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Liver cancer, the advanced stage of various chronic liver diseases, has
garnered attention due to its high incidence and insidious progression. Lipid
droplets (LDs), unique lipid storage organelles in hepatocytes, play a pivotal
role in lipid metabolism. Lipophagy, a selective autophagy process initially
identified in hepatocytes, regulates lipid homeostasis by selectively degrading
LDs. This process offers a novel therapeutic avenue for addressing lipid
metabolism disorders in liver cancer. This review highlights the regulatory
role of lipophagy in liver cancer progression and its therapeutic potential.
It elaborates on the molecular mechanisms underlying lipophagy-mediated
LDs degradation and discusses the dual regulatory role of lipophagy in liver
cancer. While lipophagy can suppress liver cancer development, under specific
conditions, it may promote cancer cell proliferation, inhibit apoptosis, facilitate
invasion and metastasis, and contribute to treatment resistance. Consequently,
strategies targeting lipophagy for liver cancer prevention and therapy hold
significant promise. These include interventions through traditional Chinese
and Western medicine, as well as lifestyle modifications. This review evaluates
current research, hotspots, and controversies in the field, aiming to provide
innovative therapeutic strategies for liver cancer associated with abnormal lipid
metabolism.

KEYWORDS

lipophagy, liver cancer, cancer progression, inhibition and promotion of cancer,
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1 Introduction

Autophagy, an adaptive mechanism, is activated in response to extreme intracellular
and extracellular stress, maintaining cellular functions and defending against pathogen
invasion (White et al., 2021). Under starvation, it non-selectively degrades cytoplasm, while
in nutrient-rich conditions, it selectively removes substances via lysosomes (Zhang and
Ghaemmaghami, 2016). LDs, eukaryotic organelles that store lipids, play a crucial role
in cellular energy management (Haidar et al., 2021). During starvation, cells hydrolyze
triglycerides (TGs) in LDs to release free fatty acids (FFAs) for beta-oxidation. The
transport of intracellular lipids to lysosomes via autophagosomes for decomposition is
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termed lipophagy (Shi et al., 2019). First defined in 2009, lipophagy
mediates lysosomal lipid transport via autophagosomes (Singh et al.,
2009) and has been shown to degrade LDs through the autophagy-
lysosome pathway in various organ systems (Zhou et al., 2019).

The liver, as the central organ for fat synthesis and lipid
oxidation, is integral to lipid metabolism (Bechmann et al.,
2012). In the liver, lipophagy plays critical physiological and
pathological roles, with impaired hepatic lipid metabolism leading
to abnormal fat accumulation. Nonalcoholic Fatty Liver Disease
(NAFLD), characterized by a spectrum ranging from simple
steatosis to cirrhosis and liver cancer, exemplifies hepatic metabolic
dysfunction (Friedman et al., 2018). Such dysfunction is closely
associated with liver diseases, including hepatitis, cirrhosis, and
liver cancer.

Liver cancer, a prevalent malignant tumor, involves complex
pathogenesis regulated by numerous signaling pathways and
molecular mechanisms (Wang and Deng, 2023). Metabolic
syndrome is an independent risk factor for hepatocellular carcinoma
(HCC) (Fu et al., 2023). In the tumor microenvironment, where
oxygen and nutrients are scarce, tumor cells adapt by altering lipid
metabolism. Enhanced lipid acquisition, production, and storage are
hallmarks of invasive tumors, with beta-oxidation providing critical
energy for tumor survival (Behne and Copur, 2012; Kounakis et al.,
2019). Accordingly, drugs targeting lipophagy in liver cancer cells
have emerged as promising tools for reducing liver cancer risk and
improving therapeutic outcomes.

2 Molecular mechanisms of lipophagy

Lipophagy, crucial for intracellular lipid metabolism, involves
multiple molecular components and offers targets for liver cancer
treatment. It maintains lipid balance under normal conditions but
degrades LDs in stressful environments. Abnormal lipophagy can
promote liver cancer. Thus, investigating its mechanisms can reveal
roles and new therapeutic targets.

2.1 Lipophagy targeting lipid droplet
degradation

Currently, the known forms of autophagy include
macroautophagy, microautophagy, and chaperone-mediated
autophagy (CMA). The autophagy of LDs may occur through any
of these pathways (Li et al., 2024), confirming its role as selective
autophagy. Similar to a wide range of selective autophagy processes,
lipophagy has three main routes: macrolipophagy, microlipophagy,
and chaperone-mediated autophagy. The specific form that occurs
depends on how the LDs are transported to the lysosome.

In macrolipophagy, AMP-activated protein kinase (AMPK)
induces macrolipophagy by activating UNC-51-like kinase 1
(ULK1). At the transcriptional level, the transcription factor
(TF) EB promotes lysosomal biogenesis and macroautophagy
(Han et al., 2023). CMA serves as a critical upstream regulator
for both macrolipophagy and cytoplasmic lipolysis. Sirtuin 3
(SIRT3) activates AMPK, thereby enhancing macroautophagy and
CMA, which aids in reducing the accumulation of LDs within
hepatocytes. Heat Shock Cognate Protein 70 (Hsc70) binds to

Perilipin (PLIN) 2, while AMPK phosphorylates PLIN2, triggering
its post-translational modification. At the transcriptional level,
the nuclearrespiratoty factor 2 (NRF2) promotes the expression
of the Lysosomal-Associated Membrane Protein (LAMP) 2A
gene, thereby facilitating CMA activity (Kaushik and Cuervo,
2015; Kaushik and Cuervo, 2016). Microlipophagy directly
attracts LDs to lysosomes for phagocytosis and degradation
(Yu and Li, 2017).

2.2 Regulatory roles of lipophagy-related
factors

Lipophagy is influenced by genes, transcription factors,
enzymes, etc.

2.2.1 Lysosome-associated membrane proteins
Autolysosome formation during lipophagy depends on various

factors. Studies have shown that LAMP2 deletion in mouse
fibroblasts enlarges autolysosomes, enhances lipophagy, and
increases LD degradation via the ceramide analog N-(1-hydroxy-
3-morpholinopropyl-2-yl) decanamide (Kato et al., 2020). The
interaction between phosphatidylethanolamine (PE), autophagy-
related gene (Atg) 14, ULK1, and microtubule-associated protein 1
light chain 3 (LC3) induces lipophagy, releasing free fatty acids.

Lee et al. reported that serum absence and oleic acid (OA)
inhibit LC3-LAMP1 colocalization, preventing autolysosome
formation. Upon OA removal, lipid accumulation decreases, and
autophagic flux recovers due to starvation-induced lipophagy
(Lee et al., 2019). Cui et al. suggested that fatty acids from
lipophagy do not directly cross lysosomal membranes but require
lysosome-plasma membrane fusion, followed by exocytosis. This
process is regulated by the lysosomal calcium channel protein
mucolipin 1 (Cui et al., 2021).

2.2.2 ATGL and its family lipases
Adipose Triacylglyceride Lipase (ATGL) and Patatin Like

Phospholipase Domain Containing (PNPLA) 8 act as selective
autophagy receptors in lipophagy (Sathyanarayan et al., 2017;
Kim et al., 2011). ATGL and homologous lipases, including
PNPLA1, PNPLA3, PNPLA5 and PNPLA8, initiate lipophagy
by facilitating autophagosome formation from triglycerides and
cholesteryl esters (CE). ATGL, essential for lipolysis, plays a key
role in lipophagy by interacting with the LC3 interaction region
domain, enabling cytoplasmic ATGL to move toward LDs and
induce lipophagy (Sathyanarayan et al., 2017). ATGL also promotes
lipophagy by regulating intracellular LD degradation in the liver
through SIRT1 activity.

Lipases associated with LDs, such as PNPLA5, contribute
to lipophagy and autophagic proteolysis (Dupont et al., 2014).
These lipases recruit triglycerides and sterol esters to initiate lipid
phagocytosis and autophagosome formation (Morel and Codogno,
2018). PNPLA8 mediates Sterol Regulatory Element Binding
Protein 3 (SREBP 3) driven lipophagy via interaction with LC3 in
hepatocytes of mice on high-fat diets (HFD). PNPLA3 is crucial
for autophagosome formation during lipid phagocytosis in starved
human hepatocytes (Negoita et al., 2019).
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2.2.3 Rab GTPases
Rab GTPase-activating proteins (Rab GAPs) regulate vesicle

trafficking and serve as markers for organelles and vesicles within
the endocytosis and secretion systems. Rab family members, such
as Rab7, Rab10, and Rab15, are critical regulators of lipophagy
and lipophagy in the liver. Recent studies identified Rab7 and
Rab10 as molecular switches promoting lipid phagocytosis in
hepatocytes (Li et al., 2020). Loss of Rab7 or Rab10 impairs lipid
phagocytosis, leading to LD accumulation.

Rab7 is activated under nutrient deprivation and facilitates
the recruitment of multivesicular bodies and lysosomes to LD
surfaces, reducing hepatocyte lipophagy capacity (Xing et al.,
2021). Rab10 forms a complex with EH domain-binding protein
1 and EH domain-containing protein 2, promoting LC3-positive
autophagic membrane migration to LD surfaces (Li et al.,
2016). Rab10 loss results in LD accumulation. Lipophagy
regulation depends on nutritional status and involves receptors
and proteins, including the Farnesoid X receptor, Peroxisome
proliferator-activated receptor α (PPARα), cAMP-response
element binding protein, mammalian target of rapamycin
(mTOR), and AMPK.

2.2.4 Transcription factor
Transcriptional and post-transcriptional regulation of lipophagy

involves factors such as TFEB, TFE3, Forkhead box class O
proteins (FOXOs), and glycine N-methyltransferase. Under nutrient
deprivation, TFEB regulates lysosomal lipase expression in mouse
hepatocytes. Xiong et al. demonstrated that TFEB overexpression
in hepatocellular carcinoma cells enhances LC3-LD association
and reduces intracellular lipid content (Xiong et al., 2016). TFEB
binds to key promoters during lysosomal biogenesis, modulating
transcription (Martina et al., 2014). Conversely, TFEB knockout
leads to LD accumulation in hepatocytes (Settembre et al., 2013).
TFE3 induces lipophagy in hepatocytes, while Forkhead box
protein O (FOXO) 1 associates with lysosomal lipases and triggers
lipophagy in adipocytes during fasting (Lettieri Barbato et al.,
2013). In a mouse model of Dalton’s lymphoma, Patra et al.
showed that gamma radiation inhibits lipophagy by altering
electrochemical properties via NRF2, enhancing the anticancer
effect of gallic acid through superoxide dismutase-mediated
apoptosis (White, 2015).

Therefore, lipophagy regulation is a fine network
of complex molecules and processes, and interactions
between core molecules and signaling pathways are
key, which respond to environmental changes, maintain
cellular homeostasis, and safeguard normal life activities
(as shown in Supplementary Tables S1–S3).

3 Regulatory role of lipophagy in the
progression of liver cancer

Lipophagy exhibits stage-dependent duality in HCC,
inhibiting tumor growth in early stages through lysosomal
degradation of cytotoxic lipids while fueling metastatic
progression in advanced disease via FFA β-oxidation within
hypoxic niches (Gómez de Cedrón and Ramírez de Molina, 2016).

3.1 Inhibition of liver cancer development
by lipophagy

3.1.1 Lipid breakdown is a key step in the
anticancer effect of lipophagy

Excessive LD accumulation is linked to liver diseases and
disorders, leading to chronic injury, fibrosis, cirrhosis, and cancer
(Berardi et al., 2022; Liu K. et al., 2022; Chen et al., 2023;
Zhou et al., 2018). Reducing LDs is critical. Lipophagy shows
promise in early liver cancer by degrading LDs, reducing stress
and inflammation, and preventing DNA damage. Chi et al. found
suppressing Atg7 increased LD accumulation, stress, and DNA
damage, activating p53 and promoting liver cancer in a model
(Chi et al., 2016). Similarly, Xue et al. observed that inhibiting
Atg5 or Atg7 in a diethylnitrosamine (DEN)/HFD-induced
liver cancer model elevated hepatocyte LDs and inflammatory
cytokines (IL-6, TNF-α, IL-1β), activating nuclear factor kappa-
B (NF-κB) and STAT3 pathways, which facilitated liver cancer
progression (Xue et al., 2016).

Beyond tumor suppression, lipid degradation provides energy
substrates and intermediates for rapidly proliferating cancer cells,
supporting their survival (Snaebjornsson et al., 2020).These findings
suggest that lipophagy is an effective tumor-suppressivemechanism.

3.1.2 Lysosomal acid lipase as another participant
in lipophagy’s anti-cancer role

Lysosomal Acid Lipase (LAL) is a key lipase promoting lipid
phagocytosis with tumor-suppressive activity. Zhao et al. found
insufficient LAL expression accelerates tumor growth andmetastasis
by activatingmyeloid-derived suppressor cells (MDSCs) (Zhao et al.,
2015). LAL functions in acidic pH, hydrolyzing CE and TG in LDs
to release free fatty acids for energy (Martinez-Lopez et al., 2016; Li
and Zhang, 2019).

Du et al. found hepatocyte-specific LAL expression in a
mouse model suppressed melanoma metastasis (Du et al., 2015).
Furthermore, research by Ouimet et al. revealed LAL’s dual role
in CE metabolism, participating in CE hydrolysis both in the
endoplasmic reticulum and within LDs (Ouimet et al., 2011).
LAL activity is closely associated with tumor progression and
metastasis, underscoring its potential as a tumor suppressor
(Qu et al., 2009; Wang et al., 2023). LAL deficiency causes
hematopoietic abnormalities, increasing MDSCs that suppress
immune surveillance and stimulate tumor development (Zhao et al.,
2016). Studies have also indicated that LAL expression
improves lipid metabolism and reduces lung and liver cancer
metastasis (Wang et al., 2023).

Although these findings remain preliminary, they offer valuable
insights into the underappreciated role of lipophagy in cancer
metabolism. This evidence highlights the need for further research
to better understand the role of lipophagy in cancer, whichmay vary
depending on tumor type and stage.

3.1.3 Regulation of other signaling pathways by
lipophagy to prevent the progression of liver
cancer

The progression of liver cancer is driven by dysregulated
signaling pathways and genetic alterations triggered by
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inflammatory responses, which lead to tumor formation. Inhibiting
inflammation may prevent or slow HCC progression.

In liver cancer cells, siRNA-mediated Rab7 downregulation
leads to abnormal LD accumulation. Conversely, in nutrient-
deprived hepatocytes, Rab7 is recruited to LD surfaces, activating
targeted degradation via lipophagy (Bucci et al., 2000; Jäger et al.,
2004; Schroeder et al., 2015). Furthermore, LAL, which participates
in lipophagy, exhibits anticancer properties. Defects in LAL
stimulate tumor growth through mTOR pathway regulation and
activation ofMDSCs, enabling immune evasion of metastatic tumor
cells (Zhao et al., 2016; Ding et al., 2014). Abnormal activation of
mTOR in liver cancer can lead to chemotherapy resistance, and
there exist two complexes, mTORC1 and mTORC2. Lipophagy
can inhibit mTOR activity through negative feedback, enhancing
chemotherapy sensitivity. For instance, inducing lipophagy with OA
in HepG2 cells reduces mTORC1/2 activity and increases cisplatin
sensitivity (Feng et al., 2019). Similarly, OA-induced lipophagy in
Huh7 cells decreases mTORC1/2 activity and enhances docetaxel
sensitivity (Song et al., 2021). These findings suggest that lipophagy
improves chemotherapy efficacy in liver cancer by suppressing
mTOR signaling.

In liver cancer, the inhibition of AMPK signaling reduces
autophagy, promoting tumorigenesis (Sharma et al., 2023;
Wang L. et al., 2019; Sun et al., 2019). Lipophagy activates
AMPK through positive feedback, increasing autophagy levels
and suppressing tumor progression. For example, Song et al. found
that metformin induced autophagy through a PRKA-independent
pathway in a diabetes-mimicking ob/ob mouse model, increasing
autophagosome and autolysosome formation in hepatocytes
(Song et al., 2015; Lai et al., 2020).Metforminmay therefore enhance
autophagy and suppress liver cancer development in cellular and
animal models.

Mutations or activation of the p53 pathway in liver cancer
can reduce cell apoptosis and senescence, thereby promoting
tumor growth (Zhu et al., 2023; Liang et al., 2022). Lipophagy
activates p53 signaling via positive feedback, increasing apoptosis
and inhibiting tumor progression. Studies by El-Fakharany et al.
andWang et al. demonstrated that OA-induced lipophagy increased
p53 expression and activity, suppressing liver cancer development
(El-Fakharany et al., 2023; Wang et al., 2021).

NF-κB promotes inflammation and proliferation, and
its activation in liver cancer fosters a tumor-promoting
microenvironment (Chen L. et al., 2022; Vucur et al., 2023).
Lipophagy can inhibit NF-κB signaling via negative feedback,
reducing inflammatory factor expression and tumor development.
For example, Wu et al. found that OA-induced lipophagy in a liver
cancer mouse model reduced NF-κB nuclear translocation and
the expression of IL-6, TNF-α, and MCP-1, suppressing tumor
occurrence (Wu CC. et al., 2022).

STAT3 enhances the proliferation and invasion of liver cancer
cells (Makino et al., 2023). Lipophagy can suppress STAT3 signaling
through negative feedback, reducing the expression of growth and
invasion-related factors. Ishteyaque et al. demonstrated that OA-
induced lipophagy in a DEN-induced hepatocellular carcinoma
model decreased STAT3 phosphorylation and the expression of
vascular endothelial growth factor and Matrix metalloproteinase 9,
thereby inhibiting liver cancer progression (Ishteyaque et al., 2024).

3.2 Lipophagy promotes the occurrence
and development of liver cancer

3.2.1 Lipophagy participates in the energy
metabolism of tumor cells by releasing free fatty
acids

Although lipophagy inhibits liver cancer initiation, evidence
suggests it also promotes tumor progression (Tian et al., 2019;
Patra et al., 2020). In the tumormicroenvironment, characterized by
inadequate blood vessel formation, nutrient scarcity, and hypoxia,
tumor cells face severe metabolic stress. To adapt, they activate
metabolic pathways to obtain energy and biosynthetic materials,
supporting rapid proliferation and invasion. Lipophagy plays a
central role by releasing FFAs to meet these demands (Kim et al.,
2020). FFAs regulate signaling pathways that affect tumor cell
proliferation, apoptosis, autophagy, and invasion while maintaining
lipid homeostasis and energy balance (Chung et al., 2023).

Lei et al. found that inhibiting autophagy by targeting
autophagy-related genes Atg5 or Atg7 with siRNA in HepG2 cells
reduced FFAs, impaired mitochondrial function, increased ROS
levels, induced cell cycle arrest, and promoted apoptosis (Lei et al.,
2021). Similarly, Chen et al. reported that suppressing autophagy
in Huh7 cells via siRNA targeting Beclin1 or Atg7 reduced FFAs,
impaired mitochondrial function, increased lactate levels, and
diminished cell migration and invasion (Chen LJ. et al., 2022).
These findings indicate that lipophagy can promote liver cancer
progression by supporting tumor metabolism.

3.2.2 Lipophagy promotes liver cancer cell
proliferation and inhibits liver cancer cell
apoptosis

In liver cancer, the activation of the Hypoxia-Inducible Factor
1α (HIF-1α) pathway often promotes tumor progression. Lipophagy
positively feeds back to activate HIF-1α and upregulates adaptive
genes. Zhu et al. showed that overexpression of Beclin1/Atg7
induces lipophagy, stabilizes HIF-1α, upregulates target genes, and
enhances tumor proliferation and invasion (Zhu et al., 2022).

Denk et al. reported that the autophagy-related protein p62,
a selective autophagy substrate, mediates interactions in various
signaling processes. While p62-related pathways can prevent
genomic damage and carcinogenesis, they also support tumor cell
survival and progression (Denk et al., 2019).

Cluster of differentiation 36 (CD36)-mediated uptake
of oxidized low-density lipoprotein in hepatocytes activates
CCAAT/enhancer-binding protein β (C/EBPβ), increasing
endoplasmic reticulum proteins and promoting lipophagy,
which accelerates liver cancer progression (Tian et al., 2019).
Mukhopadhyay et al. found that Atg14 overexpression in HeLa cells
inhibited viability, increasedmitochondrial apoptosis, and triggered
endoplasmic reticulum stress. However, inhibiting Atg14-induced
lipophagy enhanced apoptosis, suggesting a role for lipophagy in
tumor cell survival (Mukhopadhyay et al., 2017).

These findings highlight increased lipophagy levels in liver
cancer cells, allowing them to exploit lipid resources for rapid
growth. By activating lipophagy, tumor cells sustain their metabolic
needs and enhance survival mechanisms.
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3.2.3 Lipophagy involves in the invasion and
metastasis of liver cancer cells and affects the
drug resistance of liver cancer treatment

Clement et al. showed that in obesity, cancer cells LD lipophagy
release fatty acids for oxidation and increase EVs for oxidation
and invasion (Clement et al., 2020). Similarly, Wang et al. showed
that cancer-associated fibroblasts (CAFs) were metabolically
active, with increased lipid content and lipophagic activity.
CD36 or regulated CAFs, via reprogramming of tumor cell
lipid metabolism, shadowed tumor proliferation and migration
(Wang et al., 2024). Research indicates that lipophagy plays a
critical role in drug resistance in liver cancer treatment. Sun et al.
found that inhibiting miR-425 promotes lipophagy via autophagic
processes, contributing to sorafenib resistance. By combining
lipophagy activation with standard chemotherapy, LD levels can
be reduced, enhancing chemotherapy efficacy. Thus, targeting
lipophagy-mediated LD degradation represents a novel strategy
for overcoming drug resistance in liver cancer (Sun et al., 2021).
Lipophagy has a dual role in drug resistance. It can either promote
or counteract the development of drug resistance, and this dual role
depends on the specific substance type and cellular environment
(as shown in Supplementary Table S2).

4 Potential liver cancer prevention
and treatment strategies by targeting
lipophagy

HCC development is a multistage carcinogenic process
involving dysregulated signaling pathways, inflammatory response
activation, and genetic alterations (Scaggiante et al., 2014). Early and
precise interventions targeting lipophagy are crucial to improving
treatment success rates.

4.1 Lipid droplet degradation induced by
lipophagy is an important aspect of liver
cancer treatment

In liver cancer, LD accumulation is closely associated with
tumorigenesis and aggressiveness (Berardi et al., 2022; Scorletti
and Carr, 2022). Zhang et al. highlighted the cancer-protective
effects of lipophagy, including lipid breakdown to provide
energy for cellular functions, prevention of ATP depletion that
causes mitochondrial dysfunction, and metabolism of potentially
toxic lipid molecules (Zhang et al., 2018). Schroeder et al.
found that nutrient deprivation directly activates Rab7 on LD
surfaces, promoting the recruitment of degradative structures and
triggering targeted LD degradation via lipophagy (Schroeder et al.,
2015). Wu et al. showed HCC cells inhibit FAO in response to
sorafenib, leading to LD accumulation. Undegraded fatty acids
convert to LDs via AKR1C3, reducing lipotoxicity and ROS,
promoting HCC cell survival (Wu C. et al., 2022). Thus, inhibiting
lipophagy may emerge as a potential therapeutic strategy for HCC.
Understanding the role of lipophagy in LD degradation is crucial
for elucidating liver cancer’s metabolic mechanisms and developing
novel treatments.

4.2 Regulatory role and therapeutic
prospects of key factors in lipophagy in
liver cancer

Numerous studies have shown that lipophagy is upregulated
in liver cancer, with factors like C/EBPα (Lu et al., 2015), PTPRO
(Zhang et al., 2015), and p53 (Tian et al., 2015) playing pivotal
roles. In mouse models, LAL deficiency significantly inhibits
the progression of liver B16 malignant tumors (Du et al., 2015),
highlighting lipophagy’s importance and LAL as a potential
therapeutic target. Strategies targeting these factors to regulate
lipophagy hold promise for HCC therapy. Future research
may uncover additional mechanisms through which lipophagy
influences cell physiology, making it a viable therapeutic target.

Mukhopadhyay et al. reported Atg14-induced lipophagy causes
FFA accumulation and ER stress-mediated apoptosis. Inhibiting
lipophagy in HeLa-Atg14 cells improves viability, suggesting new
liver cancer treatment strategies (Mukhopadhyay et al., 2017).
Schroeder et al. found Rab7, enriched in LDs under nutrient
deficiency, promotes degradative structure recruitment, exhibits
antiproliferative properties, and reduces tumor aggressiveness,
positioning it as a potential therapeutic target for hepatic lipophagy
(Schroeder et al., 2015). MicroRNAs (miRNAs) also play critical
roles in the diagnosis and treatment of diseases. MiR-30b-5p
regulates lysosomal biogenesis and autophagy by inhibiting TFEB-
dependent transactivation (Guo et al., 2021), while miR-155
modulates alcohol-induced autophagy via the mTOR pathway and
lysosomal proteins LAMP1 and LAMP2 (Babuta et al., 2019).
Inhibition of miR-214-3p upregulates Ulk1 expression, enhancing
autophagy and reducing fatty liver disease severity (Lee et al.,
2021). Given that fatty liver disease can progress to hepatocellular
carcinoma, miRNAs may represent therapeutic targets for liver
cancer treatment by modulating autophagy or lipophagy.

Investigating the molecular mechanisms of lipophagy’s core
regulatory factors provides a new perspective for liver cancer
treatment. Deeper understanding of these factors may lead to more
effective therapies and improved patient outcomes. Future research
should focus on precise regulation of lipophagy and translating these
findings into innovative clinical applications.

4.3 Research progress on the prevention
and treatment of liver cancer through
targeting lipophagy with traditional
Chinese and Western medicines

Hepatocytes can regulate the initiation and progression of
lipophagy under various stresses by relying on specific transcription
factors and signaling pathways. In the field of exploring the
prevention and treatment of liver cancer, traditional Chinese
medicines (TCM) and western medicine have been found to
precisely regulate liver lipid metabolism by affecting lipophagy.
Therefore, a deep understanding of these mechanisms opens up new
directions for the development of effective prevention and treatment
strategies for liver cancer.

TCM components have been shown to regulate lipophagy,
influencing liver cancer progression. For instance, quercetin, an
antioxidant, promotes lipophagy by reducing PLIN2 levels, inducing

Frontiers in Cell and Developmental Biology 05 frontiersin.org

https://doi.org/10.3389/fcell.2025.1562542
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Han et al. 10.3389/fcell.2025.1562542

FIGURE 1
Schematic diagram of the effects of drug metabolism and signal regulation on hepatocyte lipophagy. PPARα, Peroxisome proliferator-activated
receptor α; Sirt1, sirtuin-1; FFA, free fatty acid; ROS, Reactive oxygen species; IR, Insulin resistance; LKB, Liver kinase B.

AMPK activity, and enhancing LC3-II-PLIN2 colocalization in
the liver (Zeng et al., 2019). Zhou et al. found that phillyrin
restores lysosomal biogenesis and lipid phagocytosis through TFEB,
reduces inflammation, and accelerates lipid clearance via Ca2+

induction (Zhou et al., 2022). Nobiletin alleviates hepatic steatosis
by mediating lysosomal biogenesis and lipophagy (Yang X. et al.,
2022). Similarly, leonurine and Cyclocarya paliurus extracts
promote hepatic lipid clearance through the lipophagy pathway
(Zhang et al., 2021). Formononetin enhances hepatic steatosis in
mice by activating AMPK, promoting TFEB nuclear translocation,
increasing lysosomal biogenesis, unblocking autophagic flux, and
inducing lipophagy (Wang Y. et al., 2019). These TCM components
reduce lipid accumulation and tumor growth in liver cancer cells by
activating specific signaling pathways.

Western medicines such as dimeric procyanidins and
cannabidiol, autophagy activators, promote LD degradation, and
improve fat storage, making them potential therapeutic targets for
liver diseases (Han et al., 2023). Park et al. reported that metformin
promotes lipophagy by acting on the AMPK and AMPK-SIRT1
axis, alleviatiing excessive fat accumulation, reducing necroptosis,
and mitigating hepatic steatosis (Park et al., 2023). Jung et al.
found that a p62 agonist promotes lipophagy through the N-
degron pathway, with therapeutic benefits observed in mouse

models of fatty liver and obesity (Jung et al., 2023). Zhou et al.
showed that CAY10566, a specific SCD1 inhibitor, enhances AMPK
activity, promoting lipophagy and significantly reducing hepatic
steatosis and LD accumulation (Zhou et al., 2020). Ma et al.
revealed that resveratrol reduces oxidative stress by downregulating
HIF-1α protein expression and mitochondrial ROS production
in the liver (Ma et al., 2017). Marina et al. found that mTORC1
can stimulate this pathway to augment lipophagy, shielding the
liver from lipid toxicity and presenting treatment strategies for
liver cancer (Garcia-Macia et al., 2021).

Early-stage HCC may respond to pro-lipophagy agents
like resveratrol, which promote lipid clearance and increase
chemosensitivity. In contrast, advanced or metastatic HCC relies
on lipophagy for energy production, making inhibitors such as
chloroquine potential candidates for inducing tumor nutrient
deprivation. Given the heterogeneity of HCC, tailored therapeutic
strategies are essential. Clinical implementation should integrate
precision medicine approaches with multimodal therapies to
maximize treatment outcomes. Both traditional Chinese and
Western pharmaceuticals could target lipophagy pathways,
mitigating hepatic steatosis by reducing lipid accumulation
and serving as potential interventions for HCC (as shown in
Supplementary Table S3; Figure 1).
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FIGURE 2
The role of lipid metabolism network and lipophagy in the spectrum of liver cancer diseases. PI3K, Phosphatidylinositol-3-kinase; mTOR, Mammalian
target of rapamycin; AMPK, AMP-activated protein kinase; TFEB, transcriptional factor EB; FOXO, Forkhead box O; LAMP, Lysosomal-associated
membrane protein; AKT, Protein Kinase B; LD, Lipid droplet; PKA, Protein kinase A; p62, Sequestosome 1; LC3B, Microtubule-Associated Protein 1 Light
Chain 3B; ULK1, UNC-51-like kinase 1; ER stress, Endoplasmic Reticulum stress; NASH, Non-alcoholic Steatohepatitis; NAFL, Non-alcoholic Fatty Liver;
HCC, Hepatocellular Carcinoma; HFD, high-fat diets.

4.4 Research progress on the prevention
and treatment of liver cancer through
lifestyle regulation by lipophagy

For liver cancer patients, moderate exercise, a balanced
diet, and limiting high-fat and high-sugar food intake are
effective management strategies. Wu et al. showed exercise and
diet adjustments reduce hepatic triglyceride accumulation via
AMPK/ULK1 activation and AKT/mTOR/ULK1 inhibition,
enhancing lipophagy. Exercise boosts FGF21 release, driving hepatic
lipophagy through AMPK (Gao et al., 2020). These findings suggest
that adhering to a healthy lifestyle with regular eating habits and
moderate exercise may help prevent liver cancer.

Excessive carbohydrate intake can lead to intestinal lipid
accumulation, but the ROS-AKT-Beclin1 pathway stimulates
lipophagy in intestinal cells to reduce this buildup (Wu LX. et al.,
2022). Additionally, High-phosphorus diets also promote lipophagy
via AMPK and reduce liver lipid deposition (Liu X. et al., 2022).
Fasting triggers FGF21 signaling to activate lipophagy and
lipid catabolism. Refeeding after starvation stimulates intestinal
lipophagy (Byun et al., 2020). Raimundo et al. demonstrated that
reintroducing food after starvation stimulates intestinal lipophagy
activity (Raimundo, 2022). While nutritional deficiencies do not
directly cause liver cancer, they increase risk by altering metabolic

and lipophagic processes regulated by PKA, mTOR, and AMPK
during starvation (Shi et al., 2019; Komatsu et al., 2005).

Recent studies show that exercise induces lipophagy, influencing
LD dynamics and promoting lipid metabolism in hepatocytes
(Gao et al., 2020; Pino-de la Fuente et al., 2022; Li et al., 2021).
For instance, 15 weeks of treadmill exercise alleviated hepatic
steatosis, inflammation, and liver damage caused by a high-fat
diet (HFD) in mice (Yang Y. et al., 2022). Another study reported
that 8 weeks of exercise reduced liver damage and LD size in
hepatocytes of mice with fatty liver disease. Exercise also enhances
FGF21 production, which promotes lipophagy via AMPK in
the liver (la Fuente et al., 2019).

In summary, maintaining a healthy lifestyle with regular eating
habits and moderate exercise may effectively prevent liver cancer.
Lipophagy plays a central role in these processes by regulating lipid
metabolism and maintaining hepatic health (as shown in Figure 2).

5 Conclusion

HCC, as the terminal stage of chronic liver disease,
arises from multifactorial pathogenesis including viral
hepatitis (e.g., HBV), metabolic dysfunction (e.g., NAFLD),
and environmental exposures (Liao et al., 2017). While
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preventive strategies likeHBV vaccinationmitigate risk, they cannot
fully eliminate HCC development, necessitating novel therapeutic
approaches (Lou et al., 2017).

Lipophagy serves as a critical regulatorwith dual-stage functions
in tumorigenesis, suppressing early tumor initiation through
cytotoxic lipid clearance and chemosensitization while driving
advanced progression via FFA-mediated metabolic reprogramming.
Key mediators include transcriptional regulators like TFEB and
C/EBPβ alongside the PI3K/AKT/mTOR signaling axis. While
preclinical data support the potential of lipophagy modulators such
as metformin, quercetin, and PLIN2 inhibitors, clinical application
remains hindered by HCC heterogeneity, stage-dependent efficacy
variations, and drug delivery constraints. Research priorities should
focus on characterizing stage-specific molecular profiles (e.g.,
CD36-high versus TFEB-amplified subtypes), designing context-
responsive therapeutics, establishing robust biomarkers (LC3-II),
and optimizing targeted delivery platforms. These stage-selective
mechanisms represent a viable therapeutic strategy for metabolic
syndrome-associated HCC, addressing a pressing clinical challenge.
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