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Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease
in which autophagy is pivotal in its pathogenesis. This study aims to
identify autophagy-related genes associated with RA and investigate their
functional roles.

Methods: We performed mRNA sequencing to identify differentially expressed
genes (DEGs) between RA and osteoarthritis (OA) and intersected these with
autophagy-related genes to obtain autophagy-related DEGs (ARDEGs) in RA.
Bioinformatics and machine learning approaches were used to identify key
biomarkers. Functional experiments, including real-time cellular analysis (RTCA),
scratch healing, and flow cytometry, were conducted to examine the effects of
gene silencing on the proliferation and migration of MH7A cells.

Results: A total of 37 ARDEGs were identified in RA. Through bioinformatics
analysis, interferon regulatory factor 4 (IRF4) emerged as a key hub gene, with
its high expression confirmed in RA synovial tissues and RA FLS cells. IRF4
knockdown inhibited the proliferation and migration and promoted the death
of MH7A cells.

Conclusion: IRF4 is an autophagy-related diagnostic biomarker for RA. Targeting
IRF4 could serve as a potential diagnostic and therapeutic strategy for RA,
although further clinical studies are required to validate its effectiveness.
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Introduction

Rheumatoid arthritis (RA) is an autoimmune disease that impacts the joints, marked by
the enlargement of the synovial membrane and bone degradation, along with the formation
of new blood vessels and the infiltration of cells that promote inflammation (Tanaka et al.,
2020). According to the spectrum of autoantibodies, RA can be classified as anti-
citrullinated protein antibody (ACPA) negative or ACPA positive. The main pathological
mechanisms of RA involve interactions between genetics, environment, metabolism,
immunity, and microbial communities (Smolen et al., 2016; Finckh et al., 2022). RA affects
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0.5%–1% of the global population. In addition to typical
manifestations of joint destruction, RA often affects the skin, lungs,
kidneys, and other organs (Koduri and Solomon, 2023; Park and
Bathon, 2024). RA joint injury is an important cause of disability
in the population, and as the disease progresses, the disability rate
of RA patients continues to rise. Early diagnosis can prevent severe
joint injuries and improve patient prognosis.

Autophagy is a process in which cells form a double-membrane
structure (autophagosome) to engulf damagedorganelles or abnormal
proteins, which then fuse with lysosomes for degradation and
recycling (Liu et al., 2023). It is a key mechanism by which cells
respond to nutrient deprivation, damage, and stress (Rockel and
Kapoor, 2016). Autophagy can be classified into different types
based on its mechanisms and execution processes: macroautophagy,
microautophagy, and chaperone-mediated autophagy (Fleming et al.,
2022). and usually, macroautophagy is referred to as autophagy
(Li et al., 2020). It is regulated by signaling pathways such as mTOR,
AMPK, and PI3K/Akt (Cai et al., 2022; Yang et al., 2022). The
expression of autophagy-related proteins (Beclin1, ATG5, LC3) in
the synovial tissue of RA patients is significantly increased, and
is significantly correlated with inflammatory markers (CRP, ESR)
and autoantibodies (citrullinated peptide, rheumatoid factor) levels
(Zhu et al., 2017). Furthermore, treatment with anti-TNF-α and IL-
6R inhibitors has been shown to result in a reduction in autophagy
levels (Chenetal., 2018).Theroleofautophagy inRAincludes immune
regulation,overactivesynovialfibroblasts,productionofinflammatory
cytokines, and generation of osteoclasts (Zhao et al., 2021).

Interferon Regulatory Factor 4 (IRF4) is a key immune regulatory
transcription factor that plays an important role in immune
cell differentiation, inflammatory responses, and the regulation
of autoimmunity (De Silva et al., 2012; Huber and Lohoff, 2014;
Rodríguez-Carrioet al., 2019). InRA, IRF4 isanessential transcription
factor forTh17 cell differentiation, regulatingTh17 cell differentiation
and the secretion of inflammatory cytokines (Biswas et al., 2010;
van Hamburg and Tas, 2018); and the IRF4 gene single nucleotide
polymorphismsareassociatedwithRAsusceptibility (López-Isacetal.,
2016). Targeting IRF4 may offer new directions for RA treatment.

In this study, mRNA sequencing was performed on RA and
OA synovial tissues to obtain the transcriptome profile of RA
synovial tissues, and the intersection of autophagy-related genes
was obtained to identify autophagy-related differentially expressed
genes (ARDEGs) in RA. Subsequently, bioinformatics analysis
combined with experimental verification was performed to identify
autophagy-related biomarkers in RA. This is of great significance
for elucidating the role of autophagy influenced by IRF4 in RA and
identifying potential biomarkers for future RA research.

Materials and methods

Sample collection and mRNA sequencing

Synovial tissue samples were collected from 9 RA to 15 OA
patients undergoing knee joint replacement at Shanghai Guanghua
Hospital of Integrated Traditional Chinese and Western Medicine.
The collected synovial tissue was divided into two parts: one
part was frozen at −80°C for mRNA sequencing, and the other
part was used to extract primary Fibroblast-like synoviocytes

(FLS). The Ethics Committee of Guanghua Hospital approved the
study (approval number: 2018-K-12). All patients provided written
informed consent before the surgery. Brief patient information was
included in Supplementary Material S1.

Total RNA extraction from the synovial tissue sample was
performed with the Trizol reagent (Thermo Fisher, Waltham, MA,
United States) per the manufacturer’s instructions. The libraries were
constructed using the TruSeq Stranded mRNA LT Sample Prep
Kit (Illumina, San Diego, CA, United States) by the manufacturer’s
guidelines and then sequenced on the IlluminaHiSeqXTen platform.

Identification of ARGs

Autophagy-related genes (ARGs) were downloaded from the
HumanAutophagyDatabase (http://autophagy.lu/) and theMsigDB
Database (https://www.gsea-msigdb.org/gsea/msigdb).

GSEA and GSVA of ARGs in RA

Gene Set Enrichment Analysis (GSEA) provides insights into
the biological processes and pathways significantly enriched in
the dataset, helping identify potential mechanisms underlying the
observed phenotypic differences (Subramanian et al., 2005).The cut-
off criteria indicating statistically significant differences were set as
|NES|>1, P < 0.05, and FDR ≤0.25. The analysis was performed
using the “clusterProfiler” package in R software (version 4.4.1),
with the data set sourced from the Molecular Signatures Database
v7.2 (MSigDB) (Liberzon et al., 2015).

Gene Set Variation Analysis (GSVA) is a nonparametric,
unsupervised method to determine differences in enriched gene
sets across various clusters (Hänzelmann et al., 2013). The “GSVA”
package in R (version 4.4.1) was used to assign signal pathway
variation scores to each gene set, assessing their biological roles.
Gene sets were sourced from MSigDB. A significant change was
defined by a |t value of the GSVA score| greater than 1.

WGCNA of ARGs in RA

Weighted Gene Co-expression Network Analysis (WGCNA)
was employed to construct a gene co-expression network and
identify modules of highly correlated genes (Langfelder and
Horvath, 2008). These hub genes are considered to play central roles
in the biological processes represented by their respective modules.
The analysis used the “WGCNA” package in R (version 4.4.1).

Identification of ARDEGs

Differentially expressed genes (DEGs) were identified with
the “DESeq” R package (Anders and Huber, 2012). Significant
differential expression was determined with a threshold of
adjust P-value <0.05 and |log2FoldChange| ≥ 1. The R package
“VennDiagram” was used to plot a Venn diagram, overlapping
DEGs with autophagy-related genes (ARGs), to obtain the
autophagy-related DEGs (ARDEGs).
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FIGURE 1
Autophagy-related genes (ARGs) identified and enrichment analyzed in RA. (A) The Venn Diagram of ARGs; (B, C) The GSEA of ARGs in RA; (D) The
GSVA of ARGs in RA.

Functional enrichment analysis of ARDEGs

The ARDEGs were annotated using Gene Ontology
(GO) enrichment analysis, which included biological process
(BP), cellular component (CC), molecular function (MF)
(Gene Ontology Consortium, 2015), and Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway analysis. KEGG is a
database resource that helps elucidate molecular and higher-level
gene functions, including biochemical pathways (Kanehisa et al.,
2023). The annotation and visualization were performed with the
“clusterProfiler” R package. A P-value <0.05 was used as the cut-off
criterion to indicate statistical significance.

The protein-protein interaction network
construct and hub genes identified

The protein-protein interaction (PPI) network of ARDEGs
was constructed using the STRING database, which can
comprehensively describe user gene lists and functional genomic
datasets and create and share highly customized and enhanced

protein-protein association networks (Soleymani et al., 2022). The
PPI network was visualized using the Cytoscape Plugin.

Friends analysis for hub genes screening

Friends analysis is a method used to compare the similarities
between different genes or gene sets. If a gene interacts with other
genes in the pathway, then that gene may be more important,
possibly known as a hub gene (Duan et al., 2022). It can help
you select the most important genes from a pile of significantly
differentially expressed genes.

Hub genes identified based on multiple
machine-learning methods

To further identify the candidate biomarkers, the least absolute
shrinkage and selection operator (LASSO) algorithm, a logistic
regression method for filtering variables to enhance the predictive
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FIGURE 2
Construction of WGCNA modules. (A) Graph of scale independence; (B) Graph of mean connectivity; (C) Cluster dendrogram of the co-expression
network modules; (D) Cluster plot analysis of the relationship between ARGs in RA and modules; (E) Scatter plot analysis of the yellow module; (F)
Scatter plot analysis of the green module.

performance (Wang et al., 2024), was adopted to screen the
candidate genes with the “glmnet” R package.

Machine-learning predictive models include the support vector
machine (SVM) and random forest (RF) models. SVM is a
supervised learning model for classification and regression analysis.
The basic idea of SVM is to find an optimal decision boundary
that maximizes the margin between classes, thereby achieving data
classification (Sollich, 2003). RF is a commonly used ensemble
learning method for classification and regression tasks. It enhances
the accuracy and robustness of the model by constructing
multiple decision trees and combining their prediction results
(Blanchet et al., 2020; Hu and Szymczak, 2023). The two machine
learning models were explained using the “DALEX” R package, and
residual distribution and feature importance among the models were
visualized.

Immunohistochemistry

Thestreptavidin-biotin peroxidase complex immunohistochemistry
method was utilized for detection. Tissue sections were dewaxed
using standard procedures and treated with 3% hydrogen peroxide
(H2O2) for 10 min to block endogenous peroxidase activity. Three
5-min washes with PBS followed this. A blocking serumwas applied
to the sections for 20 min and removed. The primary antibody was
incubated for 1 h, followed by another set of three 5-min washes in
PBS. Streptavidin conjugated to horseradish peroxidase and biotin
were applied for 20 min, with a subsequent 1-h incubation. Another
series of three 5-min PBS washes were performed before applying
DAB for 5 min to develop the staining. Finally, the sections were
counterstained with hematoxylin for 2 min, rinsed in tap water,
dehydrated, cleared, mounted, and examined under a microscope.

Isolation of RA FLS and cell lines culture

Synovial tissues from the knee joint were placed in a 6 cm
culture dish, washed twice with sterile PBS, and minced into small
fragments using scissors. Based on tissue size, 2 mL of 4 mg/mL
collagenase NB4 solution was added, and the samples were digested
in a 37°C incubator with 5% CO2 for 2 h. Digestion was terminated
by adding an equal volume of DMEM culture medium containing
10% FBS. The mixture was filtered through a 100 µm mesh and
centrifuged at 1,500 rpm for 5 min. The supernatant was discarded,
and the cell pellet was resuspended in 10% FBS DMEM. Cells were
counted, inoculated into a 25 cm2 culture flask, and maintained in
a 37°C, 5% CO2 incubator with medium changes 2–3 times per
week. When the cells reach 70%–80% confluence, perform a 1:2
subculture. Cells at passages 4-5 are used for the next experiment.

Human rheumatoid arthritis fibroblast-like synoviocytes
(MH7A) were obtained from Guangzhou Jennio Biotech Co., Ltd.
These cells were cultured in DMEM supplemented with 10% FBS
and 1% penicillin-streptomycin (P/S) and maintained in a 37°C
incubator with 5% CO2.

Quantitative real-time PCR

Total RNA was extracted with SteadyPure Quick RNA
Extraction Kit (Accurate Biotechnology (Hunan) Co., Ltd.) and
reverse-transcribed to complementary DNA (cDNA) with the
Evo M-MLV RT Mix kit with gDNA Clean for qPCR Ver.2
(Accurate Biotechnology (Hunan) Co., Ltd.). The qRT-PCR was
then performed using the SYBR Green Premix pro-Taq HS qPCR
Kit (Accurate Biotechnology (Hunan) Co., Ltd.). GAPDH was used
as the internal reference. The primers used were listed below:
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Species Primer name Sequence

Human GAPDH forward 5′-GGAGCGAGATCCCTCCAAAAT-3′

GAPDH reverse 5′-GGCTGTTGTCATACTTCTCATGG-3′

IRF4 forward 5′-GCTGATCGACCAGATCGACAG-3′

IRF4 reverse 5′-CGGTTGTAGTCCTGCTTGC-3′

The relative messenger RNA (mRNA) expression was calculated
using the 2−△△Ct method.

Construction of IRF4 stable knockdown
cell line

Lentivirus was constructed by Shanghai Xiangyou
Technology Co., Ltd.

pLV-U6-shRNA1(IRF4)-CMV-EGFP-2A-Puro.
cgggcaagcaggactacaaccctcgagggttgtagtcctgcttgcccgttttt;
pLV-U6-shRNA2(IRF4)-CMV-EGFP-2A-Puro.
gtacaaagtgtacaggattgctcgagcaatcctgtacactttgtacgttttt;
pLV-U6-shRNA3(IRF4)-CMV-EGFP-2A-Puro.
gaagattaccacagatctatcctcgaggatagatctgtggtaatcttcttttt.
Preliminary experiments confirmed that shRNA1 (IRF4) had

the highest infection efficiency and IRF4MOI = 100.The puromycin
screening concentration for MH7A cells was 4 μg/mL, and the
subsequent experiments used 4 μg/mL to act on MH7A.

Real-time cellular analysis (RTCA)

RTCA can be used for real-time dynamic cell viability detection
without labeling. Inoculate 5 × 103 cells into an E-plate16 well plate,
culture the plate at 37°C, 5% CO2, and continuously detect cell
viability using the xCELLigence system. The detection results are
displayed in the form of a delta cell index.

Scratch healing experiment

2 × 105 cells were seeded into 6-well plates. After reaching 100%
confluence, cells were gently scraped with a 200 μL tip, washed three
times in serum-free medium, and cultured in a regular medium.
Wound healing was observed at 0, 24 h, and 48 h, and the cell
migration distance was calculated by subtracting the wound width
at each time point from the wound width at 0 h. Three independent
analyses were performed; images were collected at 0, 24, and
48 h after scratch formation, and the images were analyzed using
ImageJ software.

Calcein-AM/propidium iodide (PI) staining

Cell viability was detected by Meilun Calcein-AM/Pl Double
Staining Kit (meilunbio). Cells were cultured for 48 h according to

different treatments. Cells were collected and resuspended, and then
2 μM calcein AM and 8 μM PI were added to incubate for 15 min.
The death rate was detected by flow cytometry.

Western blot

Total protein was extracted from RA FLS, and its
concentration was measured using a BCA kit (Beyotime).
Protein samples were separated by sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred
onto PVDF membranes (Millipore). After blocking, the
membranes were incubated with primary antibodies followed by
horseradish peroxidase-conjugated secondary antibodies (Bio-
Rad). Immunodetection was carried out using an enhanced
chemiluminescence kit (Biosharp). Vaculin served as a loading
control for normalization. The primary antibody used was an anti-
IRF4 antibody (Proteintech). Bands were visualized using X-ray
exposure with a Gel Imager (Bio-Rad).

Statistical analysis

Data are expressed as mean ± standard deviation (SD) from at
least three independent experiments. ANOVA test was performed
using Prism 9.0 (GraphPad, San Diego, United States). P-values
<0.05 were considered statistically significant. The data were
presented as mean ± SD, and P < 0.05 was considered significant.

Results

The ARGs identified

A total of 17,736 genes were detected in our mRNA sequencing
data. 851 ARGs were extracted from the HADb and MSigDB
databases. The two gene sets were intersected to obtain 821
ARGs in RA (Figure 1A).

The GSEA and GSVA of ARGs in RA

To further investigate the functions related to ARGs, we
performed GSEA and GSVA. The GSEA shows that for KEGG
analysis, ARGs are rich in MAPK and AMPK signaling pathways
(Figures 1B, C). The GSVA also showed that the MAPK and AMPK
signaling pathways scored higher in the analysis (Figure 1D).

The WGCNA of ARGs in RA

To identify key gene modules associated with RA, we utilized
WGCNA. The soft-thresholding power was fourteen, determined
based on an R-squared cut of 0.85 (Figures 2A, B). Six modules
were identified based on average hierarchical clustering and
dynamic tree clipping (Figure 2C). The yellow and green modules
positively correlated with RA (Figure 2D). The yellow module
screened 102 genes, and the green module screened 94 genes for
subsequent analysis (Figures 2E, F).
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FIGURE 3
Autophagy-related DEGs (ARDEGs) identified. (A) The Venn diagram between autophagy and RA related genes; (B) The heat map of 37 related genes;
(C) The volcano plot of ARDEGs.

Identification of ARDEGs in RA

The transcriptional profiles of RA patients exhibit distinct
characteristics compared to OA patients, indicating a unique
status in RA. Consequently, a differential expression analysis
was conducted. With a threshold of adjusted P value <0.05
and |log2FoldChange| ≥ 1, 1,469 DEGs were identified and
intersected with 851 ARGs, resulting in the identification of
37 ARDEGs (Figure 3A). The heat map of the 37 ARDEGs
was shown in Figure 3B, and the volcano plot of ARDEGs (19
upregulated genes and 18 downregulated genes) was shown in
Figure 3C.

The GO and KEGG analysis of ARGDEGs

To further investigate the functions related to ARGDEGs, we
performed GO and KEGG pathway. GO functional enrichment
analysis showed that ARDEGs were mainly distributed in the
negative regulation of gene expression, positive regulation of

autophagy in BP, extracellular region, and extracellular space in
CC. BMP receptor and cytokine activity in MF. (Figure 4A). KEGG
pathway analysis showed that ARDEGs were enriched in the AMPK
signaling pathway, mTOR signaling way, and cytokine-cytokine
receptor interaction (Figure 4B).

The PPI network analysis and hub genes
screened

With the STRINGdatabase, the network contained 37 nodes and
62 edges, and the enrichment P value was 2.12 × 10−12. The degree
of every gene was obtained with the “Analyze Network” function of
Cytoscape. Based on the degree, we constructed the PPI network
(Figure 5A). We filtered hub genes based on the PPI network and
WGCNA greenmodule (Figure 5B) and yellowmodule (Figure 5C).
These two modules are the gene sets identified by WGCNA as most
relevant to RA. PDK1, TUBA4A, TP53INP1, CTHRC1, ZC3H12A,
SLC7A5, ZNF831, RAB39B, SERPINA1, LAMP3, IRF4, CCR2,
CXCR4, PRKCQ, CDK5R1, IFNG, PIM2, SEMA4D, BIRC5 were

Frontiers in Cell and Developmental Biology 06 frontiersin.org

https://doi.org/10.3389/fcell.2025.1563911
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Zhang et al. 10.3389/fcell.2025.1563911

FIGURE 4
The enrichment analysis of ARDEGs. (A) GO functional enrichment analysis of ARDEGs; (B) KEGG pathway analysis of ARDEGs.

identified.With the top ten degrees fromCytoscape, the SERPINA1,
IFNG, IRF4, CXCR4, and TUBA4A were defined as hub genes for
the next analysis.

Friends analysis and machine learning
analysis

Further friendship analysis was adopted to analyze hub genes.
According to its expression level in sequencing, IFNG has a
relatively low expression level, so it is not included in further
analysis. The top-ranked genes were CXCR4, IRF4, SERPINA1,
and TUBA4A (Figures 6A, B). To further identify critical markers
with high diagnostic values, we established two machine-learning
models based on the blue core module expression profile, including
SVM and RF models. The RF model had a relatively low residual
(Figures 6C, D).With the RFmodel analysis, CXCR4 and IRF4 were
identified as hub genes(Figure 6E). Using the LASSO regression
algorithm, the hub genes were narrowed to 2 variables, CXCR4 and
IRF4 (Figures 6F, G). CXCR5 has been reported to be associated
with autophagy in RA (Huang et al., 2021), so IRF4 was chosen as
the next research target.

The expression of IRF4 in RA synovial tissue
and FLSs

Immunohistochemistry and qRT-PCR were used to
validate the differential expression of IRF4 in RA and OA.
Immunohistochemistry showed that IRF4 was highly expressed
in RA synovial tissue (Figure 7A), while qRT-PCR revealed
that IRF4 was upregulated in both RA synovial tissue
(Figure 7B) and FLSs (Figure 7C).

Effects of IRF4 silencing on MH7A cells

To determine the role of IRF4 in MH7A cells, we performed
gene silencing of IRF4. The RTCA showed that knockdown of
IRF4 inhibited the proliferation of RA MH7A cells (Figure 8A).
Scratch healing experiment showed that the knockdown of IRF4
restrained themigration ofMH7A cells (Figure 8B). Flow cytometry
confirmed that silencing of IRF4 enhanced the death of MH7A
cells (Figure 8C). Knockdown of IRF4 decreased the protein level
of beclin 1 (Figure 8D), and decreased the mRNA expression
of beclin1 (Figure 8E).
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FIGURE 5
Identification of hub ARDEGs. (A) PPI network of ARDEGs; (B) Venn diagram of PPI and WGCNA green group; (C) Venn diagram of PPI and WGCNA
green group.

FIGURE 6
Establishment of diagnostic biomarkers. (A) Histogram of friends analysis of ARDEGs; (B) Cloud and rain map of friends analysis of ARDEGs; (C)
Cumulative residual distribution of the two machine learning models; (D) Significant functions of the two machine learning models; (E) Variable
importance plot of random forest model; (F) Regression coefficient convergence (path) diagram; (G) Cross validation diagram.
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FIGURE 7
The expression of IRF4 in RA synovial tissues and cells. (A) The expression of IRF4 in RA and OA synovial tissues observed by immunohistochemistry (n
= 4 in each group); (B) The expression of IRF4 in RA and OA synovial tissues observed by qRT-PCR (n = 3 in each group); (C) The expression of IRF4 in
RA and OA synovial cells observed by qRT-PCR (n = 3 in each group).∗∗indicate p < 0.01.

Discussion

Autophagy is a core molecular pathway for the preservation of
cellular and organismal homeostasis (Li et al., 2020). Dysfunction
of autophagy is associated with various cancers, as well as
cardiovascular, neurodegenerative, metabolic, pulmonary, renal,
infectious, musculoskeletal, and ocular diseases (Mizushima et al.,
2008). Targeting autophagy may be a feasible therapeutic approach
to combating diseases (Bourdenx et al., 2021; Dong et al., 2021).
Different methods for treating various diseases through targeted
autophagy have been discovered. In cancer, one treatmentmethod is
to induce autophagy and enhance its tumor suppressive properties.
Based on the concept that autophagy is a protein degradation system
used to maintain homeostasis in the body, it can also be inhibited
to treat cancer (Ramesh et al., 2019). Similarly, autophagy also
plays a complex and significant role in the pathogenesis of RA (a
tumor-like disease) (Klionsky et al., 2021). It influences immune
regulation, synovial fibroblast activity, cytokine production, and
osteoclastogenesis, all of which are critical in the development and
progression of RA (Zhao et al., 2021). Targeting autophagy pathways
presents a promising avenue for novel therapeutic approaches in
managing RA (Mueller et al., 2021). Further research is essential
to fully understand the intricate relationship between autophagy
and RA and to translate these findings into effective clinical
interventions.

Autophagy influences the function of immune cells such as
macrophages, dendritic cells, andT cells (Germic et al., 2019). InRA,
dysregulated autophagy can lead to abnormal immune responses,
contributing to inflammation and joint damage (Wang et al.,
2020). Autophagy facilitates the presentation of antigens to immune
cells, thereby influencing the adaptive immune response. Aberrant
autophagy in dendritic cells can alter this process, exacerbating
autoimmunity in RA (Ireland and Unanue, 2011). In RA, synovial
fibroblasts become hyperactive, contributing to joint inflammation
and destruction. Autophagy helps regulate the survival and function
of these cells (Rockel and Kapoor, 2016). Dysregulated autophagy in

synovial fibroblasts can lead to increased proliferation and resistance
to apoptosis, promoting persistent inflammation and joint damage
(Kim et al., 2017; Zhou et al., 2020). Autophagy modulates the
production of inflammatory cytokines such as TNF-α, IL-1β, and
IL-6 (An et al., 2018; Chen et al., 2022). These cytokines play
crucial roles in the pathogenesis of RA. Disruption of autophagy
pathways can lead to excessive cytokine production, enhancing
inflammation. Autophagy affects the differentiation and function
of osteoclasts, the cells responsible for bone resorption. In RA,
increased osteoclast activity contributes to bone erosion (Lin et al.,
2013). Proper regulation of autophagy in osteoclasts is essential for
maintaining bone health, and its dysregulation can lead to enhanced
bone degradation in RA (Lei et al., 2023).

Li et al. also have studied the ARGs in RA. They analyzed the
GSE93272 dataset from the Gene Expression Omnibus database.
LASSO, unsupervised clustering, and WGCNA were performed
to identify ARGs strongly linked to RA. Additionally, they
developed RF, SVM, generalized linear model, and extreme gradient
boosting—based on the selected marker genes. Subsequently,
they constructed a nomogram to differentiate between healthy
individuals and RA patients. Finally, their findings were validated
with five independent external RA datasets (Li et al., 2024). Our
research differs from its focus. Firstly, our study screened ARGs in
RA through mRNA sequencing combined with ARGs. GSEA and
GSVA revealed that these genes could be enriched in theMAPK and
AMPK signaling pathways. Subsequently, we conducted WGCNA
analysis to identify hub genes. DEG analysis was performed to
screen ARDEGs between RA and OA synovial tissues. Functional
analysis revealed that ARDEGs were enriched in autophagy-related
pathways such as mTOR signaling pathway and AMPK signaling
pathway. Additionally, PPI combined with WGCNA was used
to identify hub genes. Combining friends analysis and machine
learning models with LASSO, CXCR4 and IRF4 were identified
as the biomarker. The role of CXCR4 antagonists in RA has
also been studied (Tamamura and Fujii, 2005; Han et al., 2025).
Additionally, the relationship between CXCR4 and autophagy in
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FIGURE 8
Effects of IRF4 silencing on MH7A. (A) Proliferative ability of MH7A with the above transfection, as determined by RTCA; (B) Migration of MH7A with the
above transfection, as determined by scratch healing experiments; (C) Death of MH7A with the above transfection, as determined by flow cytometry;
(D) The level of Beclin with the above transfection, as determined by WB; (E) The mRNA level of Beclin with the above transfection, as determined by
qRT-PCR. The data were presented as mean ± SD.∗∗,∗∗∗,∗∗∗∗indicate p < 0.01, p < 0.001, p < 0.0001, respectively. All experiments were repeated 3 times.

Frontiers in Cell and Developmental Biology 10 frontiersin.org

https://doi.org/10.3389/fcell.2025.1563911
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Zhang et al. 10.3389/fcell.2025.1563911

RA has been reported (Huang et al., 2021). According to our
literature search, the relationship between IRF4 and autophagy in
RA has not been reported. Therefore, IRF4 was identified as a
biomarker for further investigation. Finally, IRF4-related functions
were conducted using RTCA, scratch healing experiment, and flow
cytometry. It was found that knocking down IRF4 could inhibit the
proliferation and migration of MH7A cells and promote the death
of MH7A cells.

However, some areas in our study can be improved, such
as increasing the clinical sample size and conducting additional
experimental studies to confirm critical mechanisms, such as the
downstream effects of autophagy. This analysis lays the foundation
for exploring the impact of autophagy on RA and provides potential
insights for clinical diagnosis and the development of new RA
therapies.
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