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Background: Clear cell renal cell carcinoma (ccRCC) is a highly aggressive
renal cancer subtype and lacks highly precise individualized treatment options.
Thus, we used a novel computational framework to construct a consensus
machine learning-related signature (MLRS) to predict prognosis and screen
patients effectively for immunotherapy.

Methods: An integrative machine learning procedure involving 10 methods was
used to contract MLRS. Various methods were used to evaluate immune cell
infiltration and biological characteristics. Moreover, we explored the response
to immunotherapy and drug sensitivity. Single-cell RNA sequencing analysis,
qRT-PCR, and a CCK-8 assay were used to clarify the biological functions of
the hub gene.

Results: MLRS demonstrated outstanding performance in predicting prognosis
compared with the other published signatures, and the high-MLRS group had
a favorable outcome in four independent datasets. Furthermore, the low-MLRS
group displayed a greater possibility of responding to immunotherapy and had
a “hot” tumor immunophenotype. The high-MLRS group was characterized
by a phenotype of immune suppression and was less likely to benefit from
immunotherapy, while some small molecule inhibitors might serve as promising
treatment options. Single-cell analysis revealed that MLRSwas highly enriched in
endothelial cells. We also identified DLL4/Notch and JAG/Notch signaling as the
key ligand-receptor pairs in ccRCC. EMCN was downregulated in ccRCC, and
further functional experiments demonstrated that EMCN knockdown inhibited
cell proliferation.

Conclusion: The MLRS can predict patient prognosis, may be utilized
to screen potential populations that may benefit from immunotherapy,
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and predict potential drug targets, with broad significance for the clinical
treatment of ccRCC.
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clear cell renal cell carcinoma, immunotherapy,machine learning, prognostic signature,
single-cell RNA-seq

1 Introduction

Kidney cancer is a prevalent malignancy with a rising incidence
globally (Capitanio andMontorsi, 2016). According toGLOBOCAN
2020 (Global Cancer Statistics 2020), there were 431,288 diagnoses
of kidney cancer and 179,368 fatalities attributed to the disease
globally (Sung et al., 2021). Renal cell carcinoma (RCC) is
the predominant form of kidney cancer in adults, with clear
cell RCC (ccRCC) representing the most prevalent pathological
subtype (Capitanio and Montorsi, 2016; Moch et al., 2022).
Early diagnosis can result in a high probability of recovery;
nevertheless, it is often challenging due to the insipid start and
absence of conspicuous clinical signs (Capitanio et al., 2019).
Although many novel therapeutic approaches have been proposed,
surgical resection remains the most effective clinical treatment
for ccRCC (Yin et al., 2023). Approximately 30% of patients
with localised ccRCC ultimately develop metastatic recurrence
during postoperative follow-up, resulting in a dismal prognosis
(Kotecha et al., 2019; Quinlan et al., 2019; Taylor et al., 2023).
Owing to resistance to standard chemotherapy and radiotherapy,
therapies for ccRCC are still a significant challenge compared to
those for other RCC subtypes (Ochocki et al., 2018). Recent tumor
immunotherapy has been the focus in the clinical management of
cancer and has shown favorable efficacy in certain cancer types
(Powles et al., 2014; Gandhi et al., 2018; Huang and Zappasodi,
2022).While immunotherapies have become the standard of care for
patients with advanced ccRCC, only a minority achieve significant
clinical benefit (Darvin et al., 2018). Given the potential adverse
effects and associated cost of immunotherapy, there is an urgent
clinical need to identify biomarkers capable of facilitating effective
outcome prediction to enable personalized cancer therapy in
patients with ccRCC.

The clinical prognosis of ccRCC patients primarily correlates
with traditional pathological indicators, including tumour grade
and histological type (Mandal and Chan, 2016). Extensive intra-
and inter-tumor heterogeneity may further confound the precision
of pathological predictions (Huang et al., 2019). Integrating
genomic abnormalities with clinical data demonstrated that several
genetic mutations, such as chromatin-remodeling gene (BAP1)
mutations, were independently correlated with poor survival in
ccRCC patients (Linehan and Ricketts, 2019). Nonetheless, the true
predictive significance of these indicators in clinical practice remains
inadequately evaluated. Rapid advances in sequencing technologies
and machine learning algorithms have allowed scientists to gain
insight into these cancers at the molecular level (Ma et al.,
2018). Comprehensive transcriptomic analysis has allowed for the
identification of consensus molecular subtype classifications, which
could contribute to addressing the difficulty in identifying the
molecular heterogeneity of ccRCC.

In this study,we identified robust prognosis-related differentially
expressed genes (DEGs) and constructed a consensus machine
learning-related signature (MLRS) through a novel computational
framework. The MLRS has great prognostic significance in multiple
datasets and exhibits the robustness of its predictive value
for immunotherapy and drug-based therapies. Ultimately, by
integrating the single-cell RNA sequencing (scRNA-seq) data
of clear cell renal cell carcinoma (ccRCC), we discovered that
endomucin (EMCN) was linked to endothelial cell differentiation
and suppressed the proliferation of ccRCC cells.

2 Materials and methods

2.1 Data collection

Initially, we acquired the multiomics data of ccRCC patients,
including transcriptome expression, complete clinical information,
and corresponding somaticmutation data, from theCancerGenome
Atlas (TCGA, https://portal.gdc.cancer.gov) database. The RNA-
sequencing (RNA-seq) data were transformed to transcripts per
kilobase million (TPM) values and subsequently normalized by
log2 (TPM +1) transformation. We excluded patients with absent
clinicopathological information and follow-up data, resulting in a
final sample of 529 ccRCC samples from the TCGA dataset. The
RNA-seq data and clinical data for the GSE22541 (Wuttig et al.,
2012) were downloaded from the Gene Expression Omnibus
(GEO, https://www.ncbi.nlm.nih.gov/geo/) database. The probes
were converted into gene symbols utilizing the platform annotation
file (Affymetrix Human Genome U133 Plus 2.0 Array). The RNA-
seq and clinical data were acquired from the International Cancer
Genome Consortium (ICGC, n = 91) and the E-MTAB-1980 (n =
101) databases.

2.2 Weighted gene co-expression network
analysis (WGCNA)

WGCNA was performed to determine the ccRCC-specific
network modules based on highly intercorrelated genes (Langfelder
and Horvath, 2008). The gene co-expression network was
constructed using a soft threshold power, allowing the network
to approximate scale-free topology (scale-free fit signed R2 > 0.9)
in the TCGA dataset. The scale free topology model fit (signed R2)
measures how closely a gene co-expression network aligns with a
scale-free topology, typically near 1 for a close match, while the
soft threshold (Power) is used to weight correlations, emphasizing
stronger connections between highly correlated gene pairs in the
network construction (Langfelder and Horvath, 2008). We then
generated a module-trait heatmap to illustrate the p values and
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correlation coefficients between the coexpression modules and
ccRCC. In the present study, the most positively correlated and
the most negatively correlated modules were termed the hub
modules. The genes with module membership (MM) >0.8 and
gene significance (GS) >0.5 were candidates for further analyses.

2.3 Construction of MLRS by integrative
machine learning approaches

The “limma” R program was employed to identify differentially
expressed genes (DEGs) in the TCGA dataset, comparing normal
and ccRCC tissueswith thresholds of |log2FoldChange| > 1.0 and p<
0.05. We then intersected the DEGs with the candidates obtained by
WGCNA, which were then incorporated into the univariate analysis
to identify potential prognostic genes. Finally, the genes with p <
0.05 were defined as prognostic-related genes (PRGs) and were then
enrolled to construct a consensus MLRS with high generalizability.

To ensure model robustness and reproducibility, we
systematically optimized hyperparameters for all 10 machine
learning algorithms used in constructing the MLRS (Liu et al.,
2022). For example, in the random survival forest (RSF) model, the
parameters ntree (number of trees) and mtry (number of variables
per split) were optimized via grid search within a leave-one-out
cross-validation (LOOCV) framework. For Enet, Lasso, and Ridge,
the regularization parameter λ was determined using LOOCV, and
the L1–L2 balance parameter α was tuned from 0 to 1 in increments
of 0.1. Similar LOOCV-based optimization strategies were applied
for CoxBoost, plsRcox, SuperPC, GBM, and survival-SVM, with
details including penalty factors, number of components, boosting
steps, and tree counts. Feature selectionwas inherently performed by
embeddedmethods such as Lasso, stepwiseCox, CoxBoost, andRSF,
which identify predictive variables based on internal criteria (e.g.,
AIC or shrinkage penalties). All datasets were standardized using Z-
score normalization prior to modeling. The TCGA dataset was used
as the discovery cohort, while E-MTAB-1980, ICGC, and GSE22541
served as independent validation cohorts. Model development was
carried out using 10-fold cross-validation in the discovery cohort
across 101 algorithm combinations. The final MLRS model was
selected based on the highest average concordance index (C-index)
across the validation datasets.

2.4 Prognostic significance of the MLRS
and development of the nomogram

Each sample in the discovery and validation datasets was scored
and sorted into low- and high-MLRS groups based on the best-
generating model. The prognostic significance and performance of
the MLRS were evaluated through Kaplan-Meier survival curves
and time-dependent receiver operating characteristic (ROC) curves,
respectively. Moreover, we meticulously identified 101 published
signatures developed for ccRCC for performance comparison with
MLRS. The C-index was calculated to evaluate the predictive ability
of all signatures in each dataset.

We then explored the correlation between the MLRS and
different clinical features. A stratified survival analysis was
conducted to reveal the prognostic significance of the MLRS in

ccRCC patients. We performed Cox regression analyses to identify
the independent predictors of outcomes for ccRCC patients.
To further improve the accuracy of the MLRS in predicting
patient prognosis and facilitating clinical application, we combined
clinical variables with independent prognostic efficacy to establish
a nomogram.

2.5 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses were performed to explore the functions
and pathways of the intersecting genes identified from the DEGs
via WGCNA. Additionally, to explore the different GO terms in
different MLRS groups, we carried out gene set enrichment analysis
(GSEA) with the GO gene set (c5. all.v2023.2. Hs.symbols.gmt)
using the “clusterProfiler” R package. Gene set variation analysis
(GSVA) was further employed to analyze the variations in hallmark
pathway activities (h.all.v2023.1. Hs.symbols.gmt) between the low-
and high-MLRS groups through the “GSVA” R package.

2.6 Comprehensive analysis of tumor
immune cell infiltration

Single-sample gene set enrichment analysis (ssGSEA) is
commonly used to infer the enrichment scores of a particular
gene set for each sample with the “GSVA” R package. In our
study, we compiled several previously published signatures
associatedwith tumormicroenvironment (TME) cell types, immune
suppression, and immune exclusion. Then we utilized ssGSEA to
analyze the immunological differences between the two groups
comprehensively. Using the CIBERSORT algorithm, we also
quantified the infiltration of 22 immune cell types to explore the
correlation, differences, and prognosis of TME-infiltrating cell types
in ccRCC patients based on the MLRS.

2.7 Immunotherapy response and drug
sensitivity estimation

For the immunotherapy response, we investigated the patients’
delayed response survival to immunotherapy using the IMvigor210
cohort, which included 348 urothelial carcinoma patients who
were administered atezolizumab (Mariathasan et al., 2018). Tumor
immune dysfunction and exclusion (TIDE, http://tide.dfci.harvard.
edu/) was used to predict immunotherapy response by stimulating
tumor immune evasion. In addition, we used three additional
immunotherapy datasets (GSE78220, GSE135222, and GSE91061)
to confirm our results.

To identify drug candidates associated with increased drug
sensitivity in patients with high-MLRS, we first obtained drug
sensitivity data for human cancer cell lines from the CTPR (https://
portals.broadinstitude.org/ctrp) and PRISM (https://depmap.
org/portal/prism/) databases. Drug sensitivity was estimated using
the area under the dose–response curve (AUC), with lower AUC
values indicating increased sensitivity to a specific compound.
A ridge regression-based algorithm built in the “oncoPredict” R
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package was used to detect drug responses and compare differences
in drug sensitivity between the low—and high-MLRS groups.

2.8 scRNA-seq data collection and analysis

Single-cell RNA sequencing (scRNA-seq) data from
7 patients with ccRCC tissues were obtained from the
GSE210042 dataset (Davidson et al., 2023). The raw data were
transformed into Seurat objects for downstream analysis using the
“Seurat” R package. Cells with fewer than 300 genes and more than
10% mitochondrial gene count and those with fewer than three
genes detected were excluded. The top 2000 highly variable genes
were identified, followed by scaling and dimensionality reduction.
The “Harmony” R package was then applied to the joint datasets to
remove batch effects. Moreover, the results were presented by the
UMAP algorithm, and typical marker genes were utilized for cell
annotation. The intercellular communication between different cell
subtypes in ccRCC was predicted with the “CellChat” R package
with default parameters based on the analysis of ligand‒receptor
interactions tomodel the communication probability and determine
significant communications. Finally, we conducted pseudotime
analyses to characterize the developmental trajectory of endothelial
cells using Monocle3.

2.9 Cell lines

Human RCC cell lines (ACHN, 786-O, 769-P, and Caki-
1) and the human renal tubular epithelial cell line (HK2) were
obtained from the Cell Bank of the Chinese Academy of Sciences.
All cell lines were cultured in RPMI-1640 medium (Gibco)
supplemented with 10% fetal bovine serum (FBS; Gibco) and
maintained at 37°C in a humidified 5% CO2 incubator. HUVECs
were cultured in Endothelial Cell Medium (ECM; ScienCell)
supplemented with 5% FBS, 1% endothelial growth supplement,
and 1%penicillin-streptomycin.TheEMCNoverexpression plasmid
and corresponding control vector were purchased from Genechem
(Shanghai, China), and transfection was performed using
Lipofectamine 3,000 (Invitrogen) according to the manufacturer’s
instructions. For knockdown experiments, EMCN-targeting
siRNAs (si-EMCN#1 and si-EMCN#2) and control siRNA (si-NC)
were synthesized byGenePharma (Shanghai, China) and transfected
using Lipofectamine 3,000.

For the co-culture assay, HUVECs were transfected with
siRNAs for 48 h, then seeded into the upper chambers of 0.4 μm
Transwell inserts (Corning). Human ccRCC cell lines (786-O
or Caki-1) were seeded into the lower chambers. After 48 h of
co-culture, ccRCC cell proliferation was assessed using the Cell
Counting Kit-8 (CCK-8), and OD450 values were measured using a
microplate reader.

2.10 Immunohistochemistry and real-time
quantitative PCR (RT‒qPCR)

The Human Protein Atlas (HPA, https://www.proteinatlas.org/)
database, a protein expression database, was employed to compare

the protein expression of EMCN between normal and ccRCC
samples via immunohistochemical staining.

Total RNAwas extracted from the cells usingTRIzol (Invitrogen,
Carlsbad, CA, United States). The PrimeScript RT Reagent Kit
(TaKaRa, Tokyo, Japan) was used for reverse transcription of total
RNA to cDNA. RT-qPCR assays were carried out using the CFX96
Real-Time PCR Detection System (Bio-Rad, Hercules, CA, United
States). Relative gene expression was calculated using the 2−ΔΔCT

method and was normalized toGAPDH expression. The primer sets
for EMCN were 5′-AGCAACCAGCCGGTCTTATTC-3′ (forward)
and 5′-AGCACATTCGGTACAAACCCA-3′ (reverse). The primer
sets for GAPDH were 5′-ATCATCCCTGCATCCACT-3 (forward)
and 5′-ATCCACGACGGACACATT-3′ (reverse).

2.11 Cell Counting Kit-8 (CCK-8) assay

Cell proliferation was assessed using a CCK-8 Kit (MA0218,
Dalian Meilun Biotechnology Co.) according to the manufacturer’s
protocol. Briefly, cells were seeded onto 96-well plates (5 × 103

cells/well) and cultured for various durations (1, 2, 3, and 4 days).
Then, 10 μL of CCK-8 reagent was added to each well, and the cells
were incubated for 2 h. The absorbance at 450 nm was measured
using a microplate reader (Molecular Devices, LLC).

2.12 Statistical analysis

Statistical analyses were performed usingR software (v4.3.2) and
GraphPad Prism software (v9.5.1). Differences between two groups
were analyzed using Student’s t-test or the Wilcoxon rank-sum
(Mann‒Whitney) test. Comparisons among multiple groups were
performed with one-way analysis of variance (ANOVA) and the
Kruskal‒Wallis test. Group differences in the clinical characteristics
of the subjects were analyzed using chi-square tests. Survival curves
were plotted using the Kaplan-Meier method and compared using
the log-rank test. A p value less than 0.05 was considered to indicate
statistical significance.

3 Results

3.1 Identification of the hub gene modules
and key PRGs associated with ccRCC

Theworkflowof this research is shown in Supplementary Figure 
S1. To identify hub modules significantly related to ccRCC,
WGCNA was carried out using the TCGA-ccRCC dataset. The
soft threshold of 4 was decided for ensuring a scale-free nature
of the network (Figure 1A), and 11 gene modules were generated
based on the dynamic tree cut algorithm (Figure 1B). The turquoise
and blue modules exhibited the strongest negative and positive
correlations with ccRCC, respectively (Figure 1C). Furthermore, the
turquoise and bluemodules had greater gene significance for ccRCC
than did the other modules (Figure 1D). Scatterplots illustrated
the linear correlation between MM and GS, with correlation
coefficients of 0.77 and 0.92 for the turquoise and blue modules,
respectively (Figure 1E). Ultimately, a total of 122 genes from
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those two modules (turquoise: 22 and blue: 12) were screened for
subsequent analysis based on thresholds of GS > 0.5 and MM > 0.8.

In addition, a volcano plot further revealed 1895 DEGs
between normal kidney and ccRCC tissues in the TCGA dataset,
including 880 upregulated genes and 1,015 downregulated genes
(Figure 1F). We ultimately screened 33 key genes by intersecting
the 122 genes from the WGCNA with the DEGs (Figure 1G). GO
enrichment analysis indicated that these key genes were highly
enriched in biological processes (BPs), including endothelial cell
migration, endothelial cell apoptotic process, and kidney vasculature
development (Figure 1H). We next conducted univariate Cox
regression analysis and confirmed 25 PRGs that were significantly
associated with OS. To further construct and validate the MLRS,
we cross-checked and found that those 25 genes were shared
among all the involved bulk-seq datasets. The results of the
univariate Cox regression analysis showed that out of the 25 genes,
17 were upregulated, and the remaining 8 were downregulated
(Figure 1I). In addition, the interrelationships between these genes
are illustrated in Figure 1I. Finally, we studied the frequency of
somatic mutations, and the top ten mutations of these genes
are shown in Figure 1J, with BTNL9 having the highest mutation
frequency (8%), followed by the other nine genes, ranging
from 0.6% to 2.8%.

3.2 Construction of a prognostic MLRS
using integrative machine learning

To construct a consensus MLRS, we fitted 101 prediction
models using 10 different machine learning algorithms to analyze
the expression profiles of 25 prognostic genes. The TCGA-ccRCC
dataset was used as the discovery cohort, whereas the E-MTAB-
1980, ICGC, and GSE22541 datasets were used as the validation
cohorts. Of the 101 models, the final model constructed by
the combination of the CoxBoost and ridge algorithms had the
highest average C-index (Figure 2A). Then, we calculated the
MLRS per sample for all cohorts based on the combination
of the CoxBoost and ridge algorithms, which included 8 PRGs
(BIRC5, TPX2, AGER, CLIC5, EMCN, MAMDC2, SEMA3G, and
TEK). Survival analysis showed that patients in the TCGA (P
< 0.0001), E-MTAB-1980 (P = 0.00013), ICGC (P = 0.04),
and GSE22541 (P < 0.0001) datasets suffered poor clinical
outcomes in the high-MLRS group than in the low-MLRS group
(Figure 2B). Moreover, the AUCs were larger than 0.7, even
0.8, suggesting that our signature had good predictive efficiency,
although the AUC values did not reach such high values in the
ICGC dataset (Figure 2C).

Many prognostic signatures for ccRCC have been recently
published with the rapid advancement of bioinformatics
technologies. To compare the prediction performance of our
signature with othermodels, wemeticulously retrieved a total of 101
published signatures involved in a variety of biological processes,
such as cell death, immunity, epigenetics, and metabolism. Notably,
MLRS exhibited the highest C-index in the TCGA, E-MTAB-
1980, and GSE22541 datasets, except for ranking second in
the ICGC dataset (Figures 2D–G). Collectively, these findings
emphasized the exceptional predictive performance of the MLRS
and its great potential for clinical practice.

3.3 Clinical relevance of the MLRS

As the prognosis of ccRCC patients is commonly assessed by
clinicopathological characteristics in clinical practice, we evaluated
the differences in the MLRS distribution among different subgroups
of clinical parameters. In the TCGA dataset, we found significant
differences in the distribution of tumor grade, stage, T stage,
and M stage (all P < 0.0001, chi-squared test) between the two
groups (Figures 3A, B). Additionally, the MLRs increased as the
ccRCC progressed (Figure 3C). Notably, we found that the MLRS
could act as an indicator for predicting the M stage in ccRCC
patients, and the MLRs was 0.692 according to the diagnostic
ROC curve (Figures 3D, E), suggesting potential clinical application
value of MLRS in predicting ccRCC metastases.

We then explored the ability of the MLRS to predict survival
through survival analysis stratified by different clinical features.
The MLRS significantly differentiated the prognosis of each clinical
subgroup (including age, gender, grade, stage, T stage, N stage,
and M stage) (Figure 3F; Supplementary Figure S2), with ccRCC
patients in the low-MLRS subgroup having a better outcome.
Moreover, we utilized the GSCA (https://guolab.wchscu.cn/GSCA/)
database to comprehensively explore the multiomics phenotypes
of the eight genes included in the MLRS across 33 diverse cancer
types based on the TCGA dataset. The results showed that TPX2
and BIRC5 were upregulated, while AGER, TEK, CLIC5,MAMDC2,
EMCN, and SEMA3Gweremostly downregulated inmultiple cancer
types. Most importantly, AGER is a tissue-specific gene that was
highly overexpressed only in ccRCC (Supplementary Figure S3A).
We also noted that, except for MAMDC2, the other seven
genes were obviously related to the prognosis (overall survival,
disease-free survival, and disease-specific survival) of patients
with ccRCC (Supplementary Figure S3B).

By taking into consideration the potential future clinical
applications of MLRS, we screened independent prognostic
parameters for MLRS by univariate and multivariate analyses
(Supplementary Figure S4A) and then combined them to develop
an integrated nomogram (Supplementary Figure S4B). The
subsequent calibration diagram confirmed good consistency
between the predicted results of the nomogram and the
actual situation (Supplementary Figure S4C), and the decision
curve analysis also confirmed the clinical benefit of the
nomogram (Supplementary Figure S4D). In addition, the
time-dependent C-index of the established nomogram had
a stable and robust predictive ability and was superior to
that of other clinical characteristics in predicting 1- to 10-
year OS (Supplementary Figure S4E).

3.4 Underlying molecular mechanisms of
the MLRS

To explore the underlying molecular mechanism leading to the
difference in prognosis between the low- andhigh-MLRS subgroups,
we carried out functional enrichment analysis. We employed GSEA
with the GO gene set as a reference gene set and found that
the low-MLRS group was enriched in renal system processes, the
apical part of the cell, and several metabolic processes (Figure 4A),
whereas the high-MLRS group was significantly associated with
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FIGURE 1
Identification of the key differential expression genes in ccRCC patients. (A) Analysis of the scale-free index for various soft-threshold powers (β). The
left panel representing the relationship between β and scale-free R 2. The right panel representing the relationship between β and mean connectivity.
(B) Gene dendrogram based on a dissimilarity measure (1-TOM). (C) A heatmap of correlation between different gene modules and clinical traits
(normal vs ccRCC). (D) Bar plots exhibiting blue and turquoise modules are two most key modules related to ccRCC. (E) Scatter plots of module
membership vs gene significance in the blue and turquoise modules. (F) Volcano plot of differential expression analysis of normal and ccRCC samples
in the TCGA dataset. (G) Venn plot of the intersecting genes between modules (bule and turquoise) and differentially expressed genes. (H) GO
enrichment analyses based on the key differentially expressed genes. (I) Univariate Cox regression analysis of key differentially expressed genes and the

(Continued)
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FIGURE 1 (Continued)

correlations among these genes. The circle size represented the log10 of P value obtained from univariate Cox regression analysis. (J) An oncoplot
showing the mutation distribution of the key differentially expressed genes in ccRCC.

several functional terms related to immunity, such as humoral
immune response, adaptive immune response, and chromosome
segregation (Figure 4B). Furthermore, GSVA revealed that the low-
MLRS group had a stronger correlation with pathways involved in
adipogenesis, pancreatic beta cells, and other metabolic processes,
while the high-MLRS group exhibited stronger activity in pathways
related to E2F targets, inflammatory responses, and various cancer-
related pathways, such as DNA repair, the P53 pathway, and
epithelial–mesenchymal transition (Figure 4C). Correlation analysis
further confirmed the unexpected associations between the MLRS
and the dysregulation of multiple tumorigenic and metabolic
processes in ccRCC (Figure 4D).

To elucidate whether the hallmark pathways correlated with
prognosis in ccRCC patients, further analysis was conducted with
Kaplan‒Meier curves. We found that pathways positively correlated
with the MLRS, such as TNFA signaling via NF-κB, DNA repair,
and epithelial–mesenchymal transition, were related to unfavorable
prognosis (Figure 4E). Conversely, pathways negatively correlated
with adipogenesis, peroxisomes, and TGF-β were related to a better
prognosis (Figure 4F). These results suggested that the activation or
inhibition of these pathways potentially led to the distinct outcomes
observed in the different MLRS subgroups, which in part explained
why the high-MLRS subgroup had a worse prognosis.

3.5 Relation of the tumor
microenvironment to the MLRS

To characterize the immunologic landscape of ccRCC patients,
we performed a comprehensive analysis of TME-related pathway
scores using the ssGSEA algorithm and found that the infiltration
levels of immune cells, such as CD4+ T cells, CD8+ T cells
(TIMER method), B cells (CIBERSORT method), and M1
macrophages (Quantieq method), were significantly greater in
patients with high MLRS than in those with low MLRS (Figure 5A),
indicating immune activation status. We also discovered that
some immunosuppression- and exclusion-related pathways, such
as those involving Tregs, fibroblasts, TGF- family members, and
immune checkpoints were significantly enriched in the high-
MLRS group (Figures 5B, C), suggesting that the ccRCC patients
in the high-MLRS group might have a greater immunosuppression
degree. These findings strongly implied that ccRCC patients with
low MLRS values were significantly more inclined to be reclassified
as having “hot tumors”, whereas those with high MLRS values were
more likely to have “cold tumors”.

Using the CIBERSORT algorithm, we systematically evaluated
the infiltration scores of 22 types of immune cells in ccRCC and
compared the differences between the low- and high-MLRS groups.
We found that naïve B cells, memory B cells, resting memory CD4 T
cells, gamma delta T cells, M1 macrophages, activated DCs, and
resting mast cells were more enriched in the low-MLRS group,
while plasma cells, activated memory CD4 T cells, follicular T

cells, regulatory T cells, resting NK cells, and M0 macrophages
were obviously associated with the high-MLRS group (Figure 5D).
Furthermore, we observed that eight genes in the MLR were
significantly correlated with tumor immune infiltrates, of which
three upregulated genes (BIRC5, TPX2, and AGER) in ccRCC were
positively correlated with CD8+ T cells, and the remaining five
genes showed a negative correlation with Tregs, consistent with their
prognostic results in ccRCC (Figure 5E).

We then performed Spearman’s correlation analysis and
identified 13 immune cells whose infiltration levels were
significantly associated with the MLRS (P < 0.05) (Figure 5F).
We also used Kaplan‒Meier curves to explore the effect of the
enrichment status of immune-infiltrating cells on the prognosis
of ccRCC patients. The results revealed that 8 TME-infiltrating cell
types were significantly associated with OS (log-rank test, P < 0.05),
suggesting that immune cell infiltration in ccRCC tissues might play
an important role in tumor prognosis (Supplementary Figure S5).
We ultimately identified eight crossed immune cell types by
integrating the differential expression analysis, correlation analysis,
and survival analysis (Figure 5G). Tregs may be effective targets
for cancer immunotherapy; therefore, we explored the difference
in Treg content between the two groups and found that the low-
MLRS group had lower enrichment of Tregs, suggesting that the
low-MLRS group may undergo immune-mediated tumor clearance
(Figures 5H, I). We further performed survival analysis and found
that the MLRS could be used as an effective complementary
factor for Tregs to determine the prognosis of ccRCC
patients (Figure 5J).

3.6 MLRS correlate with immunotherapy
response and drug sensitivity

To comprehensively evaluate the performance of the MLRS
for predicting immunotherapeutic efficacy in ccRCC patients, we
first conducted a detailed analysis of urogenital cancer patients
treated with PD-L1 blockade in the IMvigor210 cohort. Unlike
previous analytical approaches, we compared differences in long-
term survival among patients with ccRCC after 3 months of
treatmentmore concretely by considering the delayed clinical effects
of ccRCC immunotherapy. The results indicated that patients in the
low-MLRS group had a better prognosis, suggesting that they may
benefit more from immunotherapy (Figure 6A). The distribution of
MLRS also showed that the MLRS was significantly higher in the
non-responders (progressive disease [PD] and stable disease [SD])
than in the responders (complete response [CR] and partial response
[PR]) in the IMigor210 cohort (Figure 6B). Furthermore, the TIDE
algorithm also displayed a better immunotherapy response in the
low- MLRS group (P < 0.001; Figure 6C). Finally, we investigated
the prognostic value of the MLR in the three independent
immunotherapy cohorts separately. Patients with low MLRS tended
to have significantly better prognostic outcomes than those with
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FIGURE 2
Construction and validation of a prognostic MLRS using the machine learning-based integrative procedure and comparison of the C-index among
different signatures. (A) C-indexs of MLRS in the different (TCGA, GSE22541 and EMTAB-1980) datasets based on 101 combinations of machine learning
algorithms via a 10-fold cross-validation framework. (B) K-M survival curves of low- and high-MLRS groups in the different datasets. (C) The receiver
operating characteristic curve (ROC) for the performance of the MLRS in the different datasets. (D–G) Comparing the C-index of the MLRS and other
established signatures in TCGA, GSE22541, ICGC, and EMTAB-1980 datasets.

highMLRS in theGSE78220 (P =0.0013), GSE135222 (P =0.00047),
and GSE91061 (P = 0.00018) datasets (Figure 6D). Although there
was no visible difference between the low- and high-MLRS groups, a

low MLR tended to be associated with greater clinical benefit in the
GSE78220 cohort (Wilcox test, P = 0.058, Figure 6E). In addition,
patients with a low MLRS may benefit more from immunotherapy
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FIGURE 3
Correlation analysis between MLRS and clinical variables. (A) The expression profiles of the eight genes and the distribution of clinical characteristics
based on the MLRS (B) Difference of the clinical characteristics between the low- and high-MLRS groups. (C) The difference in the distribution of the
MLRS among ccRCC patients grouped by grade, stage, T stage, and M stage. (D) The proportion of M stage in the low- and high-MLRS groups. (E) The
receiver operating characteristic curve (ROC) of MLRS in predicting the metastasis of the ccRCC. (F) The prognosis analysis of the MLRS for the ccRCC
patients with the M stage.∗∗∗P < 0.001.

in the GSE135222 (Wilcox test, P = 0.034) and GSE91061 (Wilcox
test, P = 0.023) datasets.

Given that chemotherapeutic agents have significant therapeutic
implications for cancers, we used multiple drug response databases
to identify therapeutic compounds that were strongly associated
with the MLRS in ccRCC patients. First, we examined the sensitivity
of the low- and high-MLRS groups to chemotherapeutic drugs using
“oncoPredict” package. The findings indicate that the sensitivities
to EGFR inhibitors (afatinib, erlotinib, and gefitinib) and MAPK
inhibitors (doramapimod) were significantly greater in the high-
MLRS group (Figure 6F), indicating the potential importance of
these agents in inhibiting the progression of malignant tumors.

We also found that the MLRS was positively correlated with drug
sensitivity (Figure 6G). Subsequently, we calculated the AUC values
of the compounds fromCTRP andPRISMandperformed Spearman
correlation analysis on the MLRS and AUC values based on the
TCGA sample dataset. An increasing AUC represents decreased
drug sensitivity. A total of four compounds (CTRP: nutlin-3,
bosutinib, and BRD−K02251932; PRISM: INC−280) were found
to be negatively correlated with the MLRS, suggesting potential
sensitivity in the high-MLRS group (Figures 6H, I). Finally, we
found that the expression of AGER and SEMA3G was strongly
negatively correlated with multiple drug sensitivities, whereas
MAMDC2 showed the opposite trend (Figure 6J).
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FIGURE 4
The underlying molecular features of low- and high-MLRS groups in ccRCC. (A) The GO terms enriched in the low-MLRS group by the gene set
enrichment analysis (GSEA). (B) The GO terms enriched in the high-MLRS group by the GSEA. (C) Differences in the scores of hallmark pathway
activities between the low- and high-MLRS groups by the gene set variation analysis (GSVA). (D) Correlation of MLRS and hallmark pathway activities
scored by GSVA. (E) Kaplan-Meier survival curves showing the correlations between poor OS and high-MLRS group in the up-hallmark pathways. (F)
Kaplan-Meier survival curves showing the correlations between favorable OS and high-MLRS group in the down-hallmark pathways.

3.7 scRNA-seq transcriptome data and
communication network of ccRCC

Next, we investigated the detailed distribution of MLRS in
ccRCC patients via a scRNA-seq dataset (GSE210042). After
filtering with strict standards, 30,663 single cells from seven

ccRCC samples were screened for further analysis (Figure 7A).
We conducted PCA and UMAP downscaling analysis using the
top 2,000 highly variable genes and obtained 13 different cell
clusters (Figure 7B). Based on the expression of well-recognized
marker genes previously reported, all cells were categorized into
eight cell types, namely, CD8+ T cells, macrophages, NKT cells,
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FIGURE 5
The immune landscape of low- and high-MLRS groups in ccRCC. (A) The distribution of tumor microenvironment (TME) immune cell type signatures
between low- and high-MLRS groups. (B) The distribution of immune suppression signatures between low- and high-MLRS groups. (C) The
distribution of immune exclusion signatures between low- and high-MLRS groups. (D) The abundance of each TME-infiltrated cell types quantified by
the CIBESORT algorithm between low- and high-MLRS groups. (E) The correlations between TME-infiltrated cell types and eight genes built-in MLRS.
(F) The correlations between TME-infiltrated cell types and MLRS. (G) Venn diagram determining the intersecting TME-infiltrated cell types among the
differential, correlation, and survival analyses. (H) The distribution of Tregs between low- and high-MLRS groups. (I) The correlations between MLRS
and Tregs. (J) Survival analysis combined MLRS with Tregs.∗P < 0.05,∗∗P < 0.01,∗∗∗P < 0.001.
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FIGURE 6
Predictive value of the MLRS in immunotherapy response and drug sensitivity. (A) The long-term survival (LTS) difference after 3 months of treatment
between low- and high-MLRS groups in the IMvigor210 dataset. (B) The distribution of MLRS in patients with different immunotherapy responses in the
IMvigor210 dataset. (C) The tumor immune dysfunction and exclusion (TIDE) algorithm predicting the immunotherapy response between low- and
high-MLRS groups. (D) Survival analysis of low- and high-MLRS groups in the GSE78220, GSE135222, and GSE91061 datasets. (E) The distribution of
MLRS in patients with different immunotherapy responses in the GSE78220, GSE135222, and GSE91061 datasets. (F) A comparison of the sensitivity to
EGFR and MAPK inhibitors, including afatinib, erlotinib, gefitinib, and doramapimod between low- and high-MLRS groups. (G) The correlations between
drug sensitivity of afatinib, erlotinib, gefitinib, and doramapimod and MLRS. (H, I) The AUC values of compounds from CTRP (H) and PRISM (I)

(Continued)
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FIGURE 6 (Continued)

databases were estimated based on the TCGA sample dataset, and Spearman correlation analysis was conducted on MLRS and AUC values. (J) The
correlations between drug sensitivity and eight genes built-in MLRS.

fibroblasts, endothelial cells, epithelial cells, B cells, and mast cells
(Figure 7C). The cell numbers of the eight cell types are shown
in Figure 7D. To elucidate how these cells regulate tumorigenesis,
we utilized CellChat to construct cell communication networks
to comprehensively evaluate the potential molecular interactions
between ligand‒receptor pairs and major cell types. We investigated
the number and weight/strength of interactions between diverse
cell types and found that endothelial cells play a considerable role
in intercellular communication (Figure 7E). In addition, fibroblasts
and epithelial cells communicate closely with endothelial cells,
and the signals sent from these cells are shown in Figure 7F.
The outgoing and incoming interaction strengths of the cells also
indicated that fibroblasts and endothelial cells emitted more signals,
and that macrophages and endothelial cells received more signals
than other cells (Figure 7G). The enrichment scores of MLRS were
estimated by “AUCell”, and the results clearly showed that MLRS
were highly enriched in endothelial cells (ECs) compared to other
cell types (Figures 7H, I).

To further address the role of endothelial cells in ccRCC
progression, we explored the significance of the hallmark of cancer
and found that NOTCH was considered the most important of
the various cancer hallmarks (Figure 7J). Notably, the interactions
between every gene in the gene set and the NOTCH signaling
pathway further highlighted a significant positive correlation
between five genes (TEK, EMCN, CLIC5, SEMA3G, AGER) and
the NOTCH pathway (Supplementary Figure S6). Combined with
the results of the CellChat and random forest algorithm analyses,
the NOTCH and FTG-b signaling pathways were identified as
the main signaling pathways involved in the interaction between
endothelial cells and other cells (Figure 7K). The expression levels of
ligands and receptors in the NOTCH and FTG-b signaling pathways
are shown in Figure 7L. The communication between epithelial cells
and other cell types involves specific ligand‒receptor pairs, such as
JAG1-NOTCH3 and TGFB1-(TGFBR1+TGFBR2).

3.8 EMCN correlates with the
differentiation fate of endothelial cells in
ccRCC

Subsequently, we analyzed the expression profiles of eight genes
in the MLRS across the different cell types and found that EMCN
was specifically expressed in endothelial cells (Figures 8A, B).
Endothelial cells were further subdivided into five clusters
(EC0-4) after UMAP dimensionality reduction (Figure 8C), and
the expression of EMCN among EC subclusters is displayed
with different degrees of color (Figure 8D). Notably, EC1 and
EC4 exhibited the highest and lowest expression of EMCN,
respectively (Figure 8E). Next, noted that the progression trajectory
originated from the EC0 and clustered into different branches
using the pseudotime trajectory analysis. We also performed a
pseudotime trajectory analysis of endothelial cells to dissect the

evolutionary dynamics of ccRCC endothelial lineages (Figure 8F).
The evolutionary trajectory of endothelial cells originated from EC0
and developed into different branches, with EC1 and EC4 cells in the
upper right corner and EC2 and eEC3 cells on the left (Figure 8G).
Pseudotemporal ordering demonstrated that the EMCN decreased
in the latter stages of differentiation (Figure 8H).

Furthermore, EMCN expression correlated with pathological
grade and decreased stepwise and significantly decreased as the
ccRCC progressed (Figure 8I). Survival curves further showed
that patients with high EMCN expression exhibited better clinical
outcomes, indicating that the loss of endothelial EMCNsmight drive
ccRCC growth (Figure 8J). Consistent with our earlier observations,
representative immunohistochemical staining results showed that
the level of EMCN expression was significantly lower in ccRCC
tissues than in normal tissues (Figure 8K).EMCN mRNAexpression
was markedly lower in ccRCC cell lines (786-O, Caki-1, and 769-
P) than in HK2 (Figure 8L). To confirm the role of EMCN in
ccRCC development, we altered its expression by transfecting 786-
O and Caki-1 cells with EMCN overexpression plasmids, and
the results were confirmed by qRT‒PCR analysis (Figure 8M).
The CCK-8 assay results revealed that overexpression of EMCN
inhibited the proliferation of 786-O and Caki-1 cells (Figure 8N),
confirming the role of EMCN as a tumor suppressor in ccRCC. To
further investigate whether endothelial-derived EMCN contributes
to tumor regulation, HUVECs were transfected with si-EMCN or
si-NC (Figure 8O) and subsequently co-cultured with 786-O and
Caki-1 cells using a non-contact Transwell system. After 48 h of
co-culture, CCK-8 assays were performed on ccRCC cells. The
results showed that ccRCC cells co-cultured with EMCN-silenced
HUVECs exhibited significantly enhanced proliferation compared
to the control group (Figure 8P), indicating that EMCN knockdown
in endothelial cells may promote tumor growth by modulating the
tumor microenvironment.

4 Discussion

CcRCC is the predominant solid tumour of the kidney and
the most fatal among all urological cancers (Sung et al., 2021). A
significant number of patients have exhibited a limited response
to immunotherapeutic treatment, despite the presence of PD-1
in ccRCC patients (Au et al., 2021). Consequently, dependable
biomarkers are critically required to assess the prognosis of ccRCC
patients and to categorise those who may derive advantages from
immunotherapy.

To establish a prognostic signature with consensus efficacy
for ccRCC patient prognosis and enhance its clinical application,
we employed 10 machine learning techniques to develop a
streamlined translational model (Liu et al., 2022). We calculated
the average C-index of the four included datasets as the ranking
criterion to mitigate the risk of overfitting and biassed outcomes
resulting from the optimisation of the training cohort. Our
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FIGURE 7
Single-cell RNA transcriptome data analysis in ccRCC. (A) Uniform manifold approximation and projection (UMAP) showing the integration of seven
samples in the GSE210042 (B) UMAP visualization of 13 separate cell clusters. (C) UMAP of representative eight major cell types and distribution
annotations in ccRCC. (D) Number of representative eight major cell types. (E) Cell-cell communications of major cell types by CellChat analysis based
on interaction numbers and strength. (F) Network plot displaying the signaling sent from endothelial cells, epithelial cells, and fibroblasts. (G)
Visualization of dominant senders (sources) and receivers (targets) in a scatter plot. (H) The activity score of MLRS in major cell types. (I) The
distribution of the MLRS in different cell types. (J) The single sample gene set enrichment analysis (ssGSEA) and random forest algorithms jointly
illustrating that NOTCH is the most important hallmark of cancer among the endothelial cells. (K) NOTCH and TGF-β signaling are the main signaling
pathways involved in the interaction between endothelial cells and other cells. (L) The main ligand-receptor paired in NOTCH and FTG-b signaling
pathways among major cell types.

findings indicated that the application of the CoxBoost and ridge
algorithms yielded an exceptional C-index in the discovery (TCGA)
dataset as well as in three validation datasets (GSE22541, E-
MTAB-1980, and ICGC). However, it is difficult to generalize
the results to the ICGC dataset, likely due to this dataset

focused on RCC but was not limited to clear cell subtypes. RCC
encompasses several subtypes, including clear cell, papillary, and
chromophobe renal cancers, which exhibit significant genetic and
clinical heterogeneity. This heterogeneity among subtypes may
contribute to the decreased predictive accuracy of our model in
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FIGURE 8
EMCN is specifically expressed in endothelial cells and inhibits the ccRCC cell proliferation. (A) Uniform manifold approximation and projection (UMAP)
of eight genes expression built-in MLRS. The color shade showing the expression of the corresponding gene. (B) Violin plots visualizing the normalized
expression levels of EMCN across the major cell types. (C) UMAP showing the five subclusters (EC0-5) of the endothelial cells. (D) The expression of
EMCN in five different subclusters of endothelial cells with different color degrees. (E) Violin plots visualizing the normalized expression levels of EMCN
across the five different subclusters of endothelial cells. (F) The pseudotime trajectory describing the distribution of five different subclusters of
endothelial cells. (G) Differentiation trajectory of endothelial cells in ccRCC, color-coded for pseudotime. (H) In the dynamic expression profile of
EMCN in endothelial cells trajectory. (I) Distribution of EMCN expression in ccRCC at different stages. (J) Kaplan Meier curve analysis for the OS and
PFS based on the EMCN expression in ccRCC. (K) Distribution of protein expression in normal renal and ccRCC tissues obtained from the Human
Protein Atlas (HPA) database. (L) EMCN expression levels in different ccRCC cell lines and immortalized proximal tubule epithelial cells (HK2). (M)

(Continued)
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FIGURE 8 (Continued)

qRT-PCR results confirming the EMCN was successfully overexpressed in 786-O and Caki-1 cells. (N) CCK-8 assay showing that overexpression of
EMCN obviously inhibited the proliferation of 786-O and Caki-1 cells. (O) Quantitative RT-PCR analysis confirmed the knockdown efficiency of
EMCN in HUVECs transfected with si-EMCN#1 and si-EMCN#2 compared to control siRNA (si-NC). (P) CCK-8 assays showing the proliferation of
786-O and Caki-1 cells after 4-day co-culture with HUVECs transfected with si-NC, si-EMCN#1, or si-EMCN#2 in a Transwell system.** P < 0.01,
*** P < 0.001, ****P < 0.0001.

the ICGC dataset (Rose and Kim, 2024). Furthermore, technical
differences in sample processing and sequencing platforms across
datasets might also influence the results. Notably, MLRS exhibited
better or at least comparable prediction performance in each cohort
compared with other published studies. A nomogram combining
MLRS with multiple clinical features could further improve the
predictive ability of the nomogram in comparison to that of a
single feature.

The prognostic MLRS was constructed using the eight
most valuable genes, five of which have been documented as
contributors to the course of ccRCC. The expression of BIRC5, or
survivin, was an independent predictor of ccRCC advancement
and adversely correlated with patient survival, consistent with
our data (Parker et al., 2006). TPX2, a regulator of Aurora-A,
was established as correlated with advanced ccRCC grade and
stage and identified as an independent predictor of recurrence
in a tissue microarray comprising 207 patients (Glaser et al.,
2017). Importantly, the signaling cross-talk between TPX2 and
Aurora B appears to be essential for the accurate completion
of mitosis. The latter can interact with BIRC5 to play a critical
role in regulating mitotic spindle assembly and chromosome
segregation, both of which are crucial for cell division (Iyer
and Tsai, 2012). AGER, the receptor for advanced glycation end
products, plays a crucial role in tumor angiogenesis and can be
used as a prognostic biomarker for ccRCC (Guo et al., 2015). The
expression of EMCN (also called endomucin), which is expressed
in endothelial cells, was downregulated and associated with better
overall survival in VHL-mutant ccRCC patients (Wang et al., 2022).
The role of AGER role in tumor angiogenesis could be influencing
EMCN expression in endothelial cells, thereby affecting tumor
microenvironment and vascularization, which is critical for tumor
growth and metastasis (Swanner et al., 2023). A novel podocyte
gene, SEMA3G (semaphorin 3G) might contribute to ccRCC
tumorigenesis by affecting Wnt pathway (Wang et al., 2023). Other
reports have suggseted that TEK knockdown not only functionally
promoted cell proliferation and migration but also affected cell
apoptosis by regulating AKT phosphorylation (Chen et al., 2021).
Recently, two other genes (CLIC5 and MAMDC2) have also
been reported to function as tumor suppressors in some cancers
(Lee et al., 2020; Chen et al., 2021). Despite limited data on ccRCC.

The types and phenotypes of tumor-infiltrating immune cells
in the TME are closely associated with the progression of ccRCC
(Mier, 2019). Although different algorithms had different effects on
immune cell infiltration, we found that ccRCC patients with high
MLRs presented abundant immunosuppression- and exclusion-
related pathways, such as those involving Tregs, CAFs, MDSCs,
fibroblasts, TGF-family members, and immune checkpoints.
Specifically,TGF-β not only helps in the conversion of naïve
T cells into regulatory T cells but also enhances the fibrotic
barrier around tumors, which impedes the infiltration of effector

immune cells. Moreover, TGF-β interacts synergistically with
other components of the tumor microenvironment to enhance
immune evasion through the upregulation of PD-L1 on tumor
and immune cells, thus contributing to an immunosuppressive
milieu (Mariathasan et al., 2018; Batlle and Massagué, 2019). The
concept of “cold” and “hot” tumor phenotypes is pivotal to the
effectiveness of immunotherapy. Our findings indicate a significant
correlation between the MLRS and the expression of crucial
immune checkpointmolecules, which are key facilitators of immune
evasion within the tumor microenvironment. These molecules are
instrumental in sustaining the ‘cold’ phenotype, where tumors
exhibit minimal immune cell infiltration and are less responsive to
immunotherapy (Topalian et al., 2015). ElevatedMLRS valuesmight
suggest an enhancement of these immune checkpoints, thereby
fostering immune suppression and perpetuating a “cold” tumor
environment. In contrast, ccRCC patients in the low-risk group
had a highly infiltrated immune microenvironment characterized
by the presence of CD4+ T cells, CD8+ T cells (TIMER method),
B cells (CIBERSORT method), and M1 macrophages (Quantieq
method), revealing that the low-MLRS group has stronger antitumor
immune activity.

To address the poor response to immunotherapy in the high-
MLRS group, implemented a thorough search technique proven
helpful in identifying potentially suitable therapeutic molecules
in prior research. Patients with high-MLRS exhibited heightened
sensitivity to afatinib, erlotinib, gefitinib, and doramapimod. Small
molecule inhibitors with specific targeting activity, which can kill
tumor cells but rarely threaten normal tissues and cells, play a key
role in cancer therapy (Fang et al., 2022). Thus, we predicted three
CTRP-derived agents (nutlin-3, bosutinib, and BRD−K02251932)
and one PRISM-derived agent (INC−280) for the treatment of high-
risk patients. For example, Nutlin-3 selectively enhances cancer
cell apoptosis by activating the p53 pathway (Yee-Lin et al., 2018).
Notably, Nutlin-3 is nongenotoxic and protects kidney cells from
the cytotoxic effect of cisplatin (Jiang et al., 2007), demonstrating
its potent role in the treatment of ccRCC.

In our scRNA-seq analysis of ccRCC, we characterized cellular
heterogeneity and assessed the expression patterns of MLRS genes
across different cell types. While we observed that MLRS genes
were more highly enriched in endothelial cells compared to
other cell types, we acknowledge that this does not necessarily
imply exclusivity. In agreement with other studies (Howard et al.,
2013; Fendler et al., 2020), our cell communication analysis
revealed that the Notch signaling pathway acted as the strongest
mediator in endothelial cells. More importantly, we identified
DLL4/Notch and JAG/Notch signaling as the key ligand-receptor
pairs involved in ligand‒receptor interactions in ccRCC, which
might disrupt angiogenesis to reduce tumor growth and metastasis
(Kangsamaksin et al., 2015). We then verified the prominent role
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of the EMCN in MLRS and found that the EMCN correlated with
the differentiation fate of endothelial cells in ccRCC. Finally, in
vitro experiment further revealed the suppressive function of EMCN
in regulating the proliferation of ccRCC cells. Other studies have
confirmed that overexpression of EMCN can inhibit neutrophil
adhesion in vitro and reduce the infiltration of CD45+ and NIMP-
R14+ cells in vivo (Zahr et al., 2016). Collectively, EMCN has
enormous potential as a new immunotherapy target and has great
potential as a new therapeutic target in the progression of ccRCC.

Several limitations of our study merit attention. Firstly, the
retrospective design introduces a degree of internal bias due to
reliance on previously collected data, potentially affecting the
generalizability of our findings. Secondly, the small sample size
in our single-cell datasets restricts the scope of data analysis,
necessitating caution in extending our results more broadly. Thirdly,
to enhance the validity and applicability of the MLRS and to fully
assess its clinical significance, a large-scale, multicenter prospective
cohort study is essential. Lastly, although our study underscores
the specific roles of EMCN in ccRCC, the underlying mechanisms
through which EMCN impacts the immune microenvironment,
along with other key genes in the MLRS, necessitate further detailed
investigation.

5 Conclusion

Our study shows that MLRS can effectively predict the
prognosis of ccRCC and is closely related to cancer progression
and the immune microenvironment, offering new insights into
immunotherapy response and novel strategies for ccRCC treatment.

Data availability statement

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

Author contributions

YH: Conceptualization, Data curation, Formal Analysis,
Investigation, Validation, Writing – original draft. XH: Formal
Analysis, Methodology, Resources, Software, Visualization,

Writing – original draft. LC: Conceptualization, Writing – original
draft. ML: Resources, Supervision, Writing – review and editing.
MZ: Formal Analysis, Resources,Writing – review and editing.WD:
Conceptualization, Funding acquisition, Supervision, Visualization,
Writing – review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was funded
by supported by Health Research Project of Hunan Provincial
Health Commission (W20243162) and Natural Science Foundation
of Hunan Province (Grant No. 2025JJ70116).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcell.2025.
1560095/full#supplementary-material

References

Au, L., Hatipoglu, E., Robert de Massy, M., Litchfield, K., Beattie, G., Rowan,
A., et al. (2021). Determinants of anti-PD-1 response and resistance in clear
cell renal cell carcinoma. Cancer Cell. 39 (11), 1497–1518.e11. doi:10.1016/j.ccell.
2021.10.001

Batlle, E., and Massagué, J. (2019). Transforming growth factor-β signaling in
immunity and cancer. Immunity 50 (4), 924–940. doi:10.1016/j.immuni.2019.03.024

Capitanio, U., Bensalah, K., Bex, A., Boorjian, S. A., Bray, F., Coleman, J.,
et al. (2019). Epidemiology of renal cell carcinoma. Eur. Urol. 75 (1), 74–84.
doi:10.1016/j.eururo.2018.08.036

Capitanio, U., and Montorsi, F. (2016). Renal cancer. Lancet 387 (10021), 894–906.
doi:10.1016/s0140-6736(15)00046-x

Chen, S., Yu,M., Ju, L.,Wang, G., Qian, K., Xiao, Y., et al. (2021).The immune-related
biomarker TEK inhibits the development of clear cell renal cell carcinoma (ccRCC) by
regulating AKT phosphorylation.Cancer Cell. Int. 21 (1), 119. doi:10.1186/s12935-021-
01830-1

Darvin, P., Toor, S.M., SasidharanNair, V., andElkord, E. (2018). Immune checkpoint
inhibitors: recent progress and potential biomarkers. Exp. Mol. Med. 50 (12), 1–11.
doi:10.1038/s12276-018-0191-1

Davidson, G., Helleux, A., Vano, Y. A., Lindner, V., Fattori, A., Cerciat, M.,
et al. (2023). Mesenchymal-like tumor cells and myofibroblastic cancer-associated
fibroblasts are associated with progression and immunotherapy response of clear cell
renal cell carcinoma. Cancer Res. 83 (17), 2952–2969. doi:10.1158/0008-5472.Can-
22-3034

Frontiers in Cell and Developmental Biology 17 frontiersin.org

https://doi.org/10.3389/fcell.2025.1560095
https://www.frontiersin.org/articles/10.3389/fcell.2025.1560095/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2025.1560095/full#supplementary-material
https://doi.org/10.1016/j.ccell.2021.10.001
https://doi.org/10.1016/j.ccell.2021.10.001
https://doi.org/10.1016/j.immuni.2019.03.024
https://doi.org/10.1016/j.eururo.2018.08.036
https://doi.org/10.1016/s0140-6736(15)00046-x
https://doi.org/10.1186/s12935-021-01830-1
https://doi.org/10.1186/s12935-021-01830-1
https://doi.org/10.1038/s12276-018-0191-1
https://doi.org/10.1158/0008-5472.Can-22-3034
https://doi.org/10.1158/0008-5472.Can-22-3034
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Hong et al. 10.3389/fcell.2025.1560095

Fang, K., Xu, Z., Jiang, S., Yan, C., Tang, D., and Huang, Y. (2022). Integrated
profiling uncovers prognostic, immunological, and pharmacogenomic features
of ferroptosis in triple-negative breast cancer. Front. Immunol. 13, 985861.
doi:10.3389/fimmu.2022.985861

Fendler, A., Bauer, D., Busch, J., Jung, K.,Wulf-Goldenberg, A., Kunz, S., et al. (2020).
InhibitingWNT andNOTCH in renal cancer stem cells and the implications for human
patients. Nat. Commun. 11 (1), 929. doi:10.1038/s41467-020-14700-7

Gandhi, L., Rodríguez-Abreu, D., Gadgeel, S., Esteban, E., Felip, E., De
Angelis, F., et al. (2018). Pembrolizumab plus chemotherapy in metastatic
non-small-cell lung cancer. N. Engl. J. Med. 378 (22), 2078–2092. doi:10.1056/
NEJMoa1801005

Glaser, Z. A., Love, H. D., Guo, S., Gellert, L., Chang, S. S., Herrell, S. D.,
et al. (2017). TPX2 as a prognostic indicator and potential therapeutic target in
clear cell renal cell carcinoma. Urol. Oncol. 35 (5), 286–293. doi:10.1016/j.urolonc.
2016.12.012

Guo, Y., Xia, P., Zheng, J.-J., Sun, X.-B., Pan, X.-D., Zhang, X., et al. (2015). Receptors
for advanced glycation end products (RAGE) is associated withmicrovessel density and
is a prognostic biomarker for clear cell renal cell carcinoma. Biomed. and Pharmacother.
73, 147–153. doi:10.1016/j.biopha.2015.06.006

Howard, J. D., Moriarty, W. F., Park, J., Riedy, K., Panova, I. P., Chung, C. H.,
et al. (2013). Notch signaling mediates melanoma-endothelial cell communication
and melanoma cell migration. Pigment. Cell. Melanoma Res. 26 (5), 697–707.
doi:10.1111/pcmr.12131

Huang, A. C., and Zappasodi, R. (2022). A decade of checkpoint blockade
immunotherapy in melanoma: understanding the molecular basis for immune
sensitivity and resistance. Nat. Immunol. 23 (5), 660–670. doi:10.1038/s41590-022-
01141-1

Huang, Y., Wang, J., Jia, P., Li, X., Pei, G., Wang, C., et al. (2019). Clonal architectures
predict clinical outcome in clear cell renal cell carcinoma. Nat. Commun. 10 (1), 1245.
doi:10.1038/s41467-019-09241-7

Iyer, J., and Tsai, M. Y. (2012). A novel role for TPX2 as a scaffold and co-activator
protein of the Chromosomal Passenger Complex. Cell. Signal 24 (8), 1677–1689.
doi:10.1016/j.cellsig.2012.04.014

Jiang, M., Pabla, N., Murphy, R. F., Yang, T., Yin, X. M., Degenhardt, K., et al.
(2007). Nutlin-3 protects kidney cells during cisplatin therapy by suppressing Bax/Bak
activation. J. Biol. Chem. 282 (4), 2636–2645. doi:10.1074/jbc.M606928200

Kangsamaksin, T., Murtomaki, A., Kofler, N. M., Cuervo, H., Chaudhri, R. A.,
Tattersall, I. W., et al. (2015). NOTCH decoys that selectively block DLL/NOTCH or
JAG/NOTCH disrupt angiogenesis by unique mechanisms to inhibit tumor growth.
Cancer Discov. 5 (2), 182–197. doi:10.1158/2159-8290.Cd-14-0650

Kotecha, R. R., Motzer, R. J., and Voss, M. H. (2019). Towards individualized
therapy for metastatic renal cell carcinoma. Nat. Rev. Clin. Oncol. 16 (10), 621–633.
doi:10.1038/s41571-019-0209-1

Langfelder, P., and Horvath, S. (2008). WGCNA: an R package for weighted
correlation network analysis. BMC Bioinforma. 9, 559. doi:10.1186/1471-2105-9-559

Lee, H., Park, B. C., Soon Kang, J., Cheon, Y., Lee, S., and Jae Maeng, P. (2020).
MAMdomain containing 2 is a potential breast cancer biomarker that exhibits tumour-
suppressive activity. Cell. Prolif. 53 (9), e12883. doi:10.1111/cpr.12883

Linehan, W. M., and Ricketts, C. J. (2019). The Cancer Genome Atlas of renal
cell carcinoma: findings and clinical implications. Nat. Rev. Urol. 16 (9), 539–552.
doi:10.1038/s41585-019-0211-5

Liu, Z., Liu, L., Weng, S., Guo, C., Dang, Q., Xu, H., et al. (2022). Machine learning-
based integration develops an immune-derived lncRNA signature for improving
outcomes in colorectal cancer. Nat. Commun. 13 (1), 816. doi:10.1038/s41467-022-
28421-6

Ma, X., Liu, Y., Liu, Y., Alexandrov, L. B., Edmonson, M. N., Gawad, C., et al. (2018).
Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and
solid tumours. Nature 555 (7696), 371–376. doi:10.1038/nature25795

Mandal, R., and Chan, T. A. (2016). Personalized oncology meets immunology:
the path toward precision immunotherapy. Cancer Discov. 6 (7), 703–713.
doi:10.1158/2159-8290.Cd-16-0146

Mariathasan, S., Turley, S. J., Nickles, D., Castiglioni, A., Yuen, K., Wang, Y., et al.
(2018). TGFβ attenuates tumour response to PD-L1 blockade by contributing to
exclusion of T cells. Nature 554 (7693), 544–548. doi:10.1038/nature25501

Mier, J. W. (2019). The tumor microenvironment in renal cell cancer. Curr. Opin.
Oncol. 31 (3), 194–199. doi:10.1097/cco.0000000000000512

Moch, H., Amin, M. B., Berney, D. M., Compérat, E. M., Gill, A. J., Hartmann, A.,
et al. (2022).The2022worldHealth organization classification of tumours of the urinary
system and male genital organs-Part A: renal, penile, and testicular tumours. Eur. Urol.
82 (5), 458–468. doi:10.1016/j.eururo.2022.06.016

Ochocki, J. D., Khare, S., Hess, M., Ackerman, D., Qiu, B., Daisak, J. I., et al. (2018).
Arginase 2 suppresses renal carcinoma progression via biosynthetic cofactor pyridoxal
phosphate depletion and increased polyamine toxicity. Cell. Metab. 27 (6), 1263–1280.
doi:10.1016/j.cmet.2018.04.009

Parker, A. S., Kosari, F., Lohse, C. M., Houston Thompson, R., Kwon, E. D., Murphy,
L., et al. (2006). High expression levels of survivin protein independently predict a poor
outcome for patients who undergo surgery for clear cell renal cell carcinoma. Cancer
107 (1), 37–45. doi:10.1002/cncr.21952

Powles, T., Eder, J. P., Fine, G. D., Braiteh, F. S., Loriot, Y., Cruz, C., et al. (2014).
MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder
cancer. Nature 515 (7528), 558–562. doi:10.1038/nature13904

Quinlan, M., Wei, G., Davis, N., Poyet, C., Perera, M., Bolton, D., et al. (2019). Renal
cell carcinoma follow-up - is it time to abandon ultrasound? Curr. Urol. 13 (1), 19–24.
doi:10.1159/000499299

Rose, T. L., and Kim, W. Y. (2024). Renal cell carcinoma: a review. Jama 332 (12),
1001–1010. doi:10.1001/jama.2024.12848

Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A.,
et al. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries.CACancer J. Clin. 71 (3), 209–249.
doi:10.3322/caac.21660

Swanner, J., Shim, J. S., Rivera-Caraballo, K. A., Vázquez-Arreguín, K., Hong,
B., Bueso-Perez, A. J., et al. (2023). esRAGE-expressing oHSV enhances anti-tumor
efficacy by inhibition of endothelial cell activation. Mol. Ther. Oncolytics 28, 171–181.
doi:10.1016/j.omto.2023.01.003

Taylor, Z.D., Chew, L., Tumey, T., Gard,C.C., andWoods,M. E. (2023).Differences in
incidence, staging, and survival of urologic cancers in patients under 65 living in theUS-
Mexico border region. Curr. Urol. 17 (2), 118–124. doi:10.1097/cu9.0000000000000107

Topalian, S. L., Drake, C.G., andPardoll, D.M. (2015). Immune checkpoint blockade:
a common denominator approach to cancer therapy. Cancer Cell. 27 (4), 450–461.
doi:10.1016/j.ccell.2015.03.001

Wang, H., Wang, X., Xu, L., and Zhang, J. (2022). PBX1, EMCN and ERG are
associated with the sub-clusters and the prognosis of VHL mutant clear cell renal cell
carcinoma. Sci. Rep. 12 (1), 8955. doi:10.1038/s41598-022-13148-7

Wang, H., Zhang, W., Ding, Z., Ke, H., Su, D., Wang, Q., et al. (2023).
SEMA3G functions as a novel prognostic biomarker associated with Wnt pathway
in clear cell renal cell carcinoma. Cell. Signal. 111, 110868. doi:10.1016/j.cellsig.
2023.110868

Wuttig, D., Zastrow, S., Füssel, S., Toma, M. I., Meinhardt, M., Kalman, K.,
et al. (2012). CD31, EDNRB and TSPAN7 are promising prognostic markers in
clear-cell renal cell carcinoma revealed by genome-wide expression analyses of
primary tumors and metastases. Int. J. Cancer 131 (5), E693–E704. doi:10.1002/ijc.
27419

Yee-Lin, V., Pooi-Fong, W., and Soo-Beng, A. K. (2018). Nutlin-3, A p53-mdm2
antagonist for nasopharyngeal carcinoma treatment. Mini Rev. Med. Chem. 18 (2),
173–183. doi:10.2174/1389557517666170717125821

Yin, L., Li, W., Chen, X., Wang, R., Zhang, T., Meng, J., et al. (2023). HOOK1 inhibits
the progression of renal cell carcinoma via TGF-β and TNFSF13B/VEGF-A Axis. Adv.
Sci. (Weinh) 10 (17), e2206955. doi:10.1002/advs.202206955

Zahr, A., Alcaide, P., Yang, J., Jones, A., Gregory, M., dela Paz, N. G.,
et al. (2016). Endomucin prevents leukocyte-endothelial cell adhesion and has a
critical role under resting and inflammatory conditions. Nat. Commun. 7, 10363.
doi:10.1038/ncomms10363

Frontiers in Cell and Developmental Biology 18 frontiersin.org

https://doi.org/10.3389/fcell.2025.1560095
https://doi.org/10.3389/fimmu.2022.985861
https://doi.org/10.1038/s41467-020-14700-7
https://doi.org/10.1056/NEJMoa1801005
https://doi.org/10.1056/NEJMoa1801005
https://doi.org/10.1016/j.urolonc.2016.12.012
https://doi.org/10.1016/j.urolonc.2016.12.012
https://doi.org/10.1016/j.biopha.2015.06.006
https://doi.org/10.1111/pcmr.12131
https://doi.org/10.1038/s41590-022-01141-1
https://doi.org/10.1038/s41590-022-01141-1
https://doi.org/10.1038/s41467-019-09241-7
https://doi.org/10.1016/j.cellsig.2012.04.014
https://doi.org/10.1074/jbc.M606928200
https://doi.org/10.1158/2159-8290.Cd-14-0650
https://doi.org/10.1038/s41571-019-0209-1
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1111/cpr.12883
https://doi.org/10.1038/s41585-019-0211-5
https://doi.org/10.1038/s41467-022-28421-6
https://doi.org/10.1038/s41467-022-28421-6
https://doi.org/10.1038/nature25795
https://doi.org/10.1158/2159-8290.Cd-16-0146
https://doi.org/10.1038/nature25501
https://doi.org/10.1097/cco.0000000000000512
https://doi.org/10.1016/j.eururo.2022.06.016
https://doi.org/10.1016/j.cmet.2018.04.009
https://doi.org/10.1002/cncr.21952
https://doi.org/10.1038/nature13904
https://doi.org/10.1159/000499299
https://doi.org/10.1001/jama.2024.12848
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/j.omto.2023.01.003
https://doi.org/10.1097/cu9.0000000000000107
https://doi.org/10.1016/j.ccell.2015.03.001
https://doi.org/10.1038/s41598-022-13148-7
https://doi.org/10.1016/j.cellsig.2023.110868
https://doi.org/10.1016/j.cellsig.2023.110868
https://doi.org/10.1002/ijc.27419
https://doi.org/10.1002/ijc.27419
https://doi.org/10.2174/1389557517666170717125821
https://doi.org/10.1002/advs.202206955
https://doi.org/10.1038/ncomms10363
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Data collection
	2.2 Weighted gene co-expression network analysis (WGCNA)
	2.3 Construction of MLRS by integrative machine learning approaches
	2.4 Prognostic significance of the MLRS and development of the nomogram
	2.5 Functional enrichment analysis
	2.6 Comprehensive analysis of tumor immune cell infiltration
	2.7 Immunotherapy response and drug sensitivity estimation
	2.8 scRNA-seq data collection and analysis
	2.9 Cell lines
	2.10 Immunohistochemistry and real-time quantitative PCR (RT‒qPCR)
	2.11 Cell Counting Kit-8 (CCK-8) assay
	2.12 Statistical analysis

	3 Results
	3.1 Identification of the hub gene modules and key PRGs associated with ccRCC
	3.2 Construction of a prognostic MLRS using integrative machine learning
	3.3 Clinical relevance of the MLRS
	3.4 Underlying molecular mechanisms of the MLRS
	3.5 Relation of the tumor microenvironment to the MLRS
	3.6 MLRS correlate with immunotherapy response and drug sensitivity
	3.7 scRNA-seq transcriptome data and communication network of ccRCC
	3.8 EMCN correlates with the differentiation fate of endothelial cells in ccRCC

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

