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Cnicin: a promising drug for
promoting nerve repair
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Cologne, Germany

Traumatic peripheral nerve injuries frequently result in irreversible functional
deficits. While neurons possess an intrinsic capacity for axonal regeneration,
the temporal constraints and the slow pace of neurite outgrowth often impede
the complete restoration of sensory and motor capabilities. This impairment,
often culminating in chronic disability, represents a significant clinical challenge,
as there are currently no approved pharmacological interventions available to
accelerate axon regeneration and improve functional recovery. This perspective
focuses on recent scientific advancements that have identified sesquiterpene
lactones, a family of naturally derived plant metabolites, as potential therapeutic
candidates for treating peripheral nerve trauma. Preclinical investigations
employing parthenolide and cnicin have revealed that these compounds can
substantially augment axonal extension and functional recovery in diverse in
vivo animal paradigms and primary human neuronal cultures. The favorable
bioavailability of cnicin following oral administration, coupled with its notable
tolerability at dosages considerably largely surpassing the therapeutic range,
underscores its substantial potential as an effective pharmacological treatment
for addressing the challenges associated with nerve regeneration and restoring
sensory and motor functions.
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Insufficient axonal growth rate limits functional
recovery

Traumatic axonal insults to nerves disrupt neuronal connectivity with target tissues,
resulting in motor and sensory deficits. While the peripheral nervous system possesses an
intrinsic capacity for axonal regeneration, such injuries nonetheless often lead to permanent
impairments, diminishing the quality of patients’ lives and imposing a substantial
socioeconomic burden (Grinsell and Keating, 2014; Black and Lasek, 1979). For instance,
peripheral nerve injuries in the upper extremities are relatively common, particularly in the
context of occupational accidents, and can result in significant morbidity and long-term
expenses (Tapp et al., 2019). One study revealed that 30% of patients with work-related
nerve injuries experienced persistent disabilities. The projected lifetime cost per patient
with severe injury, encompassing treatment, rehabilitation, and compensation, is estimated
at approximately € 102,167, underscoring the considerable economic burden of these
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injuries (Bergmeister et al., 2020). Despite their principal capacity
for axon regeneration, the recovery rate is influenced by patient’s
age and the characteristics and severity of the injury (Grinsell and
Keating, 2014). Moreover, the likelihood of functional restoration
decreases as the distance between the lesion site and the target organ
increases, owing to the slow velocity of axonal elongation, typically
not exceeding 2–3 mm per day. Consequently, reinnervation of
the target tissue following traumatic injury to the extremities may
require a period of several weeks to months. This protracted
timeframe, however, presents a significant challenge, as the
necessary regenerative support provided by Schwann cells attenuates
over time. Thus, axons do not reach their targets, ultimately
leading to muscle atrophy in denervated regions (Sulaiman and
Gordon, 2013). Furthermore, the temporal decline in Schwann
cell support delays functional recovery and can also prevent axons
from reaching their appropriate targets, potentially culminating
in permanent functional loss. Moreover, regenerating axons often
exhibit aberrant growth patterns, forming neuromas near the lesion
site and contributing to chronic, refractory pain (Wei et al., 2024).
Consequently, the restricted axonal growth velocity can substantially
impair patients’ quality of life and is associated with significant
socioeconomic burdens and extended periods of occupational
disability (Bergmeister et al., 2020).

Still existing need of applicable drugs
speeding up axonal regeneration

Despite extensive research endeavors over the past decades,
therapeutic strategies to accelerate axonal elongation and enhance
functional recovery have demonstrated limited clinical efficacy
or have been deemed unsuitable due to adverse side effects.
For instance, numerous preclinical studies have investigated
neurotrophic factors, such as nerve growth factor and brain-derived
neurotrophic factor, to promote axonal regeneration (Zheng et al.,
2016). These factors exert essential functions in neuronal survival
and development, and their exogenous administration has yielded
beneficial effects on nerve repair in preclinical models (Faroni et al.,
2015). However, the clinical application of neurotrophic factors in
humans is hampered by significant obstacles, including a short
half-life, inefficient delivery modalities, and potential adverse
effects (Sarhane et al., 2023). Another promising pharmacological
approach for promoting axonal regeneration following nerve injury
involves the administration of tacrolimus.This immunosuppressant
medication has demonstrated neuroregenerative properties in
preclinical investigations and clinical case reports. While the
mechanisms underlying its neuroregenerative effects remain
incompletely elucidated, these positive effects on regenerating nerve
fibers are distinct from its immunosuppressive actions and primarily
affect the injured neuron (Daeschler et al., 2023; Gold et al.,
1994). Nevertheless, systemic administration of tacrolimus is
restricted by significant adverse effects, such as nephrotoxicity
and immunosuppression. Therefore, a critical unmet clinical
need for agents that promote axonal regeneration with an
acceptable safety profile remains.

Inhibition of microtubule
detyrosination accelerates axon
regeneration and recovery

The discovery that constitutively active glycogen synthase
kinase 3 markedly accelerates axonal regeneration in peripheral
nerves, coupled with understanding the underlying mechanism,
has unveiled novel avenues for pharmacological interventions
(Diekmann and Fischer, 2015). GSK3 is a serine/threonine kinase
comprising two isoforms encoded by distinct genes, GSK3α
and GSK3β. Investigations utilizing knockin mice expressing
constitutively active variants of GSK3 (GSK3S/A) have revealed
a marked acceleration of axonal regeneration in the injured
sciatic nerve and enhanced functional recovery in adult mice
(Gobrecht et al., 2014).This effect on axonal elongation stems from
GSK3’s influence on microtubule dynamics within the growing
axons. The underlying mechanism involves the kinase’s capacity to
phosphorylatemicrotubule-associatedprotein 1B (MAP1B),which
subsequently diminishes the level ofmicrotubule detyrosination - a
post-translational modification known to attenuate microtubule
dynamics in axonal growth cones, thereby limiting the rate of
axonal extension (Gobrecht et al., 2016; Scales et al., 2009;
Trivedi et al., 2005). Microtubule detyrosination in neurons is
regulated by distinct enzymatic activities that either add or remove
the C-terminal tyrosine residue of tubulin. Tubulin tyrosine ligase
catalyzes the addition of a tyrosine residue to the detyrosinated
α-subunit of tubulin dimers before their incorporation into
microtubule plus-ends, thereby restoring the tyrosinated state at the
C-terminal extremity (Utreras et al., 2008; Gonzalez-Billault et al.,
2004). Although there is no direct evidence of an interaction
between phosphorylated MAP1B (pMAP1B) and tubulin tyrosine
ligase, pMAP1B reducesmicrotubule detyrosination by associating
with tyrosinated microtubules and impeding the accessibility of
detyrosinating enzymes (Barnat et al., 2016). These tyrosine-
removing enzymes, also termed carboxypeptidases, have been
identified as vasohibin-1 (VASH 1) and vasohibin-2 (VASH
2) (Aillaud et al., 2017). The small vasohibin-binding protein
(SVBP) is an essential cofactor for vasohibin enzymatic activity,
suggesting a tightly regulated enzymatic collaboration that ensures
precise control over microtubule dynamics within neurons
(Li et al., 2019). A partial reduction in vasohibin enzyme
(VASH1 or VASH2) or SVBP expression subtly alters the
equilibrium between detyrosinated and tyrosinated microtubules,
mirroring the state observed in regenerating axonal growth
cones of postnatal neurons (Gobrecht et al., 2024a), which
exhibit elevated growth rates compared to mature neurons.
Correspondingly, the axonal growth rate of adult neurons was
also augmented to levels comparable to those observed in the
postnatal mice (Gobrecht et al., 2024a). However, complete
knockdown of either enzyme shifts the balance of detyrosinated
and tyrosinated microtubules to suboptimal levels, resulting in
either no discernible benefit or even detrimental effects on axonal
growth, highlighting the delicate balance required for optimal
microtubule dynamics and axonal elongation (Gobrecht et al.,
2024a).
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Sesquiterpene lactones as promising
drugs for promoting nerve repair

The observation that partial vasohibin knockdown enhances
axonal regeneration prompted investigations into whether the
pharmacological intervention could replicate these effects.
The sesquiterpene lactone parthenolide, a naturally occurring
compound derived from the plant Tanacetum parthenium, was
identified as a vasohibin inhibitor, influencing the detyrosination-
tyrosination equilibrium of microtubules (Li et al., 2019;
Fonrose et al., 2007). Different studies have demonstrated
that parthenolide promotes axonal growth in cultured dorsal
root ganglion neurons from adult rats and mice and even in
primary retinal ganglion cells derived from rodents and humans
(Gobrecht et al., 2016; Gobrecht et al., 2024a; Leibinger et al., 2023).
Furthermore, in vivo experiments in various rodent models of
peripheral nerve injury have also demonstrated the considerable
therapeutic potential of parthenolide. Daily intravenous injections
of 2 μg/kg markedly accelerated motor and sensory function
recovery following sciatic nerve injury (Gobrecht et al., 2024a).
Parthenolide retained its efficacy even when treatment was initiated
several days after nerve injury. Despite its promising preclinical
findings in accelerating axonal regeneration, parthenolide faces
significant limitations due to its low oral bioavailability, restricting
its administration to parenteral routes. Given that repeated daily
administration yielded the most robust outcomes, the necessity
of repeated intravenous applications is problematic regarding
costs and treatment adherence limitations. Another sesquiterpene
lactone, cnicin, a naturally occurring compound found in blessed
thistle (Cnicus benedictus), enhances axonal regeneration in diverse
species, likely also via inhibition of VASHs (Gobrecht et al., 2024b).
Compared to parthenolide, cnicin presents two key advantages
as a potential therapeutic agent for nerve regeneration. First,
cnicin exhibits an oral bioavailability of 84.7% in rats. Second,
it lacks the potentially mutagenic and allergenic epoxy group in
parthenolide, rendering it a potentially safer alternative and a
strong candidate for further drug development (Gobrecht et al.,
2024b). Cnicin promoted axonal growth in rodent neuronal
cultures and, similar to parthenolide, in cultured adult primary
human neurons (Gobrecht et al., 2024b). Moreover, it demonstrated
efficacy in rats, mice, and rabbits at 2 μg/kg daily doses. Intravenous
administration of cnicin at 4 mg/kg (2000-fold higher than the
effective oral dose) for 2 weeks did not induce observable toxicity or
alterations in rat bodyweight, suggesting a favorable safety profile for
human application. Therefore, while preclinical investigations have
demonstrated the substantial potential of parthenolide in promoting
axonal regeneration, its clinical translation is hindered by its
limited oral bioavailability. Conversely, cnicin, with its advantageous
pharmacokinetic properties, high oral bioavailability, absence of a
potentially mutagenic epoxy group, and demonstrated efficacy in
enhancing axonal regeneration across multiple species, emerges as

a more promising candidate for further development. However,
rigorous clinical trials are essential to confirm its safety and
efficacy in humans, establish optimal dosing regimens, and evaluate
its therapeutic potential across various nerve injury types and
clinical contexts. Identifying sesquiterpene lactones as a promising
therapeutic option represents a significant step towards developing
effective treatments for nerve damage, offering hope for improved
patient outcomes and enhanced quality of life.
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