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Introduction: MYD88 (myeloid differentiation primary response 88) is a
key adaptor protein mediate immune responses, primarily through Toll-like
receptors (TLRs) and interleukin-1 receptor (IL-1R) signaling. The TLR/MYD88
pathway plays a critical role in dendritic cells (DC) maturation and function,
contributing to the body's innate immunity. Recent studies have further
highlighted MYD88's pivotal role in intrinsic immunity and its regulatory
influence on the tumor microenvironment (TME) in hepatocellular carcinoma
(HCQC). The expression of MYD88 in DCs and its regulatory role in the TME have
gained increasing attention.

Methods: RNA-sequencing data retrieved from the TCGA and GEO databases
were utilized for both the training and validation of our signature. Single-
cell RNA transcriptome data from GEO were analyzed to investigate the
correlation among subclusters of T cells, myeloid cells, and dendritic cells
(DCs) within the HCC tumor microenvironment (TME). A combination of
bioinformatics and machine learning approaches was employed to perform
statistical analyses.Additionally, flow cytometry was conducted to quantify T cell
subtypes and assess biomarker expression in DCs. A BALB/c-derived xenograft
mouse model was established to evaluate the functional role of MyD88 in tumor
progression and immunotherapy response. Furthermore, immunohistochemical
(IHC) staining was performed to reassess the biological effects of MyD88 in HCC
patients undergoing immune checkpoint inhibitor (ICl) therapy.

Results: Our pan-cancer data analysis further highlights the significant impact
of MYD88 on clinical outcomes in HCC. Analysis of TCGA and GEO databases
confirms that MYD88 serves as a key signaling molecule in DCs, reinforcing its
critical role in immune regulation. Our in vitro experiments demonstrates that
MyD88 modulates T cell function through DCs. In vivo, H22 tumor cells exhibited
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accelerated growth in MyD88 knockout mice and a reduced response to anti-
PD-1 treatment, whereas wild-type mice showed the opposite trend.

Discussion: These findings underscore the critical role of MYD88 in DC function,
suggesting its potential as a biomarker forimmunoregulation in HCC. By shaping
the TME, MYD88 not only regulates the immune response in HCC but also
influences patient clinical outcomes. Both ex vivo and in vivo experiments further
validate that MYD88 impacts DC functionality, contributing to variations in HCC

progression
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1 Introduction

MYDS8S8 is a key adaptor protein in Toll-like receptors (TLR)
signaling, palying a crucial role in immune responses (Sun et al.,
2023; Saikh, 2021; Fitzpatrick et al, 2020). Comprising 296
amino acid residues, MYD88 features two specialized domains:
the death domain and the TIR domain (Hardiman et al,
1996). Dimerization of the TIR domain is essential for MYD88-
mediated signaling, highliting its pivotal role in TLR pathways
(Kawai and Akira, 2010). Among the 14 TLR isoforms, all-except
TLR3-signal at least partially through MYD88. By recognizing
pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs), MYD88 transmits signals
downstream, activating IRAK and TRAF6 kinases (Kiripolsky et al.,
2020). This leads to the stimulation of the NF-kB and MAPK
signaling pathways, which drive critical cellular effects (Fan et al.,
2022; Weng et al., 2024). Notably, activation of these pathways has
been linked to tumor progression and metastasis (Fan et al., 2013).

TLRs are the primary class of pattern-recognition receptors
(PRRs) expressed on the surfaces of DCs. These receptors detect
DAMPs, triggering the transcription and synthesis of inflammatory
factors that promote DC maturation. This maturation process leads
to the upregulation of co-stimulatory molecules, such as CD80 and
CD86, which enhance the activation and proliferation of naive T
cells. As a result, adaptive immunity is initiated, playing a pivotal
role in shaping tumor outcomes (Wang et al., 2024).

Recent findings suggest that MYD88, beyond its essential
role in intrinsic immunity, is a critical factor in regulating of
the TME (Liu et al, 2023; Huo et al, 2024). Studies have
shown that blocking MYD88 signaling downstream of TLR4
disrupts DC function, skews T cell differentiation toward Th2
cell phenotypes, and promotes tumorigenesis (Ochi et al., 2012a).
Additionally, MyD88-deficient (MyD88~/~) mice, when subjected to
repeated azoxymethane (AOM) administration, exhibited a higher
incidence of colitis-associated cancer (CAC) compared to wild-
type mice (Rakoff-Nahoum and Medzhitov, 2007). HCC, the fourth
leading cause of cancer-related deaths worldwide, accounts for
approximately 800,000 deaths annually. In studies of human liver
cancer, MyD88 has been shown to be highly expressed in liver
cancer tissues compared to normal liver tissues (Liang et al,
2013). Furthermore, elevated MyD88 expression promotes tumor
proliferation and metastasis by activating the PI3k/Akt signaling
pathway and enhancing epithelial-mesenchymal transition (EMT)
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process (Jia et al., 2014). Research suggests that MARCHEF3-
mediated degradation of PARP1 in tumor cells activates the cGAS-
STING pathway in DCs, thereby modulating antitumor immunity in
HCC. Furthermore, in situ DC vaccination for HCC demonstrates
substantial potential in modulating the TME (Lurje et al., 2021). In
light of these findings, the expression of MYD88 in DCs and its role
in TME regulation are emerging as critical areas of research, with
significant implications for clinical outcomes in HCC.

We analyzed data from The Cancer Genome Atlas (TCGA) and
Gene Expression Omnibus (GEO) to demonstrate that MYD88,
a key signaling molecule in DCs, plays a critical role in DC
function, highlighting its potential as a biomarker for immune
regulation in HCC. By modulating the TME, MYD88 not only
regulates the immune response in HCC but may also influence
patient clinical outcomes. Both ex vivo and in vivo experiments have
confirmed that MYD88 can produce variable effects in HCC by
altering DC function. Moving forward, further investigation into the
mechanisms by which MYD88 operates in DCs and the TME, as well
asits potential applications in immunotherapy, may provide valuable
insights and novel therapeutic targets for the treatment of HCC.

2 Materials and methods
2.1 Dataset preparation and preprocessing

2.1.1 Acquisition of pan-cancer data

We obtained RNA sequencing (transcripts per million, TPM)
gene expression data along with corresponding clinical information
for TCGA pan-cancer and GTEx samples from UCSC Xena
(https://gdc.xenahubs.net). The downloaded gene expression files
contained pre-mapped gene symbols, which were further processed
by converting ENSEMBL IDs to their corresponding gene symbols.
In cases where multiple ENSEMBL IDs mapped to the same gene
symbol, the expression value with the highest level was retained for
subsequent analyses. To ensure the reliability of survival analyses,
samples with incomplete survival information or a total survival
time of zero were excluded.

2.1.2 Acquisition of GEO data

We downloaded gene expression matrix files for GSE14520,
GSE76297, and GSE76427 from the GEO database (http://www.
ncbi.nlm.nih.gov/geo/). identifiers

Subsequently, probe were

converted to gene symbols. In cases where a probe mapped to
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multiple genes, the probe was removed, and the highest expression
value among the correponding gene symbols was retained.

2.2 Univariate analysis and grouping

Univariate Cox analysis (P < 0.05) was performed to identify
prognosis-related genes within the selected cohort. Patients were
then stratified into high- and low-expression groups based on the
gene expression levels. Overall survival (OS) between these groups
was compared using the survminer package. Additionally, time-
dependent receiver operating characteristic (ROC) curve analysis,
conducted with the timeROC package, was used to evaluate the
predictive performance of the identified prognostic features.

2.3 ssGSEA analysis

Single-sample gene set enrichment analysis (ssGSEA) is a
widely utilized method for evaluating immune cell infiltration.
This approach estimates the relative enrichment of a specific gene
set, such as an immune cell gene set, within each sample by
comparing its gene expression data to the overall transcriptomic
expression profile of the sample. In the context of immune cell
infiltration analysis, ssGSEA quantifies the relative abundance of
various immune cell types in individual sample. The ssGSEA
method converts the gene expression profile of each sample into
gene set enrichment scores based on the input expression matrix
and immune cell marker gene sets. These enrichment scores are
used to assess the degree of immune cell infiltration. The immune
gene sets employed in this study are derived from the research
conducted by Charoentong et al. (2017).

The ssGSEA process begins by ranking all genes in descending
order based on their expression levels. The cumulative distribution
function is then computed for genes with higher expression within
a predefined gene set, generating a metric known as the gene
set enrichment score (GSE). For each sample, gene expression is
ranked similarly, and a corresponding GSE is calculated at each
position in the ranking. Finally, these scores are either averaged or
weighted to drive a single ssGSEA score, representing the relative
abundance of the immune cell type associated with the gene set.
The ssGSEA analysis was conducted using the ssgsea function from
the R package.

2.4 Single-cell analysis

The single-cell RNA sequencing (scRNA-seq) dataset was
preprocessed using the Seurat R package (version 4.4.0). Data

filtering was performed based on two parameters: min.cells =
3 and min.features = 200. Quality control was applied to the
integrated dataset, ensuring that the proportion of mitochondrial
genes did not exceed 5%. Counts were normalized using the
“LogNormalize” method and scaled with the ScaleData function.
Batch effects were corrected using Harmony. Cell Proximity was
assessed with the FindNeighbors function, followed by clustering via
the FindClusters function with a resolution of 0.6. The results were

visualized using Uniform Manifold Approximation and Projection
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(UMAP). Differentially expressed genes across cell subpopulations
were identified using the FindMarkers function.

2.5 Enrichment analysis

Gene Ontology (GO) analysis is a fundamental bioinformatics
tool for annotating genes and their products across three primary
categories: cellular components (CC), molecular functions (MF),
and biological pathways (BP). The Kyoto Encyclopedia of Genes
and Genomes (KEGQG) is a comprehensive databases that provides
insights into genomes, biological pathways, diseases, and chemicals.
In this study, GO functional enrichment analysis and KEGG
pathway analysis were performed using the clusterProfiler package
to predict potential molecular functions of the genes of interest. A
p-value of less than 0.05 was considered statistically significant.

2.6 Cell culture

The mouse hepatocellular carcinoma cell line H22 was obtained
from the Shanghai Cell Bank at the Chinese Academy of Sciences.
The cells were cultured in a CO, incubator using RPMI-1640
complete medium. Once the cells reached 70%-80% confluence
in the culture dish, they were passaged with a complete medium
exchange. Cells in the logarithmic growth phase were used for the
experiments.

2.7 Establishment of a mouse model of
H22 cell-homocyte tumor

Male BALB/c mice and BALB/c (H-2d) Myd88"/ ~ mice, aged
6-8 weeks, were selected for the study. The right side of each
mouses back was shaved and sterilized with alcohol, followed
by subcutaneous inoculation of 100 uL (3 x 10° cells) of H22
cells into the lower right back. Tumor formation was monitored
daily, with tumor sizes typically reaching that of a grain of rice
by day 5. Once tumors had developed, the inoculated mice were
randomly assigned to intervention groups. Mice received either a
MyD88 inhibitor (50 mg/kg) via intraperitoneal injection once daily,
or a PD-L1 antibody (200 pg) via intraperitoneal injection every
3 days, while the control group received an equivalent volume of
solvent intraperitoneally. The total observation period lasted for
3 weeks. At the end of the study, mice were deeply anesthetized with
1% pentobarbital sodium and euthanized under deep anesthesia.
Spleens and local draining lymph nodes were harvested, and
data on tumor size and body weight changes were recorded for
statistical analysis.

2.8 Detection of treg and T cells by flow
cytometry

The spleen was processed into a single-cell suspension using
RPMI-1640 complete medium. Cells were stained with PE-labeled
CD69 antibody and PE-Cy5-labeled CD3 antibody, followed by flow
cytometric analysis using Flow]Jo software. Additionally, a separate
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spleen-derived single-cell suspension was prepared and labeled
with FITC-labeled CD4 and APC-labeled CD25 antibodies for flow
cytometric detection and analysis. Similarly, local draining lymph
nodes were processed into single-cell suspensions, stained with a
PE-labeled CD69 antibody and a PE-Cy5-labeled CD3 antibody, and
analyzed by flow cytometry using Flow]Jo software.

2.9 Cultures and interventions for bone
marrow-derived DCs

Bone marrow cells were harvested from the lower limb
femur and tibia of BALB/c mice were taken and induced in
culture using GM-CSF (final concentration 20ng/mL) and
IL-4 (final concentration 10ng/mL) for induction.The cells
were divided into four groups: a control group (without any
treatment), an LPS intervention alone group, an LPS+10 uM MyD88
inhibitor group, and an LPS+40 uM MyD88 inhibitor group.
Analyses were performed 48 h after the intervention using flow
cytometry.

2.10 Lymphocyte mixed culture

Peripheral lymph nodes were harvested from C57BL/6 (B6, H-
2b) mice. Lymphocytes were processed into single cell suspensions
and labelled with CFSE. DCs, treated using the same method
as described above, were co-cultured with these lymphocytes for
3 days. The cells were then labelled for CD4 and CD8 and analyzed
using flow analyzed.

2.11 Detection of T-cell proliferation by
BrdU assay

Lymph nodes from BALB/c mice were collected and processed
into single-cell suspensions. The cells were plated into 96-well plates
at a density of 2 x 10° cells per well, with 100 uL of culture
medium added to each well. Functional antibodies, anti-CD3e
(final concentration: 2 mg/mL) and anti-CD8e (final concentration:
1 mg/mL), were added to each well. Additionally, MyD88 inhibitor
was introduced at two different concentrations (10 uM and 40 uM),
with each condition set up in duplicate. After 24 h of incubation, the
96-well plate was retrieved, and cell proliferation was assessed using
the BrdU assay.

2.12 Statistical analysis

Statistical analyses were performed using R version 4.1.2.
The Wilcoxon test was applied to compare statistical differences
between two groups, while the Kruskal-Wallis test was used
to evaluate differences among multiple groups. Survival curves
were generated using the Kaplan-Meier method, and the log-
rank test was conducted to compare overall survival differences
between groups.

Univariate and multivariate analyses were performed using
Cox regression models to evaluate the independent prognostic
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significance of risk scores in relation to other clinical characteristics.
Receiver operating characteristic (ROC) curves were generated to
assess the predictive performance of the risk model for 1-, 2-, and 3-
year OS. Spearman correlation analysis was conducted to examine
relationships between variables. A p-value of less than 0.05 was
considered statistically significant. The following notations were
used:*"**for p < 0.0001,"* *for p < 0.001," *for p < 0.01,*for p < 0.05,
and ns for non-significant results.

3 Results

3.1 MYD88 expression is dysregulated in
pan-cancer and correlates with
pathological clinical features of
hepatocellular carcinoma

RNA sequencing (TPM) gene expression data for TCGA pan-
cancer and GTEx samples, along with corresponding clinical
information, were obtained from UCSC Xena (https://gdc.
xenahubs.net). Additionally, bulk RNA-seq data for tumors
and adjacent non-cancerous tissues from the GSE14520 and
GSE76297 HCC datasets of hepatocellular carcinoma were
retrieved from the GEO database. Differential expression analysis
indicated that MYD88 expression varied significantly between
normal and tumor samples across multiple cancer types,
including ACC, BLCA, BRCA, and LIHC. Notably, MYDS88
expression was found to be downregulated in tumor samples
within the TCGA-LIHC dataset. In addition, comparison of
MYD88 expression between normal and tumor samples from
the GSE14520 and GSE76297 hepatocellular carcinoma datasets
confirmed the downregulation of MYDS88 in tumor samples,
consistent with our findings in the TCGA-LIHC dataset (see
Supplementary Figure SIA, B). Immunohistochemistry plots of
MYD88 expression in normal and tumor samples of hepatocellular
carcinoma were also retrieved from the Human Protein Atlas (HPA)
database (see Supplementary Figure SIC). Statistical analyses of
MYD88 expression based on clinical variables, including age,
gender, stage, and grade, were performed in the TCGA-LIHC
dataset; however, no significant differences were observed (see
Supplementary Figure S1D).

Utilizing follow-up data from various cancer types in TCGA,
we evaluated the impact of MYD88 expression on cancer prognosis
and presented a univariate prognostic analysis forest plot for Overall
Survival (OS) and Progression-Free Interval (PFI) (Figures 1A, B).
TCGA-LIHC samples were categorized into high- and low-
expression groups based on MYD88 expression, using the optimal
cutoff determined by the ‘surv_cutpoint’ algorithm in the survminer
R package. The Kaplan-Meier (KM) survival curves for OS and PFI
were then plotted over time. The KM survival curves for OS and PFI
exhibited statistically significant differences between the high- and
low-expression groups (p < 0.05), indicating that patients with high
MYD88 expression had significantly poorer OS and PFI compared
to those with low expression (Figures 1C, D). Furthermore, MYD88
expression levels in GSE76427 were used to stratify samples
into high- and low-expression groups. Prognostic analysis using
the KM method demonstrated that patients with high MYD88
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in GSE76427.

expression had significantly lower OS than those with low expression
(p <0.05) (Figure 1E).

3.2 Prognostic value of MYD88 in
pan-cancer and may influence clinical
outcome in hepatocellular carcinoma

The tumor microenvironment in HCC is highly complex,
with patients often exhibiting impaired immune function within
the TME. As demonstrated in the preceding analyses, samples
with high MYD88 expression are associated with poorer OS.
Thus, we investigated whether MYDS88 serves as a reliable
predictor of immunotherapy outcomes. To address this, we
conducted an analysis using the HCC immunotherapy cohort
GSE140901. Consistent with findings from the general cohort,

samples with high MYD88 expression exhibited shorter survival
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(Supplementary Figure S2A).  Additionally, MYD88 predicted
immunotherapy response with an area under the curve (AUC)
of 0.56 (Supplementary Figure S2B). Furthermore, we analyzed
the correlation between MYD88 and immune checkpoints in the
TGGA cohort. The results indicated a significant positive correlation
between MYDS88 and most immune checkpoints, suggesting that
MYD88 may serve as a potential biomarker for predicting the
immunotherapy responsiveness (Supplementary Figure S2C). To
further investigate the relationship between MYD88 expression and
clinical prognosis, we analyzed MYD88 levels in patients undergoing
immunoneoadjuvant therapy. Our findings revealed that MYD88
expression was significantly higher in the immune response group
compared to the low immune response group (34.49 + 4.772 vs.
19.03 + 2.767, p These
results suggest that MYD88 may enhance the efficacy of tumor

0.0216; Supplementary Material S1).

immunotherapy, particularly PD-1/PD-L1 inhibitors, within the
tumor microenvironment (Supplementary Material S1).
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3.3 MYDS88 correlates with TME cells

We anlayzed the infiltration of 29 immune cell types using
ssGSEA based on TCGA-LIHC data. Differences in infiltration
levels between high and low MYD88 expression subgroups were
assessed using the rank sum test. Significant differences were
observed in the infiltration of CD56 dim natural killer cells, central
memory CD8+T cells, gamma delta T cells, immature dendritic
cells, memory B cells, neutrophils, T follicular helper cells, and
type 2T helper cells between high and low MYD88 expression
groups (see Supplementary Figure S3A). However, no significant
differences were detected between the high- and low-expression
subgroups when calculating immunity scores, stroma scores, tumor
purity, and ESTIMATE scores using the ESTIMATE algorithm.

We performed Spearman correlation analyses to evaluate the
relationship between MYD88 expression and ssGSEA immune cell
scores, as well as immune scores, stromal scores, tumor purity, and
ESTIMATE scores. Twelve immune cell scores exhibited significant
correlations with MYD88 expression (p < 0.05). Specifically, the
immune cell scores of activated CD8 T cell, CD56 bright natural
killer cell, CD56 dim natural killer cell, and neutrophil showed
negative correlations with MYD88 expression. In contrast, the scores
for central memory CD4 T cells, central memory CD8T cells,
immature B cells, immature dendritic cells, memory B cells, and
other immune cell types demonstrated positive correlations with
MYD88 expression (see Supplementary Figures S3B, C).

Simultaneously, we employed the immune cell infiltration
scores obtained from single-sample Gene Set Enrichment Analysis
(ssGSEA) to assess the impact of immune cells on the overall survival
(OS) prognosis of liver cancer (Figure 2). Patients were stratified
into high and low immune infiltration groups based on the optimal
threshold. Kaplan-Meier survival curves were generated to compare
survival outcomes between these groups. The results indicated that
the infiltration scores of 17 immune cell types were significantly
associated with patient prognosis, including Activated B cells (p <
0.0001) and conventional dendritic cells (¢cDCs) (p = 0.0062).

3.4 Single-cell data analysis of
hepatocellular carcinoma

To further investigate the role of MYDS88 in the HCC
microenvironment crosstalk, we selected hepatocellular carcinoma
samples (excluding fetal liver samples) from the Hepatocellular
Carcinoma Single Cell Sequencing dataset GSE156625. This dataset
included tumor and paratumor samples from 14 HCC patients,
along with one healthy liver sample (HN1), which contained a
low cell count. The selection of GSE156625 from the datasets
GSE149614, GSE156625, and GSE182159 was based on its highest
number of ¢DCs in the tumor samples following ¢DC cell
annotation.

The scRNA-seq dataset was preprocessed using the R
package Seurat (version 4.4.0), with filtering applied based on

two parameters: min.cells 3 and min.features = 200 (see
Supplementary Figures S4A, B). Following quality control, a total
of 73,589 cells were retained, of which 57,254 were derived
from tumor samples. These cells were classified into nine

major cell types: T/NK cells, B cells, plasma cells, cycling cells,
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hepatocytes, endothelial cells, myeloid cells, fibroblasts, and mast
cells (see Supplementary Figures S4C-E). In the HCC single-
cell dataset, T/NK cells were the most predominant, followed
by endothelial cells. Notably, the proportion of hepatocytes was
significantly higher in tumor samples, but markedly lower in normal
samples (see Supplementary Figure S4F).

To further investigate the heterogeneity of T cell subpopulations
and identify potential factors influencing their recruitment in
HCC patients, we extracted T/NK cells and performed further
fractionation for annotation. T cells were classified into CD8" T cells
based on the expression of CD8A and CD8B, into CD4" T cells based
on CD4 expression, and NK cells based on the expression of NKG7,
GNLY, and KLRD1. Differential gene expression among the various
clusters was analyzed using the FindAllMarkers function from the
Seurat package, with the marker genes presented in Figure 3A.
Ultimately, T/NK cells were subdivided into CD4" central memory
T cells (Tecm), CD4" regulatory T cells (Treg), CD8" effector
memory T cells (Tem), mucosal-associated invariant T (MAIT) cells,
and NK cells (Figure 3A).

In HCC tumor samples, the proportions of CD8* Tem, CD4*
Tem, and CD4" Treg cells were significantly higher compared
to normal samples, whereas the proportion of NK cells was
higher in normal samples (Figure3B). CD8" Tem cells are
characterized by long-term antigenic memory and rapid cytotoxic
activity against tumor cells. Their increased presence in tumors
suggests an active immune response attempting to counteract
tumor progression, indicating potential long-term antigenic
stimulation within the tumor microenvironment (TME). However,
this could also reflect a mechanism of tumor immune evasion,
wherein tumor cells suppress CD8" T cell anti-tumor activity
through various inhibitory signals. This bubble chart illustrates
the distribution of differentially expressed genes across various
cell types. The X-axis represents different T cell subtypes, while
the Y-axis denotes differentially expressed genes. Our analysis
revealed that CXCR4 is highly expressed across all T cell subtypes.
Additionally, IL7R is predominantly expressed in CD4 central
memory T cells (Tcm) and mucosal-associated invariant T
(MAIT) cells, whereas NK cells exhibit high expression of NKG?7,
GNLY, and KLRD1 (Figure 3C). The increased proportions of
CD8* Tem, CD4" Tcm, and CD4* Treg cells in tumor samples
indicate a complex immune response occurring within the TME,
characterized by prolonged antigenic stimulation and significant
immunosuppression. In contrast, the higher proportion of NK
cells in normal samples suggests a more robust innate immune
defense in a healthy state (Figure 3D). The reduction in NK cell
numbers in tumor samples may be attributed to tumor immune
evasion mechanisms. Overall, these findings highlight an immune
imbalance within the tumor microenvironment, where effector
immune responses are present but are suppressed by regulatory
T cells and other immunosuppressive mechanisms, ultimately
hindering complete tumor eradication.

Additionally, we further subdivided myeloid cells into cDCs,
macrophages (Mac), monocytes (Mono), and plasmacytoid
(pDCs),
(Figure 4A). Figure 4B presents UMAP visualizations of tumor-

dendritic  cells with respective markers indicated
associated and normal myeloid cell clusters. Figure 4C illustrates the
cell type-specific expression patterns of various genes. CD68, APOE,

C1QA, and CIQB are predominantly expressed in macrophages,
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FIGURE 2
Kaplan-Meier curve for immune infiltration analyzed by ssGSEA.

while FCN1, S100A8, and S100A9 are specifically expressed
in monocytes. Additionally, TCL1A, IRF4, and PTGDS show
distinct expression in plasmacytoid dendritic cells (pDCs). Further
subdivision of myeloid cells revealed that MYD88 was specifically
expressed in monocytes and ¢cDCs (Figures 4D, E), both of which
play a crucial role in anti-tumor immunity. On the contratry,
pDCs do not exhibit a significant anti-tumor effect. MYD88 was
predominantly expressed in myeloid cells (Figures 4F, G).

3.5 Dendritic cell heterogeneity in the
single-cell tumor microenvironment of
hepatocellular carcinoma

We selected ¢DCs from tumor samples in the single-cell
dataset and categorized ¢DCs expressing MYDS88 at levels
greater than 0 as MYD88+ cDCs, while those lacking MYD88
expression were designated as MYD88-cDCs (Figure 5A). In tumor
samples, the proportion of MYD88-cDC subpopulations was
significantly higher (Figure 5B).

Next, we analyzed antigen-presenting molecule enrichment
profiles within different ¢DC subpopulations and calculated
single-cell scores using the UCell package. The MYD88+ DC
subpopulation exhibited significantly higher scores for both MHC
class I and MHC class II molecules compared to the MYD88-
DC subpopulation. Additionally, MYD88+ DCs demonstrated
considerably higher expression levels of genes encoding MHC
class IT molecules, including HLA-DPB1, HLA-DPA1, HLA-DQAL,
HLA-DQBI1, HLA-DRBI1, and HLA-DRA. Furthermore, MYD88+
DCs displayed increased expression levels of genes associated
with MHC class I molecules, such as HLA-A, HLA-B, and HLA-
C (Figures 5C, D). These findings suggest that MYD88+ DCs may

Frontiers in Cell and Developmental Biology

07

2600 o G0 2000
0 Time(Days) S Time(Days)

possess enhanced antigen presentation capabilities, enabling them
to activate T cells more effectively and play a crucial role in the
immune response.

To confirm differential gene expression between the two
cell subpopulations, we utilized the FindMarkers function
from the Seurat package, applying screening thresholds of p_
val_adj <0.05 and |avg_log2FC| > 0.5. Upon comparison, we
identified 231 differential genes (231 upregulated; 0 downregulated)
between MYD88+ c¢DCs and MYDS88-cDCs. Subsequently,
we performed GO and KEGG enrichment analyses on the
upregulated differential genes. KEGG analysis revealed enrichment
in pathways such as focal adhesion and the PD-LI expression
and PD-1 checkpoint pathway in cancer. Meanwhile, GO
Biological Process analysis indicated enrichment for processes
including activation of the immune response, T cell receptor
signaling pathway, and regulation of antigen receptor-mediated
signaling pathways (Supplementary Figure S5).

3.6 Cellular communication between cDC
cells and T cells in the tumor
microenvironment

To further elucidate the mechanisms of cellular communication
among different cellular subpopulations, this study employed
the R package CellChat (version 1.6.1) to infer intercellular
communication networks. The methodology involved constructing
a comprehensive database of signaling molecule interactions,
considering known structural components of ligand-receptor
interactions. These included multimeric ligand-receptor complexes,
soluble agonists and antagonists, as well as stimulatory and
inhibitory membrane-bound co-receptors.
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CellChat employs mass action models, differential expression
analyses, and statistical tests on groups of cells to infer cell
state-specific signaling communications within scRNA-seq data.
Additionally, CellChat provides various visual outputs and
quantitative characterizations, facilitating the comparison of
intercellular communication through social network analysis tools,
pattern recognition methods, and machine learning approaches.
It calculates communication probabilities at the signaling pathway
level by summarizing the interaction probabilities of all ligand-
receptor pairs associated with each pathway.

Given the complexity of cellular communication networks,
we focused on illustrating the signals transmitted by each
subpopulation. To enchance comparability, we adjusted
the edge.weight.max parameter, allowing for a clearer
comparison of edge weights across different networks. Cellular
communication analysis was conducted between cDCs and T cell
subpopulations (Figure 6A).

The analysis revealed that MYD88+ cDCs and MYD88-
cDCs exhibited distinct interaction strengths with other cell
subpopulations across various pathways (Figure 6B). Notably, the
results indicated that in ligand-receptor interactions, such as
MIF-(CD74+CXCR4), MIF-(CD74*CD44), LGALS9-CD45, and
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LGALS9-CD44, MYD88+ cDCs demonstrated stronger interactions
with both CD4" T cellsand CD8" T cells (Figure 6C). These findings
suggest that MYD88+ cDCs may play a more prominent role in
facilitating T cell responses within the tumor microenvironment.

3.7 MyD88 promotes H22 tumor growth by
reducing T cell function through DCs

To further investigate the impact of MyD88 inhibition
on immune cell populations, we examined in vivo immune
cell markers, with a specific focuse on T cell activation and
regulatory T cell (Treg) populations. Flow cytometry analysis
following systemic MyD88 inhibition revealed a statistically
significant increase in the proportion of splenic Tregs compared
to the control group (Figure7A; Supplementary Figure S6A;
12.00% + 0.64% vs. 15.60% + 1.06%, P < 0.05). Although
the proportion of splenic CD3*CD69" T cells decreased after
MyD88 inhibition, this difference was not statistically significant
(Figure 7B; Supplementary Figure S6A; 7.54% + 0.36% vs. 5.98%
+ 0.51%, P > 0.05). However, in the lymph nodes, a significant
decrease in CD3*CD69" T cells was observed following MyD88
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inhibition (Figure 7C; Supplementary Figure S6A; 13.9% + 1.99%
vs. 6.91% * 0.70%, P < 0.05). These findings suggest that MyD88
inhibition not only increases Treg proportions but also modulates
T cell activation in vivo, particularly affecting activation in the
lymph nodes.
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To determine whether the inhibition of local T cell activation in
vivo directly impacts T cell function, we designed an in vitro assay to
assess the immediate effects of MyD88 inhibiton on T cell activity.
T cells were stimulated using functional antibodies (anti-CD3e and
anti-CD8e), with the MyD88 inhibitor introduced simultaneously.
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T cell proliferation and activity were then evaluated using the BrdU
assay. The results indicated that MyD88 inhibition did not directly
affect T cell activity (Figure 7D, p > 0.05).

MYDS88 is a critical signaling molecule in the TLR signaling
pathway, playing a pivotal role in DC function and antigen
presentation. As shown in Figure 7E, bone marrow-derived DCs
stimulated with LPS exhibited high maturation levels, marked by
elevated CD80 and CD86 expression. However, MyD88 inhibition
(MyD88i) resulted in a concentration-dependent reduction in
CD80 and CD86 expression (Figure 7E; Supplementary Figure S6B;
39.63% + 0.75% in the LPS group vs. 19.53% * 1.76% in the
LPS+40 uM group, P < 0.05), indicating that MyD88 inhibition
suppresses DC maturation.

To further investigate the mechanism underlying impaired T cell
activation, we conducted mixed culture experiments. Splenocytes
from B6 mice were co-cultured with BALB/c bone marrow-
derived DCs following MyD88i for flow cytometric analysis.
The results demonstrated that CD4" T cell proliferation was
significantly reduced in the mixed culture, particularly in the
LPS+40 uM group (Figure 7F; Supplementary Figure S6C; 21.03%
+ 1.30% in the LPS group vs. 11.70% * 1.04% in the LPS+40 uM
group, P < 0.05). Similarly, CD8" T cell proliferation was also
significantly suppressed, exhibiting a dose-dependent inhibitory
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effect (Figure 7G; Supplementary Figure S6C; LPS group 27.83%
+ 1.36% vs. LPS+10 uM group 21.83% =+ 1.27%, P < 0.05; LPS
group 27.83% + 1.36% vs. LPS+40 uM group 14.00% * 1.50%, P <
0.05). These findings suggest that MyD88 inhibition suppresses DC
maturation, leading to impaired T cell activation.

3.8 MyD88 inhibition can facilitate the
growth of H22 tumors

MyD88
administration of specific MyD88 inhibitors (Supplementary Figure

inhibition, achieved through intraperitoneal
S6D), resulted in a significant increase in tumor proliferation
rates compared to the control group (Figure 8A, P < 0.01).
Notably, this increase was not associated with changes in body
weight (Figure 8B). In MyD88-deficient female BALB/c mice, H22
tumor growth was significantly accelerated relative to controls
(Figure 8C, P < 0.01);
significantly between the MyD88-deficient group and control
groups (Figure 8C, P > 0.05). Importantly, while PD-L1 antibody

treatment effectively reduced H22 tumor growth in wild-type

however, tumor mass did not differ

mice (Figure 8D, P < 0.05), this therapeutic effect was absent
in MyD88-deficient mice (Figure 8D, P > 0.05). These findings
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Cell communication analysis. (A) Cell communication diagram; (B) Bubble plot of cell communication; (C) Interaction heatmap of cell communication.

suggest that MyD88 plays a pivotal role in mediating the immune
response to tumor growth and in determining the efficacy of PD-L1
blockade therapy.

4 Discussion

The tumor microenvironment plays a crucial role in shaping
the prognosis of HCC. This environment consists not only tumor
cells but also various interacting immune cell populations, whose
interplay can significantly infulence tumor prgression. Database
analyses indicate low MyD88 expression in tumors, consistent
with some studies. However, other investigations-including our
previous work with the H22 mouse HCC cell line (Liu et al,
2019)-have reported elevated MyD88 expression. This discrepancy
highlights the complexity and heterogeneity of HCC, suggesting
that MyD88 expression may vary depending on tumor context and
microenvironmental factors.
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High MyD88 expression in tumors has been significantly
associated with prognostic outcomes, including overall survival
(OS), as indicated in prior analyses. Our previous work
demonstrated that HCC cells with elevated MyD88 expression
are susceptible to MyD88 inhibition, which disrupts the tumor
cell cycle and subsequently slows tumor growth (Jia et al., 2014).
Furthermore, MyD88 plays a critical role in tumor proliferation and
metastasis, primarily through the PI3K/Akt signaling pathway and
the epithelial-mesenchymal transition (EMT) process (Jia et al.,
2014). Other studies have also reported that highly malignant
cells exhibit elevated MyD88 levels, suggesting that increased
MyD88 expression may drive hepatocellular carcinoma progression
(Ochi et al., 2012b). Furthermore, MyD88 knockdown has been
shown to enhance the sensitivity of intestinal epithelial cells to
azoxymethane (AOM)/dextran sodium sulfate (DSS) treatment
by inhibiting IL-18 receptor-mediated signaling, a pathway
implicated in the development of colitis-associated colon cancer
(Salcedo et al., 2010). These findings have important clinical
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proportion of CD3*CD69* T cells in local lymph node; (D) Inhibition of MyD88 in T cells in vitro does not appear to have any significant effect on their
function; (E) The expression of CD80 and CD86 in DCs; (F, G) Flow cytometry measured the proliferation of CD4* T cells and CD8* T cells.
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implications, highlighting MyD88 as a potential therapeutic target.
However, while these studies underscore MyD88’s significant
role in tumor biology, the precise mechanistic underpinnings
remain incompletely understood. We further investigated the role
of MyD88 in modulating immune function within the tumor
microenvironment, a potential key mechanism underlying tumor
progression and therapeutic response. Immune responses play a
critical role in shaping the tumor microenvironment (Baharom et al.,
2022). Our analysis identified differential MyD88 expression
across various immune cell populations, including NK cells,
Th2 cells, memory CD8" T cells, and memory CD4" T cells.
Notably, activated CD8" T cells exhibited a negative correlation
with MyD88 expression, whereas memory CD4" and memory
CD8* T cells showed positive correlations, suggesting a complex
interplay between MyD88 signaling and adaptive immune
responses. MyD88 may exert diverse effects on immune cells
within the tumor microenvironment, potentially influencing
patient outcomes. However, its expression does not uniformly
impact all immune cell types. Correlation analyses revealed
a significant association between MyD88 expression and the
functionality of ¢cDCs (Macri et al., 2018), with MyD88+ cDCs
exhibiting enhanced antigen presentation and T cell activation
capabilities. This enhancement contribute to antitumor immunity
and influence clinical outcomes in HCC. Conversely, MyD88
inhibition disrupts dendritic cell function, leading to increased
Th2 differentiation, inflammation, and carcinogenesis (Ochi et al.,
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2012a). In contrast, uninhibited MyD88 supports normal
dendritic cell function, fostering effective immune responses and
tumor control.

DCs, among the most potent antigen-presenting cells, are
influenced by various factors that regultate their functionality
(Jhunjhunwala et al., 2021). High expression of MHC class I and
MHC class IT molecules enhances their antigen-presenting capacity,
a phenomenon associated with MyD88 expression (Das et al.,
2014). The TLR/MyD88 signaling pathway plays a critical role
in DC maturation and function. Studies have shown that LPS-
induced activation of this pathway promotes DC maturation,
increasing the expression of costimulatory molecules such as
CD80 and CD86. However, MyD88 blockade inhibits this
maturation and functional enhancement. Our analysis further
revealed that MyD88+ cDCs exhibit stronger interactions with
both CD4* T cells and CD8" T cells, suggesting that MyD88
may serve as a biomarker of DC activation, facilitating anti-
tumor immunity.

In summary, our analysis indicates that MYD88 is associated
with the clinical prognosis of HCC and may influence clinical
outcomes through ¢DCs. Both in vivo and in vitro experiments
have demonstrated that MYDS88 activates T cells via DCs, thereby
promoting anti-tumor immunity. Notably, immune checkpoint
inhibitors can enhance the anti-tumor effects of MYDS88 or
act synergistically to improve therapeutic efficacy. However, the
precise mechanisms by which MYD88+ ¢DCs influence tumor
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MyD88 inhibition promotes the development of H22 cell-derived tumor. (A) The tumor volume and (B) body weight were monitored twice per week
from day 5 to the end of the observation: (C) H22 cell-derived tumors established subcutaneously in MyD88~/~ female BALB/c mice (vehicle control, n
= 5; 50 mg/kg MyD88i daily from day 5-21, n = 5) or normal female Balb/c mice (vehicle control, n = 5); (D) Growth curves are presented comparing
MyD88 wild-type female BALB/c mice (vehicle control, n = 3; 200 pg PD-L1 antibody administered every 3 days, n = 3) to MyD88-deficient female

0.4+
-e—- control
;E\ -= MyD88i
30.3-
s
2 0.2 *%
]
£
2
_f:’ 0.1
=
0.0 * T T T 1
0 5 10 15 20 25
Days after H22 inoculation
5 -
=~ WT control
== MyD88-/- MyD88i
«?g 44 == MyD88-/- control
C2
LR
)
]
E 21
2
£
F 1
0 ¥ T T T 1
0 5 10 15 20 25
Days after H22 inoculation
FIGURE 8
BALB/c mice (vehicle control, n = 3; 200 ug PD-L1 antibody administered every 3 days, n = 4).

=

28+
-e- control
26 = MyD8S8i
G
5 24
[
3
> 22
T
o
Qo
204
18 T T T T 1
0 5 10 15 20 25
Days after H22 inoculation
54
-e- MyD88-/- control
a4 = MyD88-/- + aPD-L1
E =~ WT control
° — WT +aPD-L1
N 34
»
]
£ 2
2
2
= 1 *
0+ P T T T 1
0 5 10 15 20 25

Days after H22 inoculation

progression within the tumor microenvironment warrant further
investigation.
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