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Oxidative cell death is caused by an overproduction of reactive oxygen species
and an imbalance in the antioxidant defense system, leading to neuronal
dysfunction and death. The harm of oxidative stress in the central nervous
system (CNS) is extensive and complex, involving a variety of molecular
and cellular level changes that may lead to a variety of acute and chronic
brain pathologies, such as stroke, traumatic brain injury, or neurodegenerative
diseases and psychological disorders. This review provides an in-depth look
at the mechanisms of oxidative cell death in the central nervous system
diseases. In addition, the review evaluated existing treatment strategies,
including antioxidant therapy, gene therapy, and pharmacological interventions
targeting specific signaling pathways, all aimed at alleviating oxidative stress
and protecting nerve cells. We also discuss current advances and challenges
in clinical trials, and suggest new directions for future research, including
biomarker discovery, identification of potential drug targets, and exploration of
new therapeutic techniques, with a view to providing more effective strategies
for the treatment of CNS diseases.
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1 Introduction

The CNS, comprising the brain and spinal cord, serves as the nucleus of the nervous
system and is crucial for processing information and controlling emotions, thoughts,
actions, and feelings. It sustains life and regulates key functions, including heartbeat
and breathing, enabling us to perceive the world, learn, remember, make decisions, and
communicate effectively with others (Bassi et al., 2024). In addition, the central nervous
systemmaintains the body’s internal balance through the endocrine and autonomic nervous
systems, helping us adapt to and respond to our environment (Mota and Madden, 2024).
Given the critical role of the CNS in maintaining our health and daily lives, it is essential to
understand and mitigate the factors that can compromise its integrity.

Oxidative stress, a state where the oxidative and antioxidant systems are out of
balance, leading to potential cellular damage. This imbalance is usually caused by
an excessive accumulation of ROS, which are oxygen-containing molecules produced
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during cellular metabolism that are highly reactive (Lee et al., 2021).
Under normal physiological conditions, ROS plays an important
role in cell signaling, cell growth, differentiation and immune
response. However, when the production of ROS exceeds the
capacity of the cell’s antioxidant defense system, oxidative stress
occurs, which may lead to DNA damage, protein oxidation, lipid
peroxidation, and ultimately cell death (Wang et al., 2024e). In
the context of the CNS, oxidative stress can induce oxidative
cell death in neurons through several mechanisms. For example,
it can cause accumulation of misfolded proteins, mitochondrial
dysfunction, leading to the release of pro-apoptotic factors and
subsequent cell death (Nguyen et al., 2024). Oxidative cell death is
particularly significant due to the highmetabolic activity and limited
regenerative capacity of neurons. This type of cell death can lead
to a variety of pathological changes, including neurodegenerative
diseases such asAlzheimer’s disease (AD), Parkinson’s diseases (PD),
cerebrovascular diseases such as stroke, psychiatric disorders such as
depression and schizophrenia, neurodevelopmental disorders such
as autism spectrum disorders, nerve damage and neuralgia, and
brain tumors (Liu et al., 2023; Liu et al., 2024 B.; Fujikawa et al.,
2024; Hussain et al., 2024; Miao et al., 2024; Wang et al., 2024d;
Zhang et al., 2024b; de Souza et al., 2025). Therefore, reducing
oxidative stress through antioxidant interventions and lifestyle
improvements may help prevent or slow the onset and progression
of these diseases. This review aims to explore the mechanism
of oxidative cell death in CNS and its association with various
neurological diseases, evaluate the therapeutic potential of oxidative
cell death, provide new directions for the treatment of CNS diseases,
and comprehensively analyze existing therapeutic strategies and
clinical trial progress, so as to provide scientific basis and inspiration
for future research and potential new therapy development.

2 Mechanism of oxidative cell death

2.1 Production of ROS

ROS, which include superoxide anion (O2−), hydrogen
peroxide (H2O2), hydroxyl radical (OH−), ozone (O3), and
singlet oxygen (1O2), are highly reactive oxygen-containing
substances with unpaired electrons produced during cellular
metabolism. The primary sources of ROS within the cell are
mitochondria, particularly complex I and Complex III of the
mitochondrial respiratory chain, where electrons are sometimes
directly transferred to oxygen molecules to form superoxide
anion (O2−), which can then be converted to hydrogen peroxide
(H2O2) (Lennicke and Cochemé, 2021). Additionally, the NADPH
oxidase family (NOX family) on the plasma membrane of cells is a
significant generator of ROS, transferring electrons from NADPH
to oxygenmolecules to produce superoxide anions that formH2O2,
with the NOX family playing a crucial role in immune response
and signal transduction, with different expressions in various
tissues (Magnani and Mattevi, 2019). The endoplasmic reticulum
(ER) also contributes to ROS production, especially through
protein disulfide isomerase during protein oxidation, primarily
generating hydrogen peroxide (Teng and Zhao, 2024). Peroxisomes
produce ROS, including hydrogen peroxide, through the oxidation
of fatty acids and other substances (Bahraini et al., 2024).

Cytoplasmic enzymes, such as xanthine oxidase, cyclooxygenase,
cytochrome P450 enzyme, and lipoxygenase, are further sources
of ROS(Aftab et al., 2024; García-García et al., 2024; Liu R. et al.,
2024; Zhu and Liang, 2024). The production of ROS is regulated by
various factors, including environmental influences like radiation,
hyperbaric oxygen, cigarette smoke, and air pollution, metal
ions such as lead, chromium, and vanadium, drugs including
anticancer medications and antibiotics, metabolic conditions
like hyperglycemia, inflammatory factors (He Y. et al., 2024;
Kurniawan et al., 2024; Peña et al., 2024; Yao et al., 2024). At the
physiological level, ROS can be used as signaling molecules to
participate in cell signaling, regulating cell growth, differentiation
and survival (Yang Y. et al., 2024). However, excessive ROS can cause
oxidative damage to cell components, which is associated with the
occurrence and development of various diseases, such as cancer,
diabetes, cardiovascular disease and CNS diseases (Cheung et al.,
2024; Dai et al., 2024; Li Q. et al., 2024; Liu et al., 2024b).

2.2 Effects of ROS on cells

An imbalance in cellular redox balance due to excessive ROS
production affects a range of redox-sensitive signaling molecules,
thereby influencing cell survival and death. The influence of ROS
on cells is multifaceted, involving key physiological and pathological
processes such as cell signaling, metabolic regulation and cell
death (Huai et al., 2024). As a by-product of cell metabolism,
ROS is produced during normal aerobic metabolism and plays an
important signaling role within cells, capable of reversibly oxidizing
key reduction-oxidation (REDOX) sensitive cysteine residues on
target proteins, and these oxidative post-translational modifications
(PTM) can control the biological activity of many enzymes and
transcription factors (TFs) (Hua et al., 2024; Yin et al., 2024). ROS
also regulates protein synthesis through oxidative modification of
cysteine, affecting physiological processes such as cell growth and
proliferation. ROS can disrupt cellular homeostasis by impairing
protein homeostasis. Excessive ROS can cause protein misfolding,
leading to the formation of protein aggregates. This accumulation
of misfolded proteins can overwhelm the cellular quality control
systems, ultimately resulting in cell death (Pathak et al., 2024).
ROS also affects DNA damage repair, activates the DNA damage
response pathway, and then activates the cell death signaling
pathway (Zhang H. et al., 2024). In addition, ROS also can cause
mitochondrial damage, increase the permeability of mitochondrial
intima, release cytochrome C and other proteins, activate caspase,
and finally induce cell apoptosis (Huang Q. et al., 2024). Excessive
ROS can cause cell necrosis and induce autophagy in some
specific conditions, which has dual effects on cells themselves
(Bai et al., 2024). Finally, the ROS production and clearance
system actively maintains the intracellular REDOX state, mediates
REDOX signals, and regulates cell functions (Yang H. et al., 2024).
Multiple ROS production and clearance systems, such as superoxide
dismutase (SOD), glutathione peroxidase (GPX), glutathione S-
transferase (GST), can clear ROS and maintain intracellular
REDOX balance (Babu et al., 2024). To sum up, the effects of ROS
on cells are complex and multidimensional, and they play a key role
in cell physiology and pathology, including cell signaling, metabolic
regulation, cell death and other mechanisms.
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3 Characteristics of oxidative stress in
CNS

CNS exhibits unique characteristics in response to oxidative
stress, including its high metabolic activity, which results in the
high production of ROS (Cui Y. et al., 2024). The abundant
polyunsaturated fatty acids in nerve cell membranes make them
especially vulnerable to ROS attacks, leading to lipid peroxidation.
Compared to other cells in the body, nerve cells have a relatively
weak antioxidant defense system and limited regenerative capacity,
making them more sensitive to oxidative damage (Policastro et al.,
2024). Higher levels of iron in the brain increase the risk of
oxidative stress, and mitochondrial dysfunction further intensifies
ROS production (Jia et al., 2023). DNA damage can lead to genetic
mutations associated with the development of neurodegenerative
diseases (Pranty et al., 2024). Abnormal autophagy may lead to an
imbalance in the intracellular environment, and neurotransmitter
imbalances may affect the normal function of the nervous
system (Moon et al., 2024). The blood-brain barrier (BBB)
is vital for maintaining CNS homeostasis by regulating the
passage of substances between the bloodstream and the brain.
However, in neuroinflammatory conditions, BBB integrity can
be compromised, increasing permeability and allowing harmful
substances such as pro-inflammatory cytokines and free radicals
to enter the CNS, thereby exacerbating oxidative stress and
neuronal damage. Oxidative stress can impair BBB function by
damaging endothelial cells, disrupting tight junction proteins,
and upregulating matrix metalloproteinases, further increasing
permeability (Zandona et al., 2025). This creates a vicious cycle
that can lead to neuroinflammation, neuronal dysfunction, and
neurodegeneration. All of these factors combine to make the CNS
particularly vulnerable to oxidative stress, which can lead to cell
dysfunction and even death, and is closely associated with the
development ofmultiple CNS diseases. Future research should focus
on elucidating the molecular mechanisms of this interaction and
exploring novel therapeutic agents targeting those pathways.

4 Oxidative stress and neurological
diseases

The cellular response to oxidative damage can take on
various forms of cell death. This includes apoptosis, necrosis, and
newly recognized forms like parthanatos, ferroptosis, pyroptosis,
paraptosis and oxeiptosis, each with their own distinct molecular
mechanisms and implications. These processes are extensively
discussed in later sections of this review (Figure 1). The effects
of oxidative damage on CNS cells vary across neurons, astrocytes,
microglia, and oligodendrocytes. Neurons are highly susceptible
to oxidative stress due to their high metabolic rate and limited
regenerative capacity, leading to apoptosis via mitochondrial
dysfunction and cytochrome C release (de Souza et al., 2025).
Astrocytes are more resilient, producing antioxidants and
neuroprotective factors, but can die under severe stress, contributing
to neuroinflammation (Zufferey et al., 2025). Microglia, the CNS
immune cells, activate inflammatory pathways in response to
oxidative stress, which can exacerbate damage if chronically
activated (Fujikawa et al., 2024). Oligodendrocytes, responsible

for myelin production, are vulnerable to oxidative stress due to
their high lipid content, and ROS-induced damage can cause
demyelination and cell death, contributing to diseases like
multiple sclerosis (van Veggel et al., 2025). Oxidative stress and
neuroinflammation significantly contribute to the pathophysiology
of psychiatric disorders. Elevated inflammatory cytokines like IL-
6 and TNF-α, along with increased ROS production, are often
observed in conditions such as depression and schizophrenia.These
factors can activate microglia, leading to chronic inflammation,
and cause oxidative damage to lipids, proteins, and DNA,
impairing mitochondrial function and neurotransmitter regulation
(Fujikawa et al., 2024; Liu B. et al., 2024). Recognizing the nuances
of how oxidative stress induces cell death is crucial for developing
targeted therapeutic strategies to combat conditions associated with
excessive ROS production or impaired antioxidant defenses.

4.1 Apoptosis

Oxidative stress-induced apoptosis is amultifaceted process that
engages various signaling pathways and molecular mechanisms.
The accumulation of ROS can initiate apoptosis through several
key mechanisms: Firstly, ROS can damage the mitochondrial
membrane, leading to a decrease in mitochondrial membrane
potential, which in turn promotes the release of proteins like
cytochrome C (Liu et al., 2024c). These proteins then interact
with apoptosis-related factors such as apoptotic protease activating
factor-1 to form the apoptosome, activating the caspase cascade
and ultimately resulting in apoptosis (Tang et al., 2024). Secondly,
ROS can cause direct damage to DNA molecules; if the DNA
repair mechanisms fail to address these lesions promptly, cells may
trigger apoptosis through proteins like p53 (Huang H. et al., 2024).
Additionally, ROS influence the expression of proteins associated
with apoptosis, such as downregulating B-cell lymphoma 2 (Bcl-2)
and upregulating Bax, which enhances mitochondrial permeability
and initiates apoptosis (Hao et al., 2024). The production of ROS
can also activate various signal transduction pathways, including
MAPK, JNK, and ERK, which then activate transcription factors
like nuclear factor κB (NF-κB), impacting cell survival and death
(Lin et al., 2024). Oxidative stress induced by ROS may also lead to
ER stress, activating apoptotic pathways related to ER stress, such as
the Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK)-
Eukaryotic Initiation Factor 2α (eIF2α)-Activating Transcription
Factor 4 (ATF4) pathway, which increases the expression of
genes involved in apoptosis (Liu and Zhang, 2020). Moreover, the
accumulation of ROS can activate autophagy, the cellular process
of self-digestion to degrade and recycle damaged components, and
excessive autophagy can also result in cell death.

Apoptosis plays a key role in CNS diseases, which not only
regulates the life and death of neural precursor cells, differentiated
neurons and glial cells through the balance of Bcl-2 family
proteins during neural development, but also shapes the neural
structure. Moreover, abnormal neuronal apoptosis is a prominent
feature in neurodegenerative diseases such as AD, PD, amyotrophic
lateral sclerosis, and Huntington’s disease, and is associated with
multiple cellular processes such as oxidative stress, excitotoxicity,
mitochondrial dysfunction, protein misfolding, and inflammation.
This article delves into themechanisms of apoptosis in AD, revealing
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FIGURE 1
Overview of the mechanisms of cell death induced by ROS. (A) Apoptosis: Initiated by cell shrinkage and membrane blebbing, leading to nuclear
fragmentation and apoptotic body formation. (B) Necrosis: Marked by swelling of the cell and organelles, culminating in rupture of the cell membrane
and release of cell contents. (C) Parthanatos: Involves chromatin condensation and DNA damage, resulting in cell atrophy, thickened nucleus, and
membrane lysis. (D) Ferroptosis: Characterized by mitochondrial ridge reduction or disappearance, mitochondrial outer membrane rupture, and lipid
peroxidation accumulation, leading to membranolysis. (E) Pyroptosis: Features pyrogenic corpuscles formation, cell swelling, and membranes burst,
followed by nuclear pyconosis and DNA breakage. (F) Paraptosis: Shown by mitochondrial and endoplasmic reticulum swelling, resulting in vacuole
formation. (G) Oxeiptosis: Represents ROS-induced caspase-independent apoptosis-like cell death, associated with mitochondrial depolarization.

how Aβ and tau protein deposits trigger apoptotic pathways,
including the mitochondrial pathway and the death receptor
pathway, leading to neuronal death. Bcl-2 family proteins play a key
role in the regulation of mitochondrial membrane permeability and
the release of apoptosis factors, while caspase protease, especially
Caspase-3, acts as an apoptosis effector molecule to activate
downstream apoptosis-related proteins and destroy cytoskeleton
and housekeeping gene functions. The paper also highlights the
role of oxidative stress and mitochondrial dysfunction in AD, as
well as the dual role of p53 protein in DNA repair and apoptosis.
In addition, the researchers used network pharmacology and
molecular docking techniques to predict themain active ingredients
and potential core targets of Chinese medicine compound Jiedu
Yizhi formula (JDYZF), and found that JDYZF can inhibit apoptosis
by regulating the expression of apoptosis-related genes such as
Bcl-2, Bax, and caspase-3. Improving the cognitive function of
AD mice provides a new perspective and potential therapeutic
strategy for the treatment of AD (Cui T. et al., 2024). In HT22
cell models simulating AD, apoptosis is the main form of neuronal
loss, and apoptosis induced by Aβ25-35 fragments is manifested
by changes in cell morphology, decreased activity, and increased
apoptotic markers. Ganoderic acid A (GAA) protects HT22
cells from AD-related damage by dose-dependent inhibition of

MAPK/ERK signaling pathways associated with apoptosis, reducing
oxidative stress and mitochondrial dysfunction. In addition, GAA
treatment significantly reduced the expression of apoptosis marker
caspase-3 and the apoptosis rate, while reducing the expression of
AD pathological markers Aβ and p-Tau, revealing the potential
neuroprotective effect of GAA in inhibiting the apoptosis of HT22
cells and alleviating the pathological damage of AD (Shao et al.,
2024). In addition, apoptosis also plays a role in the development
of brain tumors such as glioblastoma, and its defects may lead to
the development of brain cancer, and the different morphological
and biochemical characteristics of apoptosis pathways are closely
related to the regulation of cell death (Lim et al., 2024). In
Traumatic Brain Injury (TBI), apoptotic neuronal death serves as
a physiological and protective response to injury, enabling the
removal of unwanted neurons while minimizing the activation
of the immune system (Akamatsu and Hanafy, 2020). However,
under pathological conditions, the overactivation of apoptosis-
related pathways can lead to detrimental effects. This is exemplified
by studies involving transgenic mice that overexpress anti-apoptotic
proteins, which demonstrated significant reductions in cortical and
hippocampal damage following TBI, highlighting the importance
of a balanced apoptotic response in the context of CNS trauma
(Haider et al., 2024). As apoptosis is a finely regulated process,
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FIGURE 2
Regulation of apoptosis in CNS diseases. ROS-induced mitochondrial damage leading to cytochrome C release, activating caspase-9 and initiating
apoptosis. The extrinsic pathway, activated by Fas receptor and FADD, involves caspase-8 and -10 to promote cell death. The diagram highlights how
ROS affect signaling pathways like MAPK and NF-kB, influencing apoptosis in CNS diseases.

oxidative stress ultimately drives apoptosis by impacting molecular
and signaling pathways atmultiple levels.Therefore,maintaining the
balance of intracellular ROS is crucial for preventing apoptosis and
preserving cell health (Figure 2).

4.2 Necrosis

Oxidative stress-induced cell necrosis, divergent from apoptosis,
is a programmed cell death modality involving intricate signaling
pathways andmolecularmechanisms,with the accumulation of ROS
at its core. ROS, stemming from sources such as mitochondrial
electron transport chain leakage, NADPH oxidase activation, and
inflammatory reactions, initiate a cascade of events leading to cell
necrosis. Excessive ROS initially compromise the integrity of the
mitochondrial membrane, leading to a decrease in mitochondrial
membrane potential and consequently impairing mitochondrial
function and energy metabolism. Subsequently, ROS trigger
an inflammatory response, marked by an increased release of
inflammatory mediators such as tumor necrosis factor α (TNF-
α), which can initiate necrosis signaling pathways. Furthermore,
elevated ROS levels promote the formation of the necrosome, a
complex comprising receptor-interacting protein kinase 1 (RIP1)
and RIP3 kinases that phosphorylate mixed lineage kinase domain-
like (MLKL) proteins, leading to cell membrane destruction
and the release of cellular contents, ultimately resulting in cell
necrosis (Chen et al., 2022; Li G. et al., 2024). In the final
stages, cell membrane integrity is compromised, causing cellular

contents to leak out and trigger inflammation and tissue damage.
Under oxidative stress, the p53 protein forms a complex with
cyclophilin D (CypD) in the mitochondrial matrix, opening the
mitochondrial permeability transition pore and leading to the
release ofmitochondrial contents, which induces cell necrosis (Fayaz
and Rajanikant, 2015). Concurrently, mild oxidative stress can
activate the p38/MK2 complex, leading to the phosphorylation of
mitochondrial fission factor 1 (MFF1) and the subsequent release
of heat shock 60 kDa protein 1 (HSP60), which binds to and
activates the inhibitor of kappa B kinase (IKK) complex in the
cytoplasm, promoting the expression of Nuclear Factor kappa B
(NF-κB)-dependent survival genes in the nucleus and establishing
a survival circuit (Wu et al., 2020; Min et al., 2022). Unlike the
regulated process of apoptosis, cell necrosis is often an uncontrolled
form of cell death associated with various pathological states,
such as cerebral ischemia, trauma, infection, and autoimmune
diseases. In CNS diseases, necrotic apoptosis is involved in the
pathological process of a variety of neurodegenerative diseases,
including PD, amyotrophic lateral bundle sclerosis (ALS), multiple
sclerosis (MS), and AD (Dominguez et al., 2021; Shi et al., 2023;
Huang X.-L. et al., 2024; Zhang T. et al., 2024). Further, necrotic
apoptosis may lead to progressive loss and death of nerve cells in
TBI(Bao et al., 2019). In addition, necrotic apoptosis inhibitors,
such as necrostatin 1 (Nec-1), have received attention for their
potential in reducing the production of ROS, suggesting a link
between necrotic apoptosis and oxidative stress (Huang et al., 2016).
In terms of neuroprotection, a number of small molecules have
been found to have neuroprotective effects, which may work by
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modulating necrotic apoptosis and antioxidant activity (Zhao et al.,
2022; Khajepour et al., 2024; Khan et al., 2024). Therefore, the role
of necrosis in CNS diseases is closed related to oxidative stress
and neuroprotectivemechanisms, providing potential targets for the
treatment of CNS diseases.

4.3 Parthanatos

Oxidative stress-induced parthanatos is a distinct modality
of programmed cell death, hallmarked by the overactivation
of polyadenosine diphosphoribose polymerase 1 (PARP-1),
accumulation of polyadenosine diphosphoribose (PAR) polymers,
mitochondrial depolarization, and the nuclear translocation
and chromatin condensation of apoptosis-inducing factor (AIF)
(Qu et al., 2024). Under oxidative stress, PARP-1 activation
leads to the consumption of nicotinamide adenine dinucleotide
(NAD+) and adenosine triphosphate (ATP), resulting in cellular
energy metabolism dysfunction. This activation induces the
release of AIF from mitochondria and its subsequent transfer
to the nucleus, causing DNA fragmentation and cell death
(Yako et al., 2024). Parthanatos has been implicated in a variety
of diseases, including CNS disorders, heart disease, diabetes,
and inflammatory diseases, where oxidative stress and PARP-1
activation may contribute to cell death, exacerbating pathological
processes (Wang et al., 2023a; Yako et al., 2024; Yang L. et al., 2024;
Zhang W. et al., 2024). In CNS diseases, parthanatos is involved in
a variety of neuropathological processes, such as oxidative stress,
neuroinflammation, mitochondrial dysfunction, excitotoxicity,
autophagy damage, and ER stress. These processes are particularly
critical in neurodegenerative diseases such as AD, PD, amyotrophic
lateral sclerosis and Huntington’s disease (Thapa et al., 2021;
Park et al., 2022; 2022). In addition, parthanatos plays a role in
the occurrence, progression and treatment of several neurological
disorders such as stroke, subarachnoid hemorrhage, multiple
sclerosis (MS), epilepsy and neuropathic pain (Wang et al., 2023b;
Han et al., 2024; Li C. et al., 2024). An in-depth understanding of
the role of parthanatos in the pathological process of these diseases
may provide new targets and therapeutic strategies for the treatment
of CNS diseases.

4.4 Ferroptosis

Oxidative stress-induced ferroptosis is a distinct form of cell
death that is contingent upon iron metabolism and characterized
by the accumulation of lipid peroxidation to cytotoxic levels. This
cell death pathway is initiated by the interplay of ROS, susceptible
lipids, and the ensuing lipid peroxidation. Mitochondria, a primary
source of ROS, particularly superoxide anions generated during
oxidative phosphorylation, plays a pivotal role in the initiation
of ferroptosis (Hu et al., 2024). The induction of ferroptosis is
predicated on ROS stimulation from diverse sources, including
mitochondrial respiration, NADPH oxidase activity, enzymatic
reactions, and Fenton chemistry (Endale et al., 2023). Key enzymes
in the lipid peroxidation process, such as arachidonic acid-derived
lipid oxygenase (ALOX), cyclooxygenase (PTGS), and cytochrome
P450, catalyze the peroxidation of lipids, leading to the formation of

hydroperoxides. These hydroperoxides can initiate a chain reaction
and undergo cleavage reactions, often facilitated by transitionmetals
like iron, resulting in the generation of highly reactive lipid radicals
(Trostchansky et al., 2021). System X Cystine Transporter (xCT)
transports cystine (Cys) into the cell and glutamate (Glu) out of
the cell. Inside the cell, cystine combines with glycine (Gly) to
form glutathione (GSH), a process catalyzed by Glutamate Cyste
Ligase (GCL) and Glutathione Synthetase (GSS). The antioxidant
defense system is crucial in ferroptosis, with Glutathione peroxidase
4 (GPX4) and xCT being the central enzyme that mitigates oxidative
stress by reducing lipid hydroperoxides to their corresponding
alcohols. The depletion of intracellular GSH, induced by the
inhibition of cystine transport proteins, leads to GPX4 inactivation,
allowing lipid peroxidation to accumulate to a degree that triggers
cell death (Zhang X. et al., 2024; Zhong X. et al., 2024). This mode
of cell death, distinct in its molecular underpinnings, is induced by
oxidative stress and has implications in a spectrum of diseases.

In neurodegenerative diseases, ferroptosis may play a role by
affecting oxidative stress in neurons andmitochondrial function. For
example, studies have shown that the accumulation of iron in brain
samples frompeoplewith PD is associatedwith neuronal ferroptosis,
suggesting that ferroptosis may be an important mechanism
leading to neuronal loss (Lei et al., 2024; Wang et al., 2024b). In
addition, regulatory pathways of ferroptosis, such as the activity
of GPX4, are critical for maintaining the REDOX balance of
cells, and its dysfunction may lead to ferroptosis in nerve cells
(Won et al., 2024). In brain tumors, ferroptosis has also shown
potential therapeutic significance. The occurrence, progression and
metastasis of brain tumors such as glioblastoma may be related
to ferroptosis, and manipulation of iron death may provide a
new strategy for the treatment of brain tumors (Chen C. et al.,
2024). Nanoparticles serve as multifunctional platforms that can
cross the blood-brain barrier and deliver therapeutic drugs to the
brain to meet the need for precise visualization of ferroptosis and
brain tumor treatment (Minchenko et al., 2024). Overall, the role
of ferroptosis in CNS disease involves multiple layers, including
the pathological mechanisms of neurodegenerative diseases, the
therapeutic potential of brain tumors, and the repair process after
CNS damage. The regulation and intervention of ferroptosis may
provide new strategies for the treatment of CNS diseases, but the
specificmechanisms and applications still need to be further studied
and explored (Figure 3).

4.5 Pyroptosis

Pyroptosis, a distinct form of programmed cell death, is
characterized by cellular swelling leading to membrane rupture,
subsequent release of cellular contents, and the initiation of a potent
inflammatory response (He X. et al., 2024). This inflammatory cell
death pathway is distinct from apoptosis and is mediated by the
activation of inflammasomes and the formation of pores in the
cell membrane by the gasdermin family of proteins. The canonical
pyroptotic signaling pathway is initiated by the recognition of
pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs) by pattern recognition
receptors (PRRs), which assemble the inflammasome complex
(Zhao et al., 2024). This assembly results in the activation of
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FIGURE 3
Regulation of ferroptosis in CNS diseases. Ferroptosis, mediated by
xCT and GSH pathway, is relevant to CNS diseases, and is linked to
neurodegeneration and glioblastoma.

procaspase-1 and the subsequent formation of the inflammasome,
leading to the cleavage of gasdermin D (GSDMD) and the
maturation of interleukin-1β (IL-1β) and IL-18 (Chen D. et al.,
2024). The N-terminal domain of GSDMD forms non-selective
pores in the cell membrane, causing osmotic lysis and cell
death, with IL-1β and IL-18 being released through these pores.
Pyroptotic cells exhibit morphological features reminiscent of
both necrosis and apoptosis, with the process characterized by
the formation of 1–2 nm diameter pores in the cell membrane,
potassium ion efflux, and cellular expansion, which trigger an
immune response and amplify inflammation.During pyroptosis, the
nucleus undergoes rounding, chromatin condensation, and DNA
fragmentation, distinct from the morphological changes observed
in apoptosis (Wang et al., 2024c). Inflammatory caspases, central
to pyroptosis, play a significant role in mediating both apoptosis
and inflammation (Bhuiyan et al., 2024). Pyroptosis is implicated in
various physiological processes, including cell differentiation, tissue
homeostasis, mitochondrial function, immune tolerance, and the
formation of neutrophil extracellular traps (NETs).

Recent studies have revealed the complex mechanisms of
pyroptosis in the development of CNS disease, including its role
in neuroinflammation. Pyroptosis may affect specific brain regions
or cell types in different ways, thereby contributing to disease
progression in neurodegenerative disease (Bhuiyan et al., 2024;
Ghaith et al., 2024). After stroke, the inflammatory response
of microglia and swelling of astrocytes are closely related to

pyroptosis, and these processes lead to neuronal damage and
neuroinflammation (Xu et al., 2024). Therefore, understanding the
role of pyroptosis in CNS disease is critical to developing effective
treatment strategies.

4.6 Paraptosis

Paraptosis is a unique mode of programmed cell death
characterized by cytoplasmic vacuolation and damage to the
endoplasmic reticulum and mitochondria (Robinson et al., 2024a).
Unlike apoptosis and necrosis, paraptosis does not involve the
activation of caspase, does not form apoptotic bodies, and does
not cause inflammation. During paraptosis, extensive vacuolation
occurs in the cytoplasm, but the changes in the nucleus are not
obvious, such as nuclear enrichment or nuclear fragmentation,
which are typical apoptotic features. In addition, the molecular
mechanisms of paraptosis are involved in endoplasmic reticulum
stress, unfolded protein response (UPR), ubiquitin-proteasome
system (UPS), and changes in autophagy flow (Solovieva et al.,
2022). Ion imbalances, ROS, mercapto-disulfide bond equilibria,
and REDOX states also play key roles in the initiation and
execution of paraptosis (Robinson et al., 2024a). Disruption of
any of these components can set off a cascade of reactions that
amplify the signal and eventually lead to an irreversible state
characterized by significant expansion of the endoplasmic reticulum
and mitochondria, manifested as cytoplasmic vacuolation.

In CNS diseases, paraptosis may be associated with a
variety of pathological processes, including oxidative stress,
neuroinflammation, mitochondrial dysfunction, excitotoxicity,
autophagy damage, and ER stress. Paraptosis may play
different roles in different CNS diseases. For example, in
stroke and neurodegenerative diseases, amyotrophic lateral
sclerosis, and Huntington’s disease, paraapoptosis may be
involved in the loss and death of neurons (Fricker et al., 2018;
Homma et al., 2024; Robinson et al., 2024b). Therefore, the role of
paraapoptosis in CNS diseases is multifaceted, involving a variety of
molecular mechanisms and pathophysiological processes. A deeper
understanding of the molecular mechanisms of paraapoptosis is
essential for developing new therapeutic strategies and identifying
future research directions.

4.7 Oxeiptosis

Oxeiptosis is a newly discovered mode of programmed cell
death associated with ROS that is characterized as independent of
caspase activation (Ingersoll et al., 2024). This cell death pattern
is induced by ROS and is associated with specific molecular
mechanisms, specifically the KEAP1/PGAM5/AIFM1 signaling
pathway (Guo et al., 2023). Under low levels of oxidative stress,
the C-terminal cysteine residue of KEAP1 oxidized, causing it
to dissociate from nuclear factor erythroid 2-related factor 2
(NRF2), which then transferred to the nucleus and activated
the expression of multiple antioxidant genes. However, at high
levels of oxidative stress, KEAP1’s interaction with PGAM5 is lost,
causing PGAM5 to transfer into the mitochondria, where PGAM5
dephosphorylates AIFM1, ultimately leading to the occurrence of
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oxeiptosis. Oxeiptosis plays an important role in the progression
of a variety of diseases, including viral infections, inflammatory
responses, and tumor suppression (Holze et al., 2018; Oikawa et al.,
2022; Wen et al., 2024). For example, the study found that
PGAM5−/− mice showed increased inflammatory parameters in
an ozone exposure model, suggesting that oxeiptosis plays a
negative regulatory role in the inflammatory response when
regulating harmful ROS levels. In addition, influenza A virus-
mediated inflammation and morbidity increased in PGAM5−/−

mice, further supporting the central role of oxeiptosis in preventing
overactivation of the immune response during viral infection. The
molecular mechanisms and regulatory networks of oxeiptosis have
not been fully elucidated, but studies have shown its importance
in a variety of biological functions, such as the loss of PGAM5
and AIFM1, which are associated with neurological dysfunction,
and KEAP1 mutations, which are associated with lung and
prostate cancer (Holze et al., 2018).

In CNS diseases, the role of oxeiptosis is gradually being
revealed, especially in Alzheimer’s disease, where the expression
of proteins associated with this pathway is upregulated, hinting at
its role in oxidative stress and mitochondrial damage. Studies have
shown that KEAP1/PGAM5/AIFM1 mediated oxeiptosis may lead
to neuron loss in neurodegenerative diseases by causing oxidative
stress and mitochondrial dysfunction (Zhong F. et al., 2024). In
addition, oxeiptosis has been implicated in neurodevelopment, as
the loss of PGAM5 and AIFM1 leads to neurological dysfunction
in mice. Therefore, the role of oxeiptosis in CNS diseases is
not limited to cell death, but may also involve the regulation
of inflammatory responses and neuroprotective mechanisms,
providing new potential targets for treatment.

Collectively, oxidative cell death significantly impacts CNS
health. It is imperative to explore therapeutic strategies that can
effectively mitigate these detrimental effects. One such approach is
antioxidant therapy, which aims to restore the balance between ROS
production and antioxidant defenses, thereby protecting neurons
and other CNS cells from oxidative damage.

5 Antioxidant therapy strategies

5.1 N-acetylcysteine

The application of N-acetylcysteine (NAC) in the treatment
of CNS diseases is multifaceted, with mechanisms of action that
include antioxidant, anti-inflammatory, nerve and mitochondrial
protection, as well as arterial plaque stabilization and thrombolytic
function enhancement. As an antioxidant and free radical scavenger,
NAC boosts intracellular GSH at the cellular level, which is crucial
for combating neurodegenerative diseases and neuronal death
caused by oxidative stress (Vargas-Barona et al., 2024; Zhang et al.,
2025). The protective pharmacokinetics of NAC in humans is also
discussed. In the context of ischemic stroke, NAC has shown
protective effects against ischemic brain injury throughmechanisms
including anti-oxidation, inhibition of inflammation, protection of
cerebral nerve and mitochondrial function, and stabilization of
arterial plaque and thrombolytic function (Komakula et al., 2024).
Furthermore, NACmitigated damage to hippocampal neurons after
transient global ischemia by reducing matrix metalloproteinase

(MMP)-9 activity (Kamel et al., 2024). NAC is capable of restoring
cellular glutathione, a key antioxidant that declines with age,
and studies have shown that NAC can reduce the risk of
brain aging (Kumar et al., 2023). In summary, NAC has broad
application prospects in the treatment of CNS diseases, and its
antioxidant and neuroprotective effects provide a new strategy for
the treatment of various diseases.

5.2 Iron chelators

The therapeutic potential of iron chelators in the treatment
of CNS diseases is multifaceted, targeting various mechanisms to
protect neurons and reduce damage. By regulating iron metabolism
in the brain and decreasing the accumulation of iron ions,
these agents mitigate oxidative stress and neuroinflammation,
which are key contributors to neuronal damage (El Safadi et al.,
2024). In the context of Parkinson’s disease, iron chelators have
been shown to enhance motor performance and reduce nerve
damage. Deferriamine, for instance, as an iron chelating agent, can
effectively cross the blood-brain barrier and target dopaminergic
neurons through its nanomedical form, specifically clear ROS and
iron accumulation in PD focal areas, regulate iron homeostasis
and reduce lipid peroxidation, and then inhibit ferroptosis to
alleviate the loss of dopaminergic neurons and motor dysfunction
(Huang Y. et al., 2024; Lei et al., 2024). Inmodels ofAD, amyotrophic
lateral sclerosis, and aging, novel multi-target iron chelators have
demonstrated neuroprotective effects (Zou et al., 2024).These effects
are attributed not only to their iron-chelating properties but also
to their anti-apoptotic capabilities. These capabilities contribute to
the amelioration of neurodegeneration, enhancement of positive
behavioral outcomes, and upregulation of neuroprotective signaling
pathways (Zheng et al., 2005). Furthermore, iron chelators such as
minocycline have shown the ability to inhibit the activation and
proliferation of microglia and matrix metalloproteinases. Through
iron chelation, they contribute to neuroprotection by reducing the
areas of brain injury following cerebral hemorrhage and improving
nerve function deficits (Wang L. et al., 2024). As a novel iron
chelating agent and oxidative phosphorylation inhibitor, VLX600
can induce non-caspase-dependent cell death in glioblastoma
(GBM) cells (Reisbeck et al., 2023). Collectively, these findings
underscore the significant potential of iron chelators in the treatment
of CNS diseases, highlighting their dual role in attenuating iron-
mediated toxicity and providing neuroprotection via multiple
signaling pathways.

5.3 Activator of antioxidant enzymes

The utilization of antioxidant activators in the treatment of CNS
diseases is multifaceted, targeting the modulation of key signaling
pathways to enhance cellular antioxidant defenses. Initially, the
NRF2 signaling pathway is crucial for the cellular response to
oxidative stress. A decline in NRF2 expression with age leads to
an imbalance in the oxidative stress response, suggesting that the
NRF2 pathway is a promising target for neurodegenerative disease
therapy (Qin et al., 2024). NRF2 activators induce the expression
of antioxidant enzymes, including SOD, catalase (CAT), and GPX,
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FIGURE 4
Mechanisms of Antioxidant Therapy in CNS Diseases. Antioxidant therapies, including the activation of antioxidant enzymes, administration of NAC,
vitamins, Coenzyme Q10, MitoQ, iron chelators, and polyphenols, work to reduce ROS levels.

which are pivotal in mitigating oxidative damage (Luo et al.,
2024). The activation of the Keap1-Nrf2-ARE signaling pathway
in neurodegenerative disease models has been shown to provide
cellular antioxidant protection, reduce neuronal damage, and delay
disease progression (Chakkittukandiyil et al., 2024). Furthermore,
the PI3K/Akt signaling pathway plays a significant role in the
protective effects against ischemic stroke. By inhibiting oxidative
stress, inflammatory responses, and matrix metalloproteinases
expression, this pathway can ameliorate BBB damage in ischemic
stroke, offering a novel therapeutic strategy. Additionally, the
contribution of amyloid-beta (Aβ), Tau, and α-synuclein to
BBB damage in neurodegenerative diseases is substantial. These
pathological proteins can directly affect BBB integrity by influencing
key BBB components such as pericytes and endothelial cells,
or indirectly by promoting brain macrophage activation and
dysfunction (Li et al., 2025;Wuet al., 2025). In summary, antioxidant
activators exert their therapeutic effects by activating the Nrf2
signaling pathway to upregulate antioxidant enzyme expression,
inhibiting oxidative stress and inflammation through the PI3K/Akt
signaling pathway, and reducing BBB damage. These mechanisms
highlight the significant potential and application prospects of
antioxidant activators in the treatment of CNS diseases, providing
a foundation for developing novel therapeutic strategies to combat
neurodegenerative conditions.

5.4 Other strategies

Vitamins C and E, along with Coenzyme Q10, directly
scavenge reactive oxygen species, reducing oxidative damage

to cellular components (Fuchs et al., 2023). Mitochondrial-
targeted antioxidants like MitoQ effectively reduce oxidative stress
by directly targeting mitochondria, which are key players in
neurodegenerative diseases (Ibrahim et al., 2023). Furthermore,
polyphenols including curcumin and small molecules have shown
neuroprotective effects by modulating various cellular signaling
pathways involved in oxidative stress and inflammation, and
their ability to protect neuronal function makes them promising
candidates for further study in neurodegenerative diseases
(Alecu et al., 2025; Awad et al., 2025) (Figure 4).

5.5 Challenges and prospects of
antioxidant therapy

Antioxidant therapy in the context of CNS diseases is confronted
with numerous challenges, such as the high incidence of failed
clinical trials, the intricate role of oxidative stress in disease
pathology, the impediment posed by the blood-brain barrier
to drug permeation, and the specific needs for activators of
antioxidant enzymes. NAC has shown neuroprotective effects in
animal models and some clinical trials for ischemic stroke and
neurodegenerative diseases, reducing oxidative stress and neuronal
damage. However, while antioxidants are generally considered
safe, they can have side effects. For instance, long-term use
of NAC may cause some gastrointestinal reactions, and high
doses of vitamin E have been associated with an increased risk
of hemorrhagic stroke (Le et al., 2020; Schwalfenberg, 2021).
Minocycline, an iron chelator, reduces microglial activation but
can cause dizziness (McKean et al., 2024; Zhou et al., 2024).
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Long-term outcomes are still under investigation. Despite these
obstacles, the future of antioxidant therapy remains auspicious. An
enhanced comprehension of oxidative stress mechanisms, coupled
with the emergence of innovative therapeutic strategies—including
the development of antioxidant enzyme activators, the utilization
of nanotechnology to facilitate drug delivery, and the modulation
of Nrf2 and PI3K/Akt signaling pathways—offers novel strategies
and methodologies for addressing CNS diseases. Experimental
models, both in vitro and in vivo, are essential for studying CNS
diseases and evaluating treatments. In vitromodels offer controlled,
quick, and cost-effective studies, facilitating detailed analysis but
lack the complexity of in vivo environments. In vivo models
better mimic human diseases, including immune responses, yet
they can show species-specific responses and ethical concerns.
Enhancing model accuracy with humanized mice or advanced
imaging can improve clinical applicability. Additionally, emerging
therapies and technologies, such as real-time in vivo imaging of
ROS in the CNS and the application of CRISPR/Cas9 technology,
offer promising avenues formore precise, targeted, and personalized
treatments. Nevertheless, these novel approaches necessitate further
development and careful consideration of their potential risks and
benefits. In summary, while antioxidant therapy holds promise for
the treatment of CNS diseases, additional research is essential to
address current gaps and optimize clinical outcomes (Table 1).

6 Conclusion

Oxidative cell death plays a central role in CNS diseases, and
addressing itsmultifaceted nature is crucial for diseasemanagement.
Despite advancements in our understanding of oxidative cell death
in the CNS, significant gaps remain. For instance, the precise
mechanisms of oxidative cell death initiation and propagation in
CNS diseases are not fully elucidated, and the roles of ROS in
interacting with cellular signaling pathways are not completely
understood. Additionally, the lack of effective biomarkers for
early detection and monitoring of oxidative stress and cell death
in CNS diseases hinders diagnosis and treatment monitoring.
Personalized medicine, by considering genetic variations affecting
antioxidant enzyme function or stress response pathways, could
enhance oxidative stress therapies andpotentially improve treatment
outcomes.More clinical trials are necessary to verify the efficacy and
safety of antioxidants in human patients, particularly in the early
stages of disease. Future research should focus on elucidating the
molecular mechanisms underlying oxidative cell death in the CNS
and developing novel therapeutic agents targeting both oxidative
stress and inflammation. Advanced techniques such as single-cell
sequencing, real-time in vivo imaging of ROS, and CRISPR/Cas9-
based genetic editing could provide valuable insights into these
mechanisms and lead to more effective treatments.
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