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Pluripotent stem cells (PSCs) possess the extraordinary capability to differentiate
into a variety of cell types. This capability is tightly regulated by epigenetic
mechanisms, particularly histone modifications. Moreover, the reprogramming
of somatic or fate-committed cells into induced pluripotent stem cells
(iPSCs) largely relies on these modifications, such as histone methylation and
acetylation of histones. While extensive research has been conducted utilizing
mouse models, the significance of histone modifications in human iPSCs is
gaining increasing recognition. Recent studies underscore the importance of
epigenetic regulators in both the reprogramming process and the regulation
of cancer stem cells (CSCs), which are pivotal in tumor initiation and the
development of treatment resistance. This review elucidates the dynamic
alterations in histonemodifications that impact reprogramming and emphasizes
the necessity for a balance between activating and repressive marks. These
epigenetic marks are influenced by enzymes such as DNA methyltransferases
(DNMTs) and histone deacetylases (HDACs). Furthermore, this review explores
therapeutic strategies aimed at targeting these epigenetic modifications to
enhance treatment efficacy in cancer while advancing the understanding
of pluripotency and reprogramming. Despite promising developments in
the creation of inhibitors for histone-modifying enzymes, challenges such
as selectivity and therapy resistance continue to pose significant hurdles.
Therefore, future endeavors must prioritize biomarker-driven approaches
and gene-editing technologies to optimize the efficacy of epigenetic
therapies.
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1 Introduction

The discovery of PSCs and their ability to differentiate into
various cell types has significantly advanced regenerative medicine.
PSCs, including embryonic stem cells (ESCs) and iPSCs, have
tremendous therapeutic potential due to their pluripotency and
self-renewal capabilities.

Maintaining pluripotency and reprogramming somatic cells
into iPSCs relies on key transcription factors such as OCT4,
SOX2, and NANOG, as well as critical signaling pathways,
including Wnt, TGF-beta, and FGF (Marson et al., 2008; Maherali
and Hochedlinger, 2009; Mossahebi-Mohammadi et al., 2020).
Additionally, many studies have demonstrated that epigenetic
factors play a crucial role in sustaining pluripotency and facilitating
the reprogramming of somatic cells into iPSCs. Specifically, histone
modifications can alter chromatin structure and influence gene
expression.

Notably, PSCs and CSCs share many similarities. Therefore,
understanding how histone modifications regulate PSCs could open
up new avenues for therapeutic interventions in cancer.

2 Histone modifications in PSCs and
CSCs

Histone modifications, which include methylation, acetylation,
and phosphorylation, play a vital role in regulating chromatin
dynamics and gene expression in PSCs (Guenther et al., 2010;
Delgado-Olguin and Recillas-Targa, 2011). These modifications
primarily occur on the N-terminal tails of histones H3 and
H4, impacting the structural configuration of chromatin and
controlling the accessibility of transcriptional machinery to
DNA (Kouzarides, 2007) (Table 1). Among these modifications,
histone methylation and acetylation are particularly important for
regulating the pluripotency and differentiation potential of PSCs.

For instance, trimethylation at lysine four on histone H3
(H3K4me3) serves as a marker commonly found at the promoters
of actively transcribed genes, such as OCT4 and SOX2. These genes
are critical for maintaining pluripotency and fostering an open
chromatin state that facilitates gene expression (Benayoun et al.,
2014). In contrast, trimethylation at lysine 27 on histone H3
(H3K27me3), mediated by the Polycomb Repressive Complex 2
(PRC2), marks silent genes like cyclin-dependent kinase inhibitor
2A (CDKN2A) and compacts chromatin into a repressive state,
which inhibits transcription (Guo et al., 2021) (Table 1).

The interaction between these two marks is essential
for maintaining the “bivalent” chromatin state characteristic
of PSCs, where both activating (H3K4me3) and repressive
(H3K27me3) marks coexist at important developmental gene
promoters. This bivalency allows PSCs to remain in a poised
state, ready for rapid activation or repression in response to
differentiation signals (Bernstein et al., 2006).

Histone acetylation marks, particularly H3K9ac and H3K27ac,
are essential for the differentiation of stem cells into specialized
cell types (Creyghton et al., 2010). These acetylation marks are
linked with active transcription, allowing the chromatin structure
to become more open and accessible to transcription factors
(McCool et al., 2007) (Table 1).

During differentiation, histone acetyltransferases (HATs) play a
crucial role by adding acetyl groups to specific lysine residues on
histones. This process facilitates the activation of genes necessary
for lineage commitment and functional specialization. On the
other hand, HDACs remove these acetyl groups, resulting in
a more compact chromatin structure that represses stem cell-
associated genes.

The balance between HAT and HDAC activity is vital
for directing stem cells through the differentiation process,
as it determines which genes are expressed and when. This
dynamic regulation of histone acetylation marks influences the
transcriptional landscape, guiding stem cells to assume specific fates
while preventing premature differentiation (McCool et al., 2007).

During the reprogramming of somatic cells into iPSCs,
significant changes occur in histone modifications, which help
reset the epigenetic landscape from a differentiated state to a
pluripotent one (Liang and Zhang, 2013). Repressive marks
such as H3K9me3 and H3K27me3, which are abundant in
differentiated cells and indicate regions of heterochromatin,
must be actively removed or modified to activate pluripotency
genes (Chandra et al., 2012). For example, the removal of
H3K9me3 from the NANOG promoter by the lysine demethylase
4B (KDM4B) is essential for initiating reprogramming and
maintaining pluripotency (Wei et al., 2017) (Table 1). Additionally,
the H3K27me3 demethylase UTX plays a crucial role during
the early stages of reprogramming (Mansour et al., 2012). These
enzymes work together to erase differentiation-specific epigenetic
memory, thus improving both the efficiency and fidelity of the
reprogramming process (Dimitrova et al., 2015).

Furthermore, histone acetylation marks play a crucial role in
the reprogramming process by enhancing chromatin accessibility.
Studies have demonstrated that using HDAC inhibitors, such
as valproic acid (VPA), increases reprogramming efficiency
(Huangfu et al., 2008; Zhai et al., 2015). These inhibitors
work by preventing the removal of acetyl groups, which helps
maintain an open chromatin state that is favorable for activating
pluripotency-associated genes (Zhai et al., 2015; Duan et al., 2019).

For example, HDAC inhibitors enhance acetylation at the
promoter regions of key genes like MYC, thereby promoting the
activation of essential pluripotency pathways (Kretsovali et al.,
2012) (Table 1). Additionally, the balance of histone modifications
is dynamically regulated by histone-modifying enzymes, which are
closely controlled during the reprogramming process (Huang et al.,
2015; Yang et al., 2022; Kelly et al., 2024).

One specific example is the histone methyltransferase
Set1/COMPASS complex, which is responsible for the
trimethylation of H3K4. This complex is upregulated during the
establishment of pluripotency, facilitating the activation of genes
essential for maintaining the pluripotent state (Sze et al., 2017).

CSCs are small populations of tumor cells with the unique ability
to self-renew, differentiate, and drive tumor development (Batlle and
Clevers, 2017). These cells are believed to contribute significantly to
tumor heterogeneity, resistance to therapies, andmetastasis, making
them critical targets for cancer treatment (Yu et al., 2012; Rich,
2016). Similar to PSCs, the stemness potential of CSCs is
heavily influenced by epigenetic modifications, particularly histone
modifications, which play a key role in regulating gene expression
programs necessary for maintaining their stem-like properties.

Frontiers in Cell and Developmental Biology 02 frontiersin.org

https://doi.org/10.3389/fcell.2025.1559183
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Bae et al. 10.3389/fcell.2025.1559183

TABLE 1 The roles of epigenetic modifications in stem cells and CSCs.

Epigenetic marker Role in stem cells Role in CSCs References

DNAMethylation Controls pluripotency and
differentiation by silencing
lineage-specific genes

Aberrant DNA methylation leads to
self-renewal, tumorigenesis, and
therapy resistance in CSCs

Smith and Meissner (2013), Baylin and
Jones (2016), Li and Sun (2019)

Histone Modifications Regulates gene expression through
histone acetylation, methylation,
phosphorylation, etc

Alterations in histone marks control
CSC plasticity, growth, and therapeutic
resistance

Kouzarides (2007), Berdasco and
Esteller (2010), Kumar et al. (2022)

Chromatin Remodeling Modulates chromatin accessibility to
transcription factors, regulating
self-renewal and differentiation

Aberrant remodeling sustains stem-like
properties, enabling CSC survival and
metastasis

Wilson and Roberts (2011),
Trevino et al. (2021), Chu et al. (2024)

Non-Coding RNAs (miRNAs,
IncRNAs)

MicroRNAs and long non-coding RNAs
regulate stem cell fate and self-renewal

Dysregulated miRNAs/lncRNAs
contribute to CSC maintenance,
metastasis, and drug resistance

Wang et al. (2010), Iorio and Croce
(2012), Khan et al. (2019)

Polycomb Repressive Complex (PRC) Maintains stem cell identity by silencing
differentiation-associated genes

PRC components such as EZH2 are
highly expressed in CSCs, promoting an
undifferentiated state

Wen et al. (2017), Guo et al. (2021),
Parreno et al. (2022)

Histone Demethylases (KDMs) Histone demethylases regulate the
balance between pluripotency and
differentiation by removing methyl
groups

Dysregulated KDMs promote stem-like
features and survival in CSCs

Mosammaparast and Shi (2010),
Wei et al. (2017), Wang et al. (2021)

Histone Deacetylases (HDACs) Deacetylation of histones keeps
chromatin in a condensed, inactive
state, regulating gene expression

Overactive HDACs in CSCs suppress
tumor suppressor genes, enhancing
self-renewal and survival

McCool et al. (2007), Jiang et al. (2024)

CpG Island Methylator Phenotype
(CIMP)

Methylation at CpG islands in promoter
regions affects gene silencing and
differentiation

CIMP in CSCs leads to the silencing of
key tumor suppressors, promoting
aggressive tumor phenotypes

Barzily-Rokni et al. (2011)

RNAMethylation (m6A) Modifies mRNA stability, affecting stem
cell pluripotency and lineage
commitment

Dysregulation of m6A promotes CSC
formation, drug resistance, and tumor
growth

Zhang et al. (2017), Chen et al. (2021),
Wang et al. (2023)

InCSCs, specific histonemodifications are crucial for promoting
tumor aggressiveness by preserving a gene expression profile
that enhances cell survival, proliferation, and resistance to
programmed cell death. These epigenetic changes enable CSCs
to maintain their tumor-initiating capacity and contribute to
their resistance to conventional cancer treatments (French and
Pauklin, 2021; Keyvani-Ghamsari et al., 2021; Zhou et al., 2021;
Chehelgerdi et al., 2023) (Table 1).

Several histone marks play a crucial role in regulating the
identity of CSCs. One significant mark is H3K27me3, a repressive
modification added by EZH2, which is a component of the
PRC2 (Margueron and Reinberg, 2011). This mark is often
overexpressed in CSCs (Wen et al., 2017; Parreno et al., 2022)
(Table 1). The H3K27me3 modification silences tumor suppressor
genes, such as CDKN2A, as well as differentiation-related genes,
like bone morphogenetic protein 2 (BMP2). This silencing helps
maintain the cells in a more stem-like, undifferentiated state
(Gosselet et al., 2007; Shi et al., 2022).

In breast cancer, elevated levels of EZH2 correlate with an
increased population of CSCs and a poorer prognosis, highlighting
its role in promoting tumorigenesis and metastasis (Wen et al.,

2017; Verma et al., 2022) (Table 1). Similarly, H3K9me3, which
is catalyzed by the histone-lysine N-methyltransferase SUV39H1
(also known as KMT1A), has been associated with the repression
of differentiation pathways in glioblastoma CSCs. This repression
supports their self-renewal and tumor-initiating capabilities (Saha
and Muntean, 2021; Li et al., 2024).

Conversely, the activation of specific histone marks, such as
H3K4me3 and H3K27ac, plays a significant role in regulating
CSCs. These marks are associated with the expression of genes that
provide CSCs with stemness and survival advantages. For instance,
H3K4me3 is enriched at the promoters of genes crucial for stem
cell maintenance and cell cycle regulation, including NANOG and
OCT4, in various types of cancer, such as leukemia and colorectal
cancer (Deb et al., 2014; Liu et al., 2023). Additionally, acetylation
of histone H3 at lysine 27 (H3K27ac) by HATs promotes an open
chromatin structure at oncogene enhancers, which contributes to
the aggressive characteristics of CSCs in tumors like pancreatic and
ovarian cancers (Li et al., 2021; Parreno et al., 2022; Yang et al., 2022)
(Table 1). The dynamic regulation of these histone modifications
enables CSCs to respond to environmental cues, including stress
from chemotherapy and radiation (Li et al., 2023).
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3 Epigenetic barriers to
reprogramming

Despite significant advances in reprogramming technologies,
achieving high efficiency in converting somatic cells to iPSCs
remains a challenge due to various epigenetic barriers. Histone
modifications, which are often irregularly distributed in
differentiated cells, can create a chromatin environment that resists
reprogramming (Papp and Plath, 2013; Chehelgerdi et al., 2023;
Costa et al., 2023). For instance, repressive histone marks such
as H3K9me3 at LINE-1 retrotransposons and H3K27me3 at the
promoters of key pluripotency genes, including OCT4 and SOX2,
lead to a tightly packed chromatin structure that is inaccessible to the
transcription factors required to initiate reprogramming (Sun et al.,
2021). The persistence of these repressive marks hinders
the activation of pluripotency-associated genes, ultimately
reducing both the efficiency and fidelity of the reprogramming
process.

Furthermore, DNA methylation at CpG islands and the
presence of histone variants, such as macroH2A, contribute to
the maintenance of a differentiated state, making reprogramming
more challenging. For example, DNA methylation at the GATA4
promoter can inhibit its expression, which is crucial for initiating
mesendoderm differentiation during reprogramming (Barzily-
Rokni et al., 2011; Hatziapostolou and Iliopoulos, 2011) (Table 1).
While it is important to remove or modify these repressive
marks, this process is often incomplete because the activity
of the involved enzymes depends on the context and cellular
environment. Enzymes such as histone demethylases (like KDM4A
and KDM4B, which target H3K9me3) and HATs must be
precisely directed to specific genomic regions to effectively alter
chromatin states (Pack et al., 2016; Young and Dere, 2021).
However, this precise targeting is frequently ineffective due to
the existing chromatin structure, which is influenced by the
cell’s previous transcriptional history and current epigenetic
landscape.

Moreover, to successfully reprogram cells into a pluripotent
state, significant changes in the cell’s gene activity, or
transcriptome, are required. This process involves two key
steps: removing repressive marks that silence genes and
adding active marks, such as H3K4me3 and H3K27ac, at the
segments that control pluripotency genes (Papp and Plath,
2011; 2013). For instance, restoring H3K4me3 to the SOX2
enhancer is critical for achieving complete reprogramming
(Koche et al., 2011).

However, this process is complicated by the interactions between
different histone modifications. One type of modification can
influence the presence or absence of another, resulting in a
complex and resilient network of epigenetic changes. To address
these challenges, researchers employ various strategies. These
include HDAC inhibitors to enhance chromatin accessibility, DNA
methyltransferase inhibitors to reduce DNA methylation, and
chromatin remodelers to physically alter chromatin structure (Li
and Sun, 2019) (Table 1).

Nonetheless, determining the optimal combination of these
approaches can be challenging, as the epigenetic landscape varies
significantly from 1 cell type to another.These variations can lead to
unintended consequences, such as genomic instability or incomplete

reprogramming, ultimately resulting in a mix of different cell types.
This limitation can restrict the potential applications of iPSCs in
medical treatments.The roles of epigeneticmechanisms in stem cells
and CSCs are summarized in Table 1.

4 Targeting histone modifications in
CSCs for therapy

Histone modifications play a crucial role in maintaining
the characteristics of CSCs and promoting tumor progression.
As a result, disrupting these epigenetic markers has become a
promising strategy for cancer treatment. Recent advancements
have led to the development of novel small-molecule inhibitors
that specifically target key histone-modifying enzymes, including
histone methyltransferases and HDACs (Kumar et al., 2023)
(Table 1). These inhibitors work by dismantling the epigenetic
frameworks that underpin CSC maintenance, reducing stem-like
properties, promoting differentiation, and enhancing sensitivity
to traditional therapies such as chemotherapy and radiation
(Figure 1).

One notable advancement in cancer treatment is the
development of EZH2 inhibitors, with tazemetostat being a key
example that has received FDA approval for patients with both
hematologic and solid tumors (Straining and Eighmy, 2022)
(Figure 1). EZH2 is a component of the PRC2, which is responsible
for the H3K27me3 (Figure 1). This modification is linked to gene
silencing and inhibits the differentiation of mesenchymal stem cells
and potential CSCs (Momparler and Côté, 2015; Straining and
Eighmy, 2022) (Figure 1). High levels of EZH2 activity can repress
genes associated with cell cycle arrest, promoting self-renewal in
stem or progenitor cells (Kim and Roberts, 2016).

In cancer therapy, treating doxorubicin-resistant high-grade
complex karyotype soft tissue sarcoma (STS) cell lines with
tazemetostat has shown a reduction in the STS-CSC population.
Furthermore, when tazemetostat is combined with doxorubicin, it
has been found to restore chemosensitivity (O'Donnell et al., 2024).
Promising results from early-phase clinical trials in cancers such as
epithelioid sarcoma and follicular lymphoma highlight the potential
of EZH2 inhibitors in targeting CSC populations through epigenetic
reprogramming (Italiano et al., 2018).

In parallel, HDAC inhibitors like vorinostat and romidepsin
have garnered attention for their ability to enhance histone
acetylation, particularly at positions H3K27ac and H3K9ac, which
are associated with active gene transcription (Gallinari et al.,
2007) (Figure 1). By inhibiting HDAC, these compounds
create a more accessible chromatin structure, allowing for the
expression of genes that promote differentiation, such as p21
(CDKN1A) and BAX (Johnstone, 2002). Moreover, HDAC
inhibitors increase the sensitivity of breast CSCs to treatments like
cisplatin and doxorubicin across various breast cancer subtypes
(Hii et al., 2020).

Vorinostat is the first FDA-approved HDAC inhibitor,
specifically approved for the treatment of refractory cutaneous T
Cell lymphoma (CTCL). It has been shown to reduce the expression
of CSC markers and promote differentiation in glioma stem cell-
like populations (GSCs) (Duvic et al., 2007; Booth et al., 2014).
Additionally, Sirtuin 1 (SIRT1), the first identified member of the
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FIGURE 1
Epigenetic Modulation and Targeting Strategies for CSCs in Cancer Therapies. The upper part demonstrates two key epigenetic modifications: (1)
Tazemetostat, an EZH2 inhibitor, targets the PRC2 complex (comprising SUZ12, EED, and EZH2) to reduce H3K27me3 levels and increase gene
expression. (2) Vorinostat and Romidepsin are HDAC inhibitors that upregulate H3K27ac or H3K9ac levels, promoting chromatin accessibility and active
transcription. The lower section highlights CSC-targeting strategies: (1) CSC biomarkers are identified and targeted to achieve selective elimination of
CSC populations. (2) Epigenetic modulators are regulated using CRISPR-Cas9 to precisely modify CSC-specific pathways. The central route shows how
CSC-specific therapies cause tumor regression by targeting the CSC population (orange cells), while sparing normal tumor cells (green cells).

class III HDACs, requires NAD+ to catalyze the deacetylation of
both histone and non-histone proteins (Liu et al., 2009). The SIRT1
inhibitor Tenovin-6 (TV-6) has demonstrated the ability to disrupt
the dependence of lung adenocarcinoma CSCs on mitochondrial
oxidative phosphorylation (mtOXPHOS), thereby enhancing and
prolonging the therapeutic effectiveness of tyrosine kinase inhibitors
(TKIs) like gefitinib (Sun et al., 2020).

Research into the potential of combining HDAC inhibitors with
other therapies to overcome resistancemechanisms is ongoing. Such
combinations have shown promise in increasing CSC sensitivity to
radiation and chemotherapy.

Recent advances in gene therapy and single-cell epigenomic
techniques are enhancing epigenetic therapies by providing detailed
insights into CSC heterogeneity. Single-cell analysis allows for
precise targeting of epigenetic vulnerabilities, while CRISPR-
Cas9 technology is being employed to modify key epigenetic
regulators involved in CSC-driven tumor growth (Xing and
Meng, 2020) (Figure 1). A recent study emphasizes that the
overexpression of Achaete-scute homolog 1 (ASCL1), ASCL2,
and Transcription Factor AP-4 (TFAP4) significantly contributes
to the regulation of CSC-like cell populations, influencing their
differentiation potential based on the cellular environment
through epigenetic mechanisms (Chen et al., 2023). Furthermore,
haploinsufficiency of DNA methyltransferase 1 (Dnmt1) has been
shown to effectively impair the self-renewal capabilities of leukemia
stem cells while largely leaving normal hematopoiesis unaffected
(Trowbridge et al., 2012). In the future, targeting epigenetic
regulators specifically in CSCs using CRISPR-Cas9 presents a

promising strategy for cancer therapies, as manipulating key factors
like ASCL1, TFAP4, and Dnmt1 could disrupt CSC plasticity
and differentiation, thus reducing tumorigenicity and improving
treatment outcomes (Figure 1).

Despite these advancements, there are several challenges to
the development of epigenetic therapies. A primary concern
is the lack of selectivity—many histone-modifying enzymes,
such as EZH2, are crucial not only for regulating CSCs but
also for normal stem cell function. For example, studies have
demonstrated that loss of EZH2 function in hematopoietic stem cells
increases the likelihood of mice developing various hematologic
malignancies (Mochizuki-Kashio et al., 2015). Additionally, CSCs
exhibit epigenetic plasticity, allowing them to evade therapeutic
interventions by activating compensatory pathways or upregulating
alternative histone-modifying enzymes (Cabrera et al., 2015). This
adaptability poses a significant barrier to long-term treatment
success, often resulting in therapy resistance.

To address these challenges, biomarker-driven patient
stratification is emerging as a promising approach that enables
more personalized methods for epigenetic therapies. By identifying
specific CSC markers such as CD44, CD133, ALDH, and EpCAM,
clinicians can categorize patients based on the epigenetic profiles
of their tumors, allowing them to select individuals who are more
likely to benefit from targeted treatments (Chu et al., 2024) (Table 1).
An optimal future strategy could involve the use of specific
antibodies recognizing these CSC markers in combination with
epigenetic-targeting agents such as tazemetostat (an EZH2
inhibitor) or vorinostat (HDAC inhibitor). This combinatorial
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approachmay enhance therapeutic precision by selectively targeting
CSC populations while minimizing off-target effects.

Furthermore, an effective strategy may involve knocking
out epigenetic regulators essential for CSC self-renewal and
proliferation. Advances in single-cell technologies, such as single-
cell RNA sequencing and single-cell ATAC-seq, offer a valuable
solution by enabling the identification of CSC-specific epigenetic
signatures. Integrating this information with CRISPR-based gene
editing—where Cas9 expression is regulated by CSC-specific
promoters like CD133 and EpCAM—could enhance precision in
modulating CSC-associated regulators while preserving normal
cellular function. This strategy may contribute to the development
of highly selective and efficient epigenetic therapies tailored to CSCs
and their regulatory mechanisms.

Additionally, combination therapies are showing significant
potential. Pairing HDAC inhibitors with other agents that target
multiple epigenetic pathways has demonstrated synergistic effects
in preclinical models. This combination effectively inhibits CSC
functions, such as self-renewal and resistance to apoptosis
(Kumar et al., 2022) (Table 1).

The next-generation of epigenetic inhibitors aims to enhance
selectivity, minimize off-target effects, and improve the durability of
therapeutic responses. Furthermore, gene-editing technologies like
CRISPR-Cas9 are being investigated to precisely target epigenetic
regulators, offering a more permanent solution for disrupting CSC
plasticity.

5 Concluding remarks

Epigenetic therapies targeting CSCs hold significant potential
for overcoming tumor growth and resistance to treatment.
Advanced technologies such as single-cell epigenomic analysis and
CRISPR-Cas9 gene editing allow for precise targeting of critical
epigenetic regulators that support CSC adaptability and survival.
Despite this progress, challenges still remain, including the non-
specificity of current epigenetic drugs and the ability of CSCs
to adapt and resist therapy. Utilizing biomarker-based patient
stratification combined with treatment strategies may enhance
therapeutic precision and minimize off-target effects. Moving
forward, advancing selective epigenetic inhibitors and integrating
gene-editing tools could offermore effective approaches to eliminate
CSCs and improve clinical outcomes.
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