming decades, potentially leading to significant increases in
cardiovascular and cerebrovascular diseases among adults and
imposing substantial burdens on social economies (Imperatore et al.,
2012). Glucose-6-phosphate dehydrogenase (G6PD) is one of the
key antioxidant enzymes, which reduces nicotinamide adenine
dinucleotide phosphate (NADP+) to NADPH. This reaction is a
crucial step in the pentose phosphate pathway (PPP) and it plays
a key role in the pathological processes associated with T2DM
(Ge et al., 2020). Deficiency of G6PD is associated with T2DM, with
further studies revealing increased G6PD activity accompanied by
decreased levels of the oxidative stress marker HbA1c in T2DM
patients (Mahmoud and Nor El-Din, 2013; Heymann et al., 2012).

Existing studies have established a strong relationship between
insulin resistance and mitochondrial oxidative stress in childhood
(Handy et al., 2009). Additionally, ample evidence suggests that
mitochondrial oxidative stress can exacerbate the pathological
process of T2DM (Victor et al., 2011). In treating adult T2DM,
insulin therapy has become a widely recognized approach; however,
in pediatric T2DM patients, insulin therapy has not shown
significant effects on insulin resistance (Consortium, 2018). Redox
omics may offer a key strategy for the treatment of pediatric T2DM
in the future (Alu et al., 2022).

4.3 Growth hormone deficiency (GHD)

A child’s height falls below the average height of Lower than
the average height of healthy children of the same race, gender, and
age more than two standard deviations or below the 3rd percentile
of the growth curve for normal children is referred to as short
stature. Among various factors leading to short stature, growth
hormone (GH) secretion by the anterior pituitary gland significantly
influences body height. The short stature resulting from a deficiency
in GH is termed growth hormone deficiency (GHD), which is also
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referred to as pituitary dwarfism. GHD is one of the prevalent
endocrine disorders in pediatric clinical practice, mostly occurring
sporadically, though a small proportion may be inherited. The
growth and development of children are regulated not only by GH
but also by insulin-like growth factor 1 (IGF-1). IGF-1 is secreted by
the liver, which plays a pivotal role inmediating GH function. IGF-1
serves as the primary peripheral mediator of GH. Traditionally, GH
regulation is understood to be a balance between growth hormone-
inhibiting hormone (GHIH, somatostatin) and growth hormone-
releasing hormone (GHRH, somatoliberin), which together form a
diurnal secretion pattern in the hypothalamus (Ranke andWit, 2018;
Bonnefont et al., 2005). In recent years, novel regulatory factors have
been identified, whichmay elucidate themechanisms governingGH
secretion and its effects; one such factor is sirtuin 1 (SIRT1) (Haigis
and Sinclair, 2010; Yamamoto and Takahashi, 2018). Research has
demonstrated that SIRT1 is involved in the osteogenic processes
of cartilage and skeletal growth through its regulatory mechanisms
(Shtaif et al., 2020). Moreover, SIRT1 participates in multiple
important cellular processes, including cell cycle regulation, DNA
repair, and apoptosis, with oxidative stress response being a critical
area of regulation (Chen et al., 2020; Lee et al., 2019). SIRT1 can
modulate the development of adipose tissue, skeletal muscle, and
liver by influencing FOXO1, a key factor in oxidative stress that
regulates insulin sensitivity (Cao et al., 2016).

5 Antioxidant stress therapy

The management of oxidative stress during the perinatal period
primarily targets neonatal diseases, focusing on treatment strategies
involving enzymes such as MnSOD, CuZnSOD, GSH, ecSOD, and
vitamins such as E and A. Trace elements like selenium or L-
arginine are used as essential cofactors for these enzymes. However,
the application of MnSOD, CuZnSOD, and ecSOD in high-
oxygen models in rabbit, rat, and human lung epithelial cells has
demonstrated promising results in reducing oxidative stressmarkers
and enhancing alveolar epithelial cell function; nonetheless, the
clinical applicability of these therapies is restricted by biochemical
and physiological factors [ (Chang et al., 2003b; Padmanabhan et al.,
1985; Davis et al., 1985; Koo et al., 2005). In particular, in
models of bronchopulmonary dysplasia (BPD), exogenous MnSOD
significantly alleviates pulmonary arterial hypertension levels by
increasing eNOS expression (Afolayan et al., 2012). Similar to
previous reports in the BPD model made from lambs, the applicatio
of recombinant human CuZnSOD (rhSOD) can enhance vascular
dilation ability and enhance iNO responsiveness (Steinhorn et al.,
2001), further increasing the body’s oxygen level and ability to
reduce oxidative stress damage (Lakshminrusimha et al., 2006). In
both of vivo and vitro studies have illustrated that hydrocortisone
treatment can associated with reductions in ROS levels and
decreased activation of phosphodiesterase 5 (PDE5) under high-
oxygen conditions (Perez et al., 2014; Perez et al., 2012), forming
the theoretical foundation for utilizing hydrocortisone in BPD
treatment. In the hypoxic-ischemic encephalopathy (HIE) mouse
model, the downregulation of mitochondrial complex I can lead
to decreased ROS levels (Kim et al., 2018b), indicating that
mitochondrial complex I is a critical target for both prevention
and treatment of HIE. As previously mentioned, N-acetylcysteine

amide (NACA) can mitigate ROS increases triggered by LINC00938
knockout (Zhao et al., 2023). Additionally, natural compounds
like myricetin and echinocystic acid have been shown to diminish
oxidative stress in HIE by activating the NRF2 and PI3K/Akt/Nrf2
pathways, respectively (Chen et al., 2023; Li et al., 2023). For
the rat model, intravenous administration of astragaloside, all-
trans retinoic acid, or N-acetylcysteine via tail vein injection can
enhance SOD and GPx activity, leading to improved outcomes
in necrotizing enterocolitis (NEC) models (Aceti et al., 2018). In
studies utilizing a murine NEC model, fecal microbiota transfer
(FMT) has been documented to regulate oxidative stress and
mitigate colitis while promoting NO production by eliminating
superoxide radicals (Li et al., 2017; Ferretti et al., 2017). There
exists considerable debate regarding the efficacy of vitamins E and
A and trace elements in managing OS, and their role as clinical
therapeutics is often constrained by biochemical and physiological
factors. Some researchers are endeavoring to boost antioxidant
capacity in preterm infants via supplementation of vitamins and
cofactors. However, recent studies concerning BPD have shown
that vitamin E and selenium did not significantly reduce the
incidence of BPD (Watts et al., 1991; Darlow et al., 2000). Reports
indicate that menaquinone-4 (MK-4), a vitamin K2 subtype, can
activate the Sirt1-PGC-1α-TFAM signaling pathway in neonatal
rat HIE models, resulting in diminished oxidative stress damage
(Feng et al., 2024). There are also findings suggesting that additional
vitamin E supplementation may lower the incidence and severity
of retinopathy of prematurity (ROP) (Tsang et al., 2019). Vitamin
E functions as a free radical scavenger, reducing lipid peroxidation
during ROP’s pathological progression and contributing to retinal
cell integritymaintenance (Tsang et al., 2019). Furthermore, vitamin
C, as a water-soluble antioxidant, can maintain its stability by
providing electrons to free radicals. It can also effectively regenerate
the antioxidant form of vitamin E by reducing tocopherol free
radicals (Pehlivan, 2017; Hacişevki, 2009; Arrigoni and De Tullio,
2002; Rouhier et al., 2008). As previously noted, in obese children,
the levels of β-carotene and vitamin E were significantly reduced
(Stenzel et al., 2018), but current evidence does not support the
notion that additional supplementation of β-carotene and vitamin
E can prevent obesity. A systematic review has suggested that
additional supplementation of L-arginine in newborns could serve
as a protective factor against NEC, although this study only included
235 infants (Mitchell et al., 2014; Table 2).

It is noteworthy that melatonin shows significant promise in
its antioxidant stress effects during early life. Melatonin acts as a
broad-spectrum anti-apoptotic agent, antioxidant, and effective free
radical scavenger (Wang, 2009; Halliwell, 1994; Tordjman et al.,
2017). Research has indicated that oral administration of melatonin
can substantially decrease nitrate/nitrite levels, lower MDA levels,
and enhance myeloperoxidase (MPO) content, thereby alleviating
pulmonary interstitial fibrosis in neonatal rats suffering from BPD
and increasing alveolar counts (Pan et al., 2009). Investigations
indicate that melatonin exerts neuroprotective effects in HIE mouse
models (Sinha et al., 2018). Notably, Suzanne et al. confirmed
through sheep models that melatonin significantly reduces ROS
levels in fetal sheep, thereby minimizing neurological damage
(Miller et al., 2005). Hutton et al. utilized a mouse model and
found that levels of activated caspase-3 and fractions in microglia
within the brains of asphyxiated offspring of mothers administered
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TABLE 2 The therapeutic prospects of neonatal oxidative stress-related diseases.

Diease Therapy Mechanism/ROS
target

Modle Outcome Reference

BPD SOD Using liposomes to deliver
therapeutic SOD to the lungs

Rat Improved survival rate after
high oxygen levels

Padmanabhan et al. (1985),
Davis et al. (1985)

Ad-MnSOD Improved eNOS expression
and function

Lamb Relaxation response of
PPHN pulmonary arteries

Afolayan et al. (2012)

RhSOD Increase sensitivity to S-
nitrosyl-acetylpenicillamine

(SNAP)

Lamb Reduces pulmonary vascular
resistance

Steinhorn et al. (2001)

RhSOD Relieve the increase in
isoprostane levels

Lamb Relieve pulmonary artery
constriction

Lakshminrusimha et al.
(2006)

Hydrocortisone Reduce the activity of NFκB Fetal pulmonary artery
smooth muscle cells

(FPASMCs) from PPHN
lambs

Reduced the level of
Phosphodiesterase-5 (PDE5)

Perez et al. (2014)

Hydrocortisone Decreased sGC activity,
Increased PDE5 activity

Lamb increases cGMP Perez et al. (2012)

Melatonin Reduce nitrate/nitrate,
MDA, and increase the
content of mycoxidase

(MPO)

Rat Reduce interstitial fibrosis
and increase the number of

alveoli in the lungs

Pan et al. (2009)

HIE MitoSNO Slowed down the transition
of mitochondrial complex D

to A

Mice Reduced ROS generation
and neuronal mortality

Kim et al. (2018b)

NACA Inhibiting JNK/p38 MAPK
signaling pathway

peripheral blood of neonate Inhibit oxidative stress and
apoptosis of CNS

Zhao et al. (2023)

LINC00938 Prevented the apoptosis of
SH-SY5Y from OGD injury

peripheral blood of neonate Inhibit oxidative stress and
apoptosis of CNS

Zhao et al. (2023)

Myricetin Activate NRF2 signaling
pathway

Rat Reduce brain infarction
volume, glia activation,
apoptosis, and oxidative

stress marker levels

Chen et al. (2023)

Echinocystic acid Activate the PI3K/Akt/Nrf2
signaling pathway

Mice Reduced cerebral infarction,
attenuated neuronal injury

Li et al. (2023)

Menaquinone-4 (MK-4) Activate
Sirt1-PGC-1α-TFAM
signaling pathway

Rat Enhance mitochondrial
function and exhibit

protective effects against
ischemia-reperfusion injury

Feng et al. (2024)

Melatonin Inhibition of mitochondrial
cell death pathways

Mice Reduce damage to brain
nerve cells

Sinha et al. (2018)

Reduce the production of
ROS

Lamb Reducing neurological
damage

Miller et al. (2005)

Reduce the level of activated
caspase-3

Mice Has a preventive effect on
HIE at birth

Hutton et al. (2009)

(Continued on the following page)
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TABLE 2 (Continued) Xxx.

Diease Therapy Mechanism/ROS
target

Modle Outcome Reference

NEC All trans retinoic acid Increase the activity of SOD
and GPx

Rat Increase the survival rate and
duration of NEC rats

Aceti et al. (2018)

N-acetylcysteine

astragaloside

Fecal microbiota
transplantation (FMT)

Modulation of
S-glutathionylation of eNOS
(eNOS-SSG),promoted NO

production

Mice Reduced colon inflammation Li et al. (2017)

Epidermal growth factor
(EGF)

Promoted the expression of
NOS2

Human small intestine cells Increased the survival rate of
small intestinal cells

Ferretti et al. (2017)

L-arginine Increased synthesis of NO Newborns with NEC Reduced the incidence of stage
II and III NEC

Mitchell et al. (2014)

ROP Vitamin E As a scavenger of free radicals
can reduce the degree of lipid

peroxidation during the
pathological process

Mice Maintain the integrity of
retinal cells

Tsang et al. (2019)

In this table, we summarize some treatment methods for neonatal oxidative stress-related diseases and their specific targets, verified model information and improvement methods for disease.

oral melatonin during pregnancy were reduced compared to the
control group (Hutton et al., 2009). Additionally, Guven et al.
demonstrated in their rat NEC model study that oral melatonin
effectively decreased postoperative inflammatory cytokines while
increasing antioxidant enzyme activity, significantly mitigating the
severity of NEC (Guven et al., 2011).

6 Conclusion

In recent years, accumulating evidence suggests that changes
related to OS play a significant role in diseases associated with
the prenatal period. In fetal development-related conditions, such
as intrauterine growth restriction (IUGR), critical indicators of
oxidative stress, including 8-oxodG and D-ROM, are markedly
elevated. Similarly, in fetuses affected by twin-to-twin transfusion
syndrome, metabolites indicative of heightened oxidative stress,
including MDA and TBARS, demonstrated significant increases. In
vitro studies have shown that an increase in eNOS and ROS levels
considerably impacts the integrity of fetal cardiac development. In
recent years, the latest research has shown that Histone deacetylases
(HDACs) play an exciting role in early cardiac injury repair
(Zhu et al., 2024a; Zuo et al., 2025).

The elevation of 8-isoprostane, MDA, and GSH is also related
to the risk of gestational diabetes. Interestingly, the levels of SOD1
and SOD in the placenta ofmothers with gestational diabetes exhibit
inconsistencies.

There are two importantmechanismsunderlying oxidative stress
events in women with preeclampsia, one being the disruption of the
NO/NOS system. The main manifestation is a decrease in nitrogen
oxide levels and an increase in arginase levels (Lowe, 2000; Dai et al.,
2013). Another important mechanism is mediated by an increase in

ROS. Studies have shown that womenwith early-onset preeclampsia
have a higher rate of superoxide production compared to women
with late onset preeclampsia (Raijmakers et al., 2004).

Among neonatal diseases, notable elevations in c-Abl, NOX1,
and GSSG/GSH levels have been observed in infants with BPD.
NEC-related conditions show significantly increased levels of
advanced oxidation protein products (AOPP), H2O2, and total
oxidant status (TOS). The level of ROS is substantially elevated in
HIE-related diseases, and it is worth noting that the PI3K/Akt/Nrf2
signaling pathway is significantly inhibited.

Regarding childhood nutrition and endocrine system diseases,
analysis of childhood obesity revealed increased levels of TOS,
TBARS, and isoprostane. Interestingly, total antioxidant status (TAS)
also showed a corresponding increase, while levels of retinol, β-
carotene, and vitamin E exhibited a significant decline. In studies
focused on children with diabetes, a notable increase in total
Cu/Zn values for those with T1DM was observed, accompanied
by heightened MDA levels, with TAS levels showing a decrease.
In children diagnosed with T2DM, mitochondrial oxidative stress
levels were elevated while G6PD levels decreased. Regarding GHD
among children, SIRT1 levels were significantly diminished in both
animal models and human cells. In the latest research, shown that
the oxidative balance score (OBS) is inversely proportional to the
prognosis of children with metabolic syndrome, including those
with obesity. Therefore, it is crucial to utilize OBS to adhere to an
antioxidant diet and lifestyle (Zhu et al., 2024b).

To date, treatment strategies for perinatal oxidative stress-
related diseases primarily focus on neonatal conditions. Traditional
studies on cognitive oxidative stress management have concentrated
on enzymes such as CuZnSOD, MnSOD, ecSOD, and GSH.
Hydrocortisone use for the treatment of BPD has gained widespread
acceptance in clinical practice, while melatonin also offers potential
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therapeutic benefits for BPD and HIE. Compounds such as NACA,
LINC00938, myricetin, echinocystic acid, and menaquinone-4
(MK-4) display varied therapeutic efficacy in HIE treatment.
In managing NEC, administering certain amino acids, such as
N-acetylcysteine, all-trans retinoic acid, and L-arginine through
various routes, could yield distinct advantages for long-term
disease prognosis. Furthermore, approaches like astragaloside, fecal
microbiota transfer (FMT), and epidermal growth factor (EGF) have
also contributed to improving NEC management to varying extents.
Vitamin E has demonstrated significant effectiveness in enhancing
the prognosis of infants diagnosed with ROP.
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