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Annexin A5 (ANXA5), also known as Annexin V, is a calcium-dependent
phospholipid-binding protein and has a high affinity with phosphatidylserine
(PS). This characteristic facilitates its involvement in a wide range of biological
functions, including vesicle transport, the formation of mineral phases in the
extracellular matrix, anticoagulation and antithrombotic, the inhibition of tumor
growth, and apoptosis regulation. ANXA5 plays a role in anti-inflammatory and
antithrombotic properties. It also has protective effects on the nervous system.
ANXA5 has been reported to facilitate osteogenic differentiation and take part in
chondrocyte apoptosis andmineralization. More andmore attention is paid to the
potential of ANXA5 for bone defect repair. Most current studies on ANXA5 mainly
concentrate on immune disorders, pregnancy disorders and serve as a biomarker
for various diseases as well as apoptosis detection. However, there is still a lack of
systematic studies on ANXA5 involving multiple tissues, including bone, cartilage,
vessels, and nerves in the process of bone regeneration. Our study aims to
summarize the biological functions in bone tissue and the related signaling
pathways of ANXA5. This work provides a theoretical foundation for applying
ANXA5 in clinical orthopedics in the future.
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1 Introduction

Annexins (ANXs) comprise a multigene family consisting of approximately
500 members, which are found in vertebrates, invertebrates, fungi, plants, and protozoa.
Twelve kinds of common Annexins in vertebrates belong to the Annexin A family, named
ANXA1 to ANXA11 and ANXA13 (Moss and Morgan, 2004). Annexins are classified into
several families: the B family (invertebrates), the C family (fungi and certain unicellular
eukaryotes), the D family (plants) and the E family (protozoa) (Gerke et al., 2005; Xi
et al., 2020).

ANXA5 (Annexin A5), also known as Annexin V, is a key member of the Annexin A
family. ANXA5 was first found by Bohn et al., who isolated the ANXA5 protein from the
human placenta and designated it as placental protein 4 (PP4) (Inaba et al., 1984). It is also
called calphobindin-I(CPB-I), lipocortin V, placental anticoagulant protein I (PAP-I),
endonexin II(E-II), vascular anticoagulant-α(VAC α) and anchorin CII. ANXA5 is a
single-chain protein weighing 35–36 kD (Jing, 2024), and it is encoded by a gene
located on chromosomes 4q26-q28 (Tait et al., 1991). ANXA5 forms protein-protein
interactions by binding to specific sites of the S100 dimer (Rescher and Gerke, 2004; Rintala-
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Dempsey et al., 2008). The ANXA5 has a conserved C-terminal
domain and an N-terminal domain. The C-terminal is a core
domain composed of four repeated sequences. The core domain
contains approximately 70 amino acid residues (Gerke and Moss,
2002; Lizarbe et al., 2013; Xi et al., 2020). Each repeated sequence of
the C-terminal has five α-helices, including calcium-binding motifs
and mediating the binding to negatively charged phospholipids. The
N-terminal domain of ANXA5 contains calcium-binding sites and
phosphorylation sites (Qi et al., 2015; Woodward et al.,
2022). (Figure 1A)

ANXA5 is found in different tissues. Noteworthily, ANXA5 is
known for its ability to bind to phosphatidylserine (PS) on cell
membranes with high affinity in a calcium-dependent manner
(Boersma et al., 2005; Schutters and Reutelingsperger, 2010). This
characteristic is particularly significant, making
ANXA5 participate in various biological processes in vivo,

including vesicle transport, mineralization in the extracellular
matrix, neurotoxicity in Alzheimer’s disease, anticoagulation
and antithrombotic, apoptosis regulation and detection, and
inhibition of tumor cell growth (Krey et al., 2016). In the
extracellular matrix of osteocytes and chondrocytes,
ANXA5 facilitates mineralization through its binding to PS-rich
matrix vesicle membranes, which accelerates Ca2+ influx and
subsequently promotes the deposition of hydroxyapatite crystals
in the extracellular matrix (Ansari et al., 2021; Wuthier and
Lipscomb, 2011; Genge et al., 2008) (Figure 1B). Furthermore,
the characteristic of ANXA5 for binding to PS also plays a role in
neurological disorders. For example, the characteristic of
ANXA5 inhibits the binding between amyloid β and PS,
resulting in the accumulation of neurotoxic amyloid β in the
choroid plexus of Alzheimer’s disease patients, ultimately
leading to cellular death (Bartolome et al., 2020; Lee et al.,

FIGURE 1
The high affinity of ANXA5with PS facilitates its participation in a wide range of biological processes. (A) The ANXA5 has a conserved C-terminal core
domain and an N-terminal domain. The C-terminal is a core domain composed of four repeated sequences. The C-terminal has calcium-binding motifs
and mediates the binding to negatively charged phospholipids. (B) In the extracellular matrix of osteoblasts and chondrocytes, ANXA5 facilitates
mineralization by binding to PS-rich matrix vesicle membranes, acceleratingCa2+ influx and subsequently promoting hydroxyapatite deposition in
the extracellular matrix. (C) The characteristic of ANXA5 inhibits the binding between amyloid β and PS, resulting in the accumulation of neurotoxic
amyloid β in the choroid plexus of Alzheimer’s disease patients. (D) ANXA5 binds to and interacts with activated platelets, competitively inhibiting the
binding of coagulation factors (Va and Xa) to activated platelets, thus preventing the initiation of the coagulation cascade. (E) ANXA5 inhibitsmacrophages
phagocytosis of apoptotic cells and promotes the release of immunosuppressive cytokines, including IL-4, IL-10, and TGF-β thereby exerting
immunosuppression. (F) The characteristic of ANXA5 is particularly significant because of PS externalization during cell apoptosis, making ANXA5 a key
agent for detecting cell apoptosis in vivo. (G) In tumor cells, ANXA5 inhibits macrophages from secreting immunosuppressive cytokines IL-4, IL-10, and
TGF-β by blocking PS exposure on tumor cells. Dendritic cells regain the ability to present antigens to CD8+T cells, shifting the immune profile from
immunosuppressive to immune-active. MV, Matrix vesicle; PS, Phosphatidylserine; PLT, Platelet; Ch, Chondrocytes; Ob, Osteoblasts; M, Macrophage;
TME, Tumor microenvironment; DC, Dendritic cells; NK, Natural killer cell.
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2002) (Figure 1C). Additionally, ANXA5 has an antithrombotic
function in the blood vessels. ANXA5 can displace coagulation
factors from procoagulant phospholipids, thereby inhibiting the
coagulation cascade in vitro (Cederholm and Frostegård, 2007;
Reddy and Rand, 2020; Ravanat et al., 1992) (Figure 1D). The
disruption of the anticoagulation pathway involving ANXA5 is
associated with antiphospholipid syndrome (Bogdanova et al.,
2012; Mineo et al., 2023) and its pregnancy complications,
including recurrent pregnancy loss (Aranda et al., 2018;
Rogenhofer et al., 2018; Ang et al., 2017). ANXA5 also has
anti-inflammatory properties. The binding between ANXA5 and
PS effectively inhibits PS-mediated adhesion of platelets and white
blood cells to the endothelium, consequently mitigating systemic
inflammation (Ewing et al., 2011; Ewing et al., 2012). PS mainly
exists in the inner leaflets of cells. The characteristic of ANXA5 is
particularly significant because of PS externalization during cell
apoptosis, making ANXA5 a key agent for detecting cell apoptosis
in vivo (Rieger et al., 2011; Kumar et al., 2021; Krysko et al., 2004;
Miyagishima et al., 2024) (Figure 1F). PS externalization serves as a
primary signal for macrophages to recognize and clear apoptotic
cells (Munoz et al., 2007). ANXA5 selectively binds to PS on the
surface of apoptotic cells with high affinity, thereby competitively
inhibiting the phagocytosis of apoptotic cells by macrophages and
consequently exerting an immunosuppressive effect (Stach et al.,
2000; Böttcher et al., 2006; Munoz et al., 2007) (Figure 1E). In
tumor cells, ANXA5 enables dendritic cells to regain their capacity
for antigen presentation to CD8+ T cells by blocking PS exposure
on tumor cells. Furthermore, ANXA5 inhibits the secretion of
immunosuppressive cytokines in macrophages, thereby shifting
the immune profile from immunosuppressive to immune-active.
(Yan et al., 2012; Bondanza et al., 2004; Kang et al., 2020)
(Figure 1G). Through this mechanism, ANXA5 alleviates the
immunosuppressive effects induced by chemotherapy and
enhances the antitumor efficacy and immunogenicity of tumor
antigen-specific immune responses (Bondanza et al., 2004;
Chaurio et al., 2009; Frey et al., 2009; Gray et al., 2016).

Bone regeneration is a complex physiological process that
involves the co-regulation of various phenomena, including
endochondral ossification, osteogenic differentiation,
angiogenesis, neurogenesis, and so on (Salhotra et al., 2020).
Numerous studies have indicated that ANXA5 is able to promote
osteoblast differentiation and prevent osteoporosis (Su et al., 2023;
Genetos et al., 2014; Shimada et al., 2018). Additionally,
ANXA5 facilitates the apoptosis and terminal differentiation of
chondrocytes and promotes chondrocyte mineralization,
indicating its significant role in bone regeneration (Shimada
et al., 2018; Wang and Kirsch, 2006; Kirsch et al., 2000).
Currently, there are no reviews on ANXA5 in bone tissue. Most
reviews focus on cardiovascular disease (Cederholm and Frostegård,
2007), immune disorders (Bećarević, 2016; Rand et al., 2010),
tumorigenesis (Woodward et al., 2022; Peng et al., 2014),
pregnancy complications (Bogdanova et al., 2012; Peng et al.,
2022)and the detection of apoptosis (Laufer et al., 2008). In this
study, we provide a detailed description of these physiological
processes and summarize the biological functions and associated
signaling pathways of ANXA5 within the field of bone tissue. We
aim to provide a theoretical foundation for applying ANXA5 in
clinical orthopedics in the future.

2 The function of ANXA5 in bone tissue

2.1 The expression of ANXA5 in bone tissue

Suarez et al. isolated osteoblasts from the skull of newborn rats
and detected the cellular protein extracts of these osteoblasts by
Western blotting. They found that ANXA5 was expressed in the
osteoblast cell lineage (Suarez et al., 1993). Brachvogel et al. analyzed
ANXA5 in frozen sections of mouse embryos through
immunohistochemistry, discovering that ANXA5 was present in
frozen sections of the developing lumbar arch. The ANXA5 gene
plays a role in the cellular lineage of skeletal system development,
and the researchers believe it may represent a novel marker
characterizing involved in this process (Brachvogel et al., 2001).
Su et al. detected the expression of ANXA5 in bone tissue in vivo and
primary osteoblasts in vitro from both sham and osteoporotic mice
by Western blotting (Su et al., 2023). Mohiti et al. obtained bone
tissue from human knee joints and then isolated osteoblasts,
confirming the presence of ANXA5 in these cells through
Western blotting. They determined that the cellular content of
ANXA5 was found to be 0.18% ± 0.010% (n = 9) of total cell
protein in primary cultures of osteoblasts using quantitative
immunoblotting. Additionally, the localization of ANXA5 in
MG-63 osteosarcoma cells was determined using
immunofluorescence microscopy, which revealed that
ANXA5 was always strongly present in the nucleus with
additional cytoplasmic staining (Mohiti et al., 1995).

2.2 ANXA5 promotes the proliferation and
differentiation of osteogenic cells

After knocking down the ANXA5 gene in preosteoblast
MC3T3 cells, Genetos et al. observed a reduction in cell
proliferation, as measured by Calcein-AM and Alamar Blue
staining. When MC3T3 cells were cultured under osteogenic
differentiation-inducing conditions, ANXA5 revealed maximal
expression at 14 days. These findings suggest that ANXA5 can
influence bone formation via the regulation of osteoprogenitor
proliferation and differentiation in addition to the function in
matrix vesicles (MVs) (Genetos et al., 2014). Shimada et al.
reported that after knocking down the ANXA5 gene in primary
cultures of osteoblasts in vitro, subsequent qPCR analysis resulted in
decreased Runx2 and osteopontin expression. This suggests that
ANXA5 plays a role in promoting osteoblast differentiation
(Shimada et al., 2018). Furthermore, Su et al. found that
ANXA5 expression was significantly downregulated in bone
tissue and isolated osteoblasts of osteoporosis mice compared to
those of the sham mice. After transfecting the shANXA5 plasmid
into the preosteoblastic cell line MC3T3, Western blot analysis
indicated a significant reduction in osteogenic differentiation-
related markers (Su et al., 2023).

However, further research conducted by Brachvogel et al.
indicates that ANXA5 is not essential for bone development. In
ANXA5-deficient mouse mutants, no serious defects related to the
ossification process were observed. X-ray analyses of the skeleton
from 6-month-old mice revealed no significant differences in size or
the density of the bone. Additionally, histological analysis of the tibia
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from newborn mice displayed no overt changes in the organization
of the growth plate in the absence of ANXA5. These findings
demonstrate that mice lacking ANXA5 can develop normally and
reveal no significant alterations in the biochemical parameters
characteristic of metabolic or functional defects. This may be due
to a compensatory effect of other members from the annexin family
arising from the high functional and structural similarity
(Brachvogel et al., 2003).

2.3 ANXA5 enhances the mineralization
process in osteoblasts

Su et al. conducted a study in which they transfected the
shANXA5 plasmid into the preosteoblast cell line MC3T3. The
results from ALP staining and alizarin red staining showed that
shANXA5 decreased the number of ALP-positive cells and inhibited

the formation of mineralized nodules. Conversely, in cells that
overexpressed ANXA5, these results were significantly enhanced,
confirming that ANXA5 mediates the mineralization of the
precursor osteoblast lineage (Su et al., 2023). Additionally, when
Genetos et al. applied ANXA2 siRNA and ANXA5 siRNA to
preosteoblast MC3T3 cells, they observed a decrease in
osteogenic marker ALP staining and a significant reduction in
mineralized nodule formation after knockdown. This further
supports that ANXA5 plays a significant role in promoting
osteogenic differentiation (Genetos et al., 2014).

Su also found that ANXA5 is highly expressed in osteoblast
adhesion MVs (Su et al., 2023). It is widely known that type I
collagen is the main organic extracellular matrix component in
osteoblasts (Kim and Kirsch, 2008) (Figure 2C). InMC3T3 cells with
ANXA5 knockdown, there was a decrease in the number of MVs
attaching to the cellular matrix, which suggests that ANXA5 may
regulate the interaction between MVs and the extracellular matrix.

FIGURE 2
ANXA5 participates in the mineralization process of the extracellular matrix in osteoblasts and chondrocytes. (A) Hypertrophic chondrocytes form
mineralized cartilage tissue in the calcified zone; osteoblasts form mineralized bone tissue in the subchondral bone. (B) Type II and Type X collagens
constitute the primary components of the extracellular matrix in hypertrophic chondrocytes. (C) Type I collagens constitute the primary components of
the extracellular matrix in osteoblasts. MVs sprout from the surface of osteoblasts and subsequently enter the extracellular matrix. (D) In the MVs
secreted by osteoblasts or hypertrophic chondrocytes, Ca2+ transport ANXA5-mediated maintains MVs homeostasis. For instance, in MVs secreted by
osteoblasts, type I collagens bind to ANXA5 on the surface of MVs, thereby accelerating Ca2+ influx. ANXA5 serves not only as a transmembrane calcium
channel but also as a calcium-binding protein that accumulates within the MVs. (E) The membranes of MVs are abundant in PS. In the presence of
calcium, ANXA5 binds to PS, thereby accelerating the Ca2+ influx. Phosphocholines release phosphates through PHOSPHO1, which combines with
calcium ions to form hydroxyapatite crystals inside the MVs. Hydroxyapatite crystals are deposited in the extracellular matrix to complete the
mineralization of cartilage. Hc, Hypertrophic chondrocytes; Ob, Osteoblasts; ECM, Extracellular matrix; PHOSPHO1, Phosphoethanolamine/
Phosphocholine phosphatase1; Collagen I, type I collagen; Collagen II, type II collagen.
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In both in vivo bone tissue and in vitro osteoblasts,
immunofluorescence double staining revealed colocalization
between ANXA5 and type I collagen. Subsequent co-
immunoprecipitation experiments demonstrated the direct
binding between MVs and type I collagen. These results further
confirm that ANXA5, located on the MVs membrane, can directly
attach to type I collagen. Therefore, it is suggested that ANXA5 may
play a protective role against bone loss by promoting MVs adhesion
to the extracellular matrix through its interaction with type I
collagen (Su et al., 2023) (Figure 2D).

3 The function of ANXA5 in
cartilage tissue

3.1 The expression of ANXA5 in
cartilage tissue

ANXA5 is essential for the normal proliferation and
hypertrophy of chondrocytes. Castagnola et al. demonstrated that
ANXA5 mRNA reaches its maximum level in hypertrophic stage II
chondrocytes (Castagnola and Cancedda, 1991). Rahman and
Giambanco showed that ANXA5 expression is closely linked to
the differentiation of chondrocytes and skeletal muscle cells during
limb development (Rahman et al., 1997; Giambanco et al., 1991).
Shimada et al. examined the entire tibia and femur of
ANXA5+/−mice. They found that ANXA5 is expressed at the
tibial attachment site, the periosteum, the articular cartilage
surface, and the growth plate cartilage (Shimada et al., 2018).

3.2 ANXA5 enhances chondrocyte
mineralization

3.2.1 ANXA5 interacts with type II and type X
collagen, accelerating the Ca2+ influx and
promoting chondrocyte mineralization

Unlike osteoblasts, ANXA5 on the surface of MVs secreted by
chondrocytes plays a crucial role in chondrocyte mineralization
(Figure 2A). This function is achieved through its interaction
with extracellular matrix components, specifically type II
collagen and type X collagen (Wuthier and Lipscomb, 2011).
(Figure 2B) Several researchers have shown that ANXA5 is
involved in the interaction between chondrocytes and
extracellular collagen, contributing to the mineral deposition
process in primary cultures of chicken growth plate
chondrocytes grown in ascorbate-containing media
(Mollenhauer et al., 1984; Castagnola and Cancedda, 1991;
Pfäffle et al., 1988; Mebarek et al., 2023). Kirsch et al.
provided evidence using slot blot assays that ANXA5 not only
binds to native type II and X collagen but also to chondrocalcin,
the C-terminal extension of type II collagen in a calcium-
independent manner (Kirsch and Pfäffle, 1992). Bolean et al.
found that ANXA5-lipoprotein complexes have the highest
affinity for type II collagen deposited during chondrocyte
mineralization in articular cartilage (Bolean et al., 2020). King
et al. discovered that in vitro cultured Swarm rat chondrosarcoma
cells lack the ability to bind significant amounts of type II

collagen to their surfaces, as compared to normal rat
chondrocytes, which correlates with a deficiency of ANXA5 on
these cell surfaces (King et al., 1997). Lucic et al. discovered that
the N-terminal peptide of type II collagen binds to ANXA5. The
binding of C-terminal peptides and triple helical peptide to the
chondrocyte surface may occur through other collagen receptors,
such as integrins or cell-associated matrix proteins (Lucic et al.,
2003). Furthermore, von der Mark K et al. demonstrated that
during matrix vesicle-initiated cartilage mineralization, the
binding of ANXA5 to collagen significantly facilitates calcium
influx into MVs (von der Mark and Mollenhauer, 1997).

The N-terminal domain of ANXA5 has been shown to contain
calcium-binding sites that facilitate the influx of calcium (Kim and
Kirsch, 2008). ANXA5, which is expressed on the surface of MVs
secreted by chondrocytes, interacts with type II and type X collagen.
This interaction mediates the flow of Ca2+ into the MVs released by
hypertrophic cartilage in the growth plate (Boyan et al., 2022;
Anderson, 2003). Phosphocholines release phosphates through
PHOSPHO1 (Phosphoethanolamine/Phosphocholine
phosphatase), which combines with calcium ions to form
Hydroxyapatite crystals inside of the MV. Hydroxyapatite crystals
are deposited in the extracellular matrix to complete the
mineralization of cartilage (Bolean et al., 2017; Wuthier and
Lipscomb, 2011; Chaudhary et al., 2016; Millán, 2013)
(Figure 2E). Additionally, due to the close association of matrix
vesicles with the extracellular matrix rich in collagen and
proteoglycans, Genge BR et al. speculate that this MV protein
may be a stretch-activated ion channel component that enhances
Ca2+ uptake during mechanical stress (Genge et al., 1992).

3.2.2 ANXA5 interacts with PS in MVs to accelerate
the Ca2+ influx and enhance the mineralization of
chondrocytes

ANXA5 is known for its high-affinity binding to PS on cell
membranes, a process that depends on calcium concentrations (von
der Mark and Mollenhauer, 1997). Research by Köhler et al. has
shown that the binding affinity of recombinant ANXA5 proteins to
PS-rich MVs is stronger at low pH compared to neutral pH (Köhler
et al., 1997). Furthermore, studies by Genge BR and Kirsch T et al.
have demonstrated that the membranes of MVs in vivo are rich in
PS, which binds to ANXA5. This interaction enhances calcium
(Ca2+) influx and promotes intracavicular crystal growth, thereby
playing a critical role in the mineralization of the cartilage matrix
(Genge et al., 2007; Kirsch et al., 1997).

3.3 ANXA5 promotes apoptosis in cartilage

ANXA5 plays a crucial role in promoting chondrocyte
mineralization, which ultimately leads to apoptosis. A key
characteristic of osteoarthritis is the eventual apoptosis of
chondrocytes following mineralization (Wang et al., 2023a).
Research by Mollenhauer has demonstrated that ANXA5 is
significantly upregulated in the cartilage of patients with
osteoarthritis. The expression and distribution of ANXA5 could
serve as a histological marker for metabolic alterations and changes
in cell phenotype associated with osteoarthritis (Mollenhauer et al.,
1999). Shimada and colleagues have shown that ANXA5 inhibits the
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proliferation of fibrocartilage and prevents the excessive growth of
bone ends (Shimada et al., 2018). Wang et al. discovered that
ANXA5 alters Ca2+ homeostasis in growth plate chondrocytes,
thereby regulating terminal differentiation and mineralization
events (Wang et al., 2005). Additionally, they also found that the
binding of ANXA5 to active protein kinase Cα (PKCα) stimulates
apoptosis in growth plate chondrocytes. Meanwhile, the interaction
of ANXA5 with β5 integrin regulates these processes, ultimately
leading to apoptosis (Wang and Kirsch, 2006). Furthermore,
research by Kirsch et al. found that human osteoarthritic
chondrocytes adjacent to the joint space undergo terminal
differentiation and release MVs containing ANXA5, which
initiate mineral formation and eventually die by apoptosis
(Kirsch et al., 2000).

4 The function of ANXA5 in vessels

4.1 The expression of ANXA5 in vessels

Brachvogel et al. used mice with the ANXA5-lacZ fusion gene to
investigate the expression of ANXA5 in mouse blood vessels. Their

initial findings revealed that the fusion gene is expressed in cells
associated with the embryonic vascular network (Brachvogel et al.,
2001). Further research demonstrated that, following X-gal staining
of embryonic sections, ANXA5 expression is limited to the primary
capillary plexus, the dorsal aorta and extraembryonic tissue during
early embryonic development. Perivascular cells (PVCs) are crucial
for proper vascular development and play a significant role in
maintaining both the structural integrity and contractility of
vessels (Brachvogel et al., 2005).

4.2 ANXA5 reduces inflammation in
endothelial

Ewing et al. conducted a study demonstrating that
ANXA5 reduces local vascular and systemic inflammation and
vascular remodeling and improves vascular function, indicating
that it has a therapeutic potential against atherosclerotic
cardiovascular diseases (Ewing et al., 2011). Tschirhart et al.
found that recombinant human ANXA5 protein, by binding to
PS, can inhibit endothelial inflammation induced by microvesicles
in septic patients (Tschirhart et al., 2023). Additionally, in vitro

FIGURE 3
The related biological functions in bone tissue. (A) ANXA5 facilitates osteogenic differentiation via the STAT6 signaling pathway. (B) ANXA5 facilitates
chondrocyte apoptosis by integrin β5/ANXA5/PKCβ signaling pathway. (C) ANXA5 alleviates endothelial cell injury and atherosclerosis progression
through FUS/ANXA5 signaling pathway. (D) ANXA5 reduces injury-induced neuroinflammation and oxidative stress via NF-ĸB/HMGB1 signaling pathway
and Nrf2/HO-1 signaling pathway.
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experiments by Burgmaier et al. revealed that ANXA5 significantly
inhibits the capture, rolling, adhesion, and migration of peripheral
blood mononuclear cells on TNF-α-activated endothelial cells
within inflammatory lesions. The research team also observed
that short-term treatment with ANXA5 can decrease
inflammation in plaque lesions of atherosclerotic mice by
interfering with the recruitment and activation of monocytes at
sites of inflammation (Burgmaier et al., 2014).

4.3 ANXA5 suppresses the apoptosis of
endothelial cells

Liu et al. demonstrated that knocking out the ANXA5 gene in
human umbilical vein endothelial cells (HUVECs) led to a decline in
cell viability. Flow cytometry analysis showed that the knockout of
ANXA5 promotes apoptosis in HUVECs (Liu et al., 2024).
Additionally, it has been reported that anti-ANXA5 antibodies
can induce apoptosis in vascular endothelial cells. The clinical

study by Habeeb et al. indicated that patients with systemic
sclerosis (SSc) have anti-ANXA5 antibodies in their serum and
that higher antibody titers are associated with more severe vascular
damage (Habeeb et al., 2010; Sugiura and Muro, 1999).
Furthermore, Tripathy et al. observed a significant increase in
anti-ANXA5 antibody levels in patients with Takayasu’s arteritis
(TA), and a corresponding increase in the number of anti-
endothelial cell antibodies (AECA) positively correlated. Anti-
ANXA5 antibodies were also positively correlated with disease
activity, suggesting they play a pathogenic role in the disease
(Tripathy et al., 2003).

4.4 ANXA5 promotes angiogenesis and
vascular differentiation

Brachvogel et al. isolated perivascular cells (PVC) from
ANXA 5-LacZ + mice that specifically expressed ANXA 5 and
discovered that they possessed the ability to differentiate into

TABLE 1 Biological functions and related signaling pathways (or related molecular mechanism) involved in ANXA5.

Cell or tissue Biological function Related signal pathway (or related
molecular mechanism)

Reference

Preosteoblast ANXA5 promotes the proliferation and osteogenic
differentiation of MC3T3 cells

STAT6 signaling pathway Genetos et al. (2014)

Bone ANXA5 derived from matrix vesicles of primary
osteoblast protects against osteoporotic bone loss via
mineralization

Expression of autophagy markers ATG5, ATG7, Beclin1,
LC3-I and LC3-II

Su et al. (2023)

Chondrocyte ANXA5 facilitates primary chondrocyte apoptosis Integrin β5/ANXA5/PKCβ signaling pathway Wang and Kirsch (2006)

Cartilage ANXA5 prevents cartilage overgrowth at the enthesis ANXA5 increases pyrophosphate levels by
downregulating ALP and upregulating ANK and ENPP1

Shimada et al. (2018)

Macrophage ANXA5 inhibits the polarization of macrophage to the
M1 macrophage

The TLR pathway and its downstream signaling
mechanisms

Jia et al. (2024)

Endothelial cells ANXA5 alleviates HUVECs endothelial cells injury and
atherosclerosis progression

lncRNAMIR4697HG/FUS/ANXA5 signaling pathway Liu et al. (2024)

Vessels ANXA5 promotes intravascular anticoagulant and
antithromboti

ANXA5 competitively inhibits the binding of
coagulation factors (Xa and Va) to PS on activated
platelets

Thiagarajan and Tait,
(1991)

Brain ANXA5 ameliorates traumatic brain injury-induced
neuroinflammation and neuronal ferroptosis pathways

NF-ĸB/HMGB1 and Nrf2/HO-1 signaling pathway Gao et al. (2023), Zhang
et al. (2022)

Human embryonic kidney
293T cells

ANXA5 modulates the immune response of 293T cells
to IFN-γ

Jak-Stat1 signaling pathway Leon et al. (2006)

Interstitial cells of the
testis

ANXA5 induces the proliferation of TM3 Leydig cells Ect2/RhoA/ROCK signaling pathway Jing et al. (2015)

Testis support cells of the
testis

ANXA5 protects TM4 support cells from DBP(Di-N-
butylphthalate)-induced oxidative stress

ERK/Nrf2 and Nrf2/HO-1 signaling pathway Zhang et al. (2019), Tang
et al. (2020)

Prostate cancer cells ANXA5 suppresses the proliferation of PC3 prostate
cancer cells

PKC-ζ/NF-κB signaling pathway Baek et al. (2017)

Cervical cancer cells ANXA5 inhibits the proliferation and metastasis of
HELA cervical cancer cells

PI3K/Akt signaling pathway Wang et al. (2023b)

Liver cancer cells ANXA5 positively regulates the proliferation,
migration, invasion and in situ lymph node adhesion of
HCA-F liver cancer cells

MEK-ERK and ERK2/c-Jun signaling pathway Sun et al. (2018), Sun et al.
(2016)

Diffuse large B-cell
lymphoma cell

ANXA5 inhibits Toledo diffuse large B-cell lymphoma
cell invasion and chemoresistance

PI3K/Akt signaling pathway Wang et al. (2014)

Frontiers in Cell and Developmental Biology frontiersin.org07

Jin et al. 10.3389/fcell.2025.1553683

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2025.1553683


various mesenchymal lineages (Brachvogel et al., 2005).
Subsequently, they added growth factors, namely, vascular
endothelial growth factor (VEGF) and platelet-derived growth
factor (PDGF), to the cell culture medium of PVC from ANXA 5-
LacZ + mice. As a consequence, characteristic basement
membrane proteins were detected in PVC, which are indicators
of mature vascular structures (Brachvogel et al., 2007). Sun et al.
discovered that the knockdown of ANXA5 was positively
associated with the decrease in the levels of CD34 and VEGF-
3, two indicators of angiogenesis, in mice transplanted with liver
cancer cells where ANXA5 was knocked down, thereby inhibiting
the progression and metastasis of liver cancer in vivo (Sun et al.,
2018). The study conducted by Zheng et al. demonstrated that
ANXA5 expression is positively correlated with the total vessel
length per field in patient liver cancer tissue. Co-culturing human
umbilical HUVEC with liver cancer cells HuH-7 of different
ANXA5 expression levels revealed that overexpression of
ANXA 5 in liver cancer cells enhances the tubulogenic ability
of endothelial cells. Conversely, co-culturing with ANX5-
knockout liver cancer cells reduced the tubulogenic ability of
endothelial cells.

4.5 The anticoagulant and antithrombotic
functions of ANXA5

The exposure of PS is crucial for the binding and activity of the
prothrombinase complex on activated platelets (Thiagarajan and
Tait, 1990; Sang et al., 2021; Zhao et al., 2016). ANXA5, which has a
high affinity with PS, can bind to activated platelets and interact with
them in a calcium-dependent manner (Connor et al., 2010;
Thiagarajan and Tait, 1991). This binding competitively inhibits
the attachment of coagulation factors to activated platelets, thereby
reducing coagulation. As a result, ANXA5 is recognized as a highly
effective anticoagulant protein. In a study by Van Ryn-McKenna
et al., heparin and ANXA5 were injected into the injured carotid
vein of a denuded rabbit. They discovered that ANXA5 prevented
the formation of the prothrombinase complex and significantly
decreased thrombus formation (Van Ryn-McKenna et al., 1993).
Additionally, research conducted by Li et al. found that ANXA5 can
inhibit the expression and activity of tissue factor (TF) and its release
induced by homocysteine (Hcy) in vascular smooth muscle cells
(VSMCs) (Li et al., 2009).

Bone regeneration is also a critical aspect of vascular
development. Kusumbe and his colleagues have demonstrated
that the blood vessels in the bone comprise endothelial cells that
specifically facilitate bone maturation and regeneration (Kusumbe
et al., 2014). While numerous studies have explored the role of
ANXA5 in vascular endothelium, and several ANXA5-based drugs
have been developed for anticoagulation and antithrombosis—such
as recombinant ANXA5 (rANV) (van Heerde et al., 1994;
Thiagarajan and Benedict, 1997), ANXA5 derivative (AND) (Ju
et al., 2004; Huang et al., 2006), and recombinant
ANXA5 anticoagulation fusion protein (Quan et al., 2022).
However, the function of ANXA5 in angiogenesis during bone
formation has not been investigated. Therefore, research in this
aspect might be one of the new directions in the field of bone
regeneration.

5 The function of ANXA5 in the
nervous system

5.1 The expression of ANXA5 in nerve cells

Giambanco et al. investigated the cellular distribution of
ANXA5 in rat tissue utilizing immunohistochemistry, revealing a
pronounced positivity in glial cells within both the cerebellum and
optic nerve (Giambanco et al., 1991). Additionally, Gotow et al.
examined the central nervous tissue of rats using biochemical and
morphological techniques. Their findings from immunoblotting and
immunoelectron microscopy revealed that ANXA5 is present in
neurons, with a focus on axonal terminals and synaptic vesicles. The
immunoreactivity for ANXA5 is primarily localized around the cell
bodies and dendrites of neurons, as observed through fluorescence
and confocal laser scanning microscopy (Gotow et al., 1996).

5.2 The protective function of
ANXA5 for neurons

Neurons are present in both the central nervous system and the
peripheral nervous system and constitute the building blocks of the
functional units of the nervous system. Takei N et al.’s study added
recombinant human ANXA5 to embryonic rat neurons. As the
amount of recombinant human ANXA5 increased, the neuron
survival rate rose, reaching saturation at 30 ng/mL,
demonstrating nutritional activity on neurons. Moreover, the
addition of an anti-ANXA5 antibody completely inhibited this
neural nutritional effect, suggesting that ANXA5 enhances
neuron survival in vitro and functions as a paracrine neural
nutrient factor in the central nervous system (Takei et al., 1994).
The study revealed that in traumatic brain injury (TBI) by Gao et al.,
the number of apoptotic neurons in the TBI + ANXA5 group was
significantly lower than that in the TBI group, indicating that
ANXA5 can reduce neuronal apoptosis and exert a
neuroprotective role after TBI. Furthermore, they confirmed that
ANXA5 alleviates neural inflammation, oxidative stress, and iron-
dependent apoptosis by regulating the NF-kB/HMGB1 pathway and
the Nrf2/HO-1 antioxidant system (Gao et al., 2023). Current
reports focus on neurons in the central nervous system, but there
is a lack of studies regarding its role in the peripheral nervous system
or its role in bone formation.

6 Potential role of ANXA5 in clinical
disease treatment

6.1 Potential role of ANXA5 in bone-related
disease treatment

In articles related to the use of ANXA5 for treating bone-related
diseases, it is currently in the animal experimental stage, with no
reports yet on its application in the clinical stage. Studies on
osteoporotic mice have shown that ANXA5 treatment can relieve
bone loss caused by osteoporosis, offering a novel strategy for
therapeutic intervention for bone loss (Su et al., 2023).
Experiments by Zhuoxuan Jia et al. demonstrated that in

Frontiers in Cell and Developmental Biology frontiersin.org08

Jin et al. 10.3389/fcell.2025.1553683

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://doi.org/10.3389/fcell.2025.1553683


osteoarthritis rats induced with monosodium iodoacetate, treatment
with ANXA5 effectively reduced pain symptoms and inhibited
inflammation. These findings suggest new directions for treating
osteoarthritis (Jia et al., 2024).

6.2 Potential role of ANXA5 in other
diseases treatment

ANXA5 has been reported in multiple clinical trials, primarily
focusing on thrombotic diseases (Quan et al., 2022), retinal vein
occlusion (Wautier et al., 2011), sepsis and COVID-19 treatment
(Martin et al., 2023; Mui et al., 2021). It also exhibits significant
clinical potential in targeted drug delivery (Kang et al., 2020),
immunotherapy in tumors (Woodward et al., 2022), treatment
with systemic lupus erythematosus (Cederholm and Frostegård,
2005), atherosclerosis (Cederholm and Frostegård, 2007) and
other diseases. Furthermore, ANXA5 levels may serve as a
potential biomarker for preventing asthma (Lee et al., 2018),
neurodegenerative disorders (Yamaguchi et al., 2010),
intrauterine growth restriction and preeclampsia (Peng et al.,
2022). Additionally, its levels could predict mortality in heart
failure patients (Schurgers et al., 2016), evaluate lymph node
metastasis and tumor grading in colon cancer patients (Sun
et al., 2017) and evaluate prognosis evaluation in oral squamous
cell carcinoma (Zhou et al., 2024).

7 Mechanisms through which
ANXA5 exerts its biological functions

ANXA5 not only promotes osteogenic differentiation, prevents
the occurrence of osteoporosis, and facilitates chondrocyte
mineralization and apoptosis but also enhances angiogenesis in
the vascular endothelium and protects nerve cells. These critical
physiological processes are integral to both bone formation and
bone repair, as illustrated in Figure 3. ANXA5 also fulfills diverse
functions in other normal cells, including alleviating brain injury
and intestinal injury, regulating the production of testosterone and
the proliferation of interstitial cells in the testis. In tumor cells,
ANXA5 enhances the invasive ability of hepatocellular carcinoma
cells and inhibits the expression of cyclooxygenase in prostate cancer
cells. A summary of the more relevant functions and corresponding
signaling pathways (or related molecular mechanism) of ANXA5 in
normal tissue and tumor cells is presented below, followed by a
detailed account (Table 1).

8 Conclusion and perspectives

ANXA5 is expressed in bone, cartilage, vessels, and nerves.
ANXA5 facilitates osteoblast differentiation. It can also enhance
bone mineralization through the interaction between MVs and type
I collagen, ultimately preventing the occurrence of osteoporosis. In
chondrocytes, ANXA5 interacts with collagen II and collagen X via
MVs to promote chondrocyte mineralization and result in chondrocyte
apoptosis. Additionally, ANXA5 inhibits the apoptosis of vascular
endothelial cells, and its antibody expression is associated with

multiple immune system cardiovascular diseases. ANXA5 also
stimulates vascular differentiation and angiogenesis. Besides,
ANXA5 promotes intravascular anticoagulant and antithrombotic
effects by preventing the binding of blood clotting factors to
platelets. Hence, a variety of antithrombotic preparations based on
ANXA5 have been developed. Furthermore, ANXA5 has a protective
effect on neurons, demonstrating the properties of neurotrophic factors.

Osteogenesis represents a series of complex biological functions,
such as bone and cartilage formation and revascularization, as well
as the development, maintenance, and regeneration of nerves. The
majority of current studies on ANXA5 mainly concentrate on
immune disorders, pregnancy disorders, and apoptosis detection.
Based on the relevant literature cited in this paper, future research
should focus on angiogenesis and neurogenesis in the domain of
bone tissue, which are crucial directions for further exploration of
bone formation and the development of bone tissue
engineering scaffolds.
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