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Background:Estrogen can inhibit the apoptosis of nucleus pulposus cells (NPCs)
through the PI3K/AKT/mTOR signaling pathway. However, the downstream of
mTOR signaling pathway remains elusive. This study investigates the effect of
17β-estradiol (E2) on intervertebral disc degeneration (IVDD) through the p70
S6K1 signaling pathway, downstream of mTOR.

Methods: The IVDD model of rats was established by needle puncture and
bilateral ovariectomy. Fifteen Sprague-Dawley rats were randomly assigned
to the following three groups: (A) Sham surgery group (Sham); (B) Bilateral
ovariectomy, 21G needle puncture and carrier injection (OVX + veh); (C)
Bilateral ovariectomy, 21G needle puncture, E2 supplementation (OVX + E2).
The degree of IVDD was evaluated by X-ray, magnetic resonance imaging
(MRI), hematoxylin and eosin (H&E), and Safranin O-Fast Green staining. The
expression levels of target protein p70S6K1 and its phosphorylated products
were detected by immunohistochemistry (IHC). Finally,Western blot analysis and
immunofluorescence staining were used to investigate the effect of E2 on the
p70 S6K1 signaling pathway in vitro.

Results: Histological staining and radiological results showed that E2
supplementation altered signaling, suggesting that it may have a protective
effect against IVDD. IHC showed that compared with the Sham and
OVX + E2 groups, the level of p70 S6K1 in the OVX + veh group was
significantly increased while the expression of phosphorylated products
(p-S6) was significantly decreased, suggesting that E2 could inhibit IVDD
by activating p70 S6K1 signaling pathway, the downstream of mTOR.
Furthermore, cellular immunofluorescence and Western blot showed that
E2 can maintain extracellular matrix (ECM) balance and inhibits apoptosis of
nucleus pulposus cells (NPCs) by activating the p70 S6K1 signaling pathway.
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Conclusion: In summary, 17β-estradiol mitigates IVDD progression by
maintaining ECM homeostasis and inhibiting NPCs apoptosis through activation
of the p70 S6K1 signaling pathway downstream of mTOR.

KEYWORDS

intervertebral disc degeneration, nucleus pulposus, estradiol, P70 S6K1, mTOR,
apoptosis

1 Introduction

In recent years, many studies have reported that intervertebral
disc degeneration (IVDD) is one of the leading causes of chronic low
back pain (Vergroesen et al., 2015; Vlaeyen et al., 2018; Chou et al.,
2011; Luoma et al., 2000). Due to the disability of low back pain, the
labor force decreases, increasing the medical cost (Andersson, 1999;
Katz, 2006).These have brought a heavy economic burden to human
society (Prince et al., 2015). The pathogenesis of IVDD may be
related to factors such as age, genetic susceptibility, spinal instability,
inflammation, increased ECM degradation, and abnormal NPC
apoptosis (Parreira et al., 2018).

The intervertebral disc (IVD) has a complex structure. It is
mainly composed of three parts: the nucleus pulposus (NP), the
annulus fibrosus (AF), and the cartilaginous endplates (Urban and
Roberts, 2003).The NP is the central part of the IVD and consists of
nucleus pulposus cells (NPCs) and a large amount of extracellular
matrix (ECM) (Adams et al., 2009; Sive et al., 2002; Zhang et al.,
2016). The ECM mainly comprises NPCs, which secrete aggrecan
and Collagen II, thus maintaining the typical structure of the
IVD. NPCs are susceptible to oxidative stress, cellular senescence,
inflammation, and apoptosis.WhenNPCs are reduced, this can lead
to IVDD. As IVDD progresses, inflammatory factors such as IL-1β
are increased in NP tissues. While IL-1β increases, disintegrin-like
ADAM metallopeptidases (ADAMTS) with thrombochondrotin
type 1 motifs and matrix metalloproteinases (MMPs) damaging
ECM also increase (Wang et al., 2019). Previous studies have found
that the MMPs family is a critical factor in the catabolism of
ECM and plays a crucial role in the pathological process of IVDD
(Molinos et al., 2015; Zawilla et al., 2014; Zhang et al., 2013).
Recent studies have shown that apoptosis and inflammation of
NPCs are the leading causes of the pathological process of IVDD
(Ding et al., 2013; Risbud and Shapiro, 2014).

Some studies have found that estrogen regulates the
development and progression of IVDD by regulating cell activity
and ECM metabolism (Wang et al., 2016; Jin et al., 2018). At the
same time, clinical studies have found that the incidence of IVDD
in older women is higher than that in older men, which may be
closely related to the decrease of estrogen levels in postmenopausal
women (Wang, 2015; Wang, 2017). Estrogen plays a vital role in
inhibiting inflammatory factors, oxidative stress, and excessive
aging by binding to estrogen receptors (ERs) (Song et al., 2014;
Santos et al., 2017). Previous studies have shown that 17β-estradiol
(E2) has a significant inhibitory effect on the apoptosis of NPCs,
and E2 can alleviate the progression of IVDD by downregulating
the expression of MMPs (Santos et al., 2017; Kim et al., 2014;
Zhou et al., 2015; Rosner et al., 2012). However, the mechanism

by which E2 inhibits NPCs apoptosis and inflammation to improve
IVDD remains unclear.

mTOR forms signaling pathways with downstream essential
signaling proteins S6K1 and 4E-BP1, respectively, and regulates the
apoptotic process. Kim et al. (2014) reported that Brassinin can
induce human PC-3 prostate cancer cell apoptosis by inhibiting
the PI3K/Akt/mTOR/S6K1 signaling pathway. Zhou et al. (2015)
found that rotenone can induce hydrogen peroxide generation
and inhibit mTOR-mediated S6K1 and 4E-BP1/eIF4E signaling
pathways, thus leading to neuronal cell apoptosis. It is known
that NPCs apoptosis is regulated by various pathways, among
which inhibition of the PI3K/AKT/mTOR signaling pathway is
one of the mechanisms leading to human IVDD (Rosner et al.,
2012; Kakiuchi et al., 2019; Chen et al., 2020). Previous studies
have confirmed that E2 can inhibit NPCs apoptosis through the
PI3K/AKT/mTOR signaling pathway (Bai et al., 2021). However, the
effect of the downstream mTOR signaling pathway on the IVD is
unclear. Therefore, this study investigated whether E2 inhibited IL-
1β-inducedNPCs apoptosis through the p70S6K1 signaling pathway
downstream of mTOR.

2 Methods

2.1 Ethics statement

The rats used in this study were purchased from the Animal
Experimental Center of Hebei Medical University, and the animal
work was approved by the Institutional Animal Care and Use
Committee of the Hospital (No. Z2022-023-1).

2.2 IVDD models

According to our previous studies, needle puncture was used to
establish rat coccygeal IVDD models (Liu et al., 2018; Wang et al.,
2021). Fifteen Sprague-Dawley rats (280–330 g, 3 months old,
female) were randomly assigned to the following three groups. (A)
Sham group (Sham); (B) Bilateral ovariectomy, 21G needle puncture
and carrier injection (OVX + veh); (C) Bilateral ovariectomy, 21G
needle puncture, E2 supplementation (OVX + E2). After anesthesia,
all rats were placed in the prone position.TheCo7/8 andCo8/9 discs
of the rat tails were located by finger palpation. After disinfecting
the tail skin area, a 22G blade was used to incise the skin into
the deep fascia. A 21G sterile needle was inserted into the IVD
for 4.0mm, rotated 180°, left for 15 s, and removed. Finally, the
incision was sutured. The discs of Co7/8 and Co8/9 were punctured
in the OVX + veh and OVX + E2 groups, while only the skin of
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Co7/8 and Co8/9 was incised and sutured in the Sham group. At
the same time, the OVX + veh and OVX + E2 groups had both
ovaries removed, while the Sham group only had a small amount of
fat removed.

The OVX + E2 group received a subcutaneous injection of E2
(10 μg/kg/day, E8875, Sigma-Aldrich, MO, USA) dissolved in corn
oil (HYY 1888, MCE) (Wang et al., 2021). In contrast, the Sham
and OVX + veh groups only received a subcutaneous injection
of corn oil. All rats were placed in a ventilated environment at
a constant temperature of 21°C with a light-dark cycle time of
12:12 h. After 4 weeks, X-ray and MRI scans were performed on
all rats. Rats were then euthanized by an overdose of sodium
pentobarbital (100 mg/kg, intraperitoneal injection; Sigma-Aldrich,
P3761) followed by cervical dislocation to ensure death. Finally,
tail IVD samples were separated and fixed in 4% paraformaldehyde
(PFA) (Beyotime Biotechnology, China, P0099) for 48 h, followed
by decalcification with 10% EDTA (PH = 7.25) for 30 days. All IVDs
were embedded in paraffin and midsagittally sectioned to slices of
5 μm thickness.

2.3 The radiograph and MRI analysis

All rats were examined by X-ray before and 4 weeks after
the surgery. The radiological images were obtained from the X-
ray system (Epson Perfection V750 Pro; Long Beach, CA) and
measured using MicroDicom viewer software (version 2.9.0). Disc
height index (DHI) was used to assess disc height loss (Han et al.,
2008). MRI images were performed on the system (Agilent 7 T/R16,
CA). The degree of IVDD was evaluated using the modified
Thompson scale (Masuda et al., 2005), which was based on signal
intensity ranging from grade 1 to grade 4 (1 = normal, 2 = minimal
decrease in signal intensity but the apparent narrowing of high-
signal area, 3 = moderate decrease in signal intensity, and 4 = severe
decrease in signal intensity).

2.4 Hematoxylin and eosin (H&E) and
Safranin O-Fast Green staining

The rat tail vertebrae (including IVD) were separated from
the adjacent vertebrae, fixed with 4% PFA for 48 h, washed with
PBS, and decalcified with 10% EDTA (PH = 7.25) for 30 days.
All IVDs were embedded in paraffin wax and cut into 5 μm
midsagittal sections.

Sections were procedurally dewaxed and dehydrated, then
stained with H&E (Solarbio, Cat#G1120, China) and Safranin
O-Fast Green (Solarbio, Cat#G1371, China), respectively. Digital
images were obtained using an optical microscope (BX53F2,
Olympus, Japan). The histological grading of disc degeneration is
as follows: five features of disc structure (cell structure of annulus
fibrosus, morphology of annulus fibrosus, boundary between
annulus fibrosus and nucleus pulposus, cellularity of nucleus
pulposus and morphology of nucleus pulposus) were analyzed,
and the degree of degeneration was evaluated on a 3-point scale,
with five indicating normal IVD and 15 indicating severe disc
degeneration (Han et al., 2008).

2.5 Immunohistochemistry

Thepreparation of tissue sections was conducted as above. Next,
the slices were dewaxed and rehydrated, and then the antigen was
repaired with 0.1% EDTA-free pancreatic enzyme repair solution
in a 37°C oven for 1 h. The rabbit two-step assay kit (ZSBG-BIO,
Beijing, China) was used for immunohistochemistry (IHC). The
appropriate amount of endogenous peroxidase blocker was used
to block endogenous peroxidase for 10 min. Then, the sections
were incubated with the following primary antibodies at 4°C
overnight: p70 S6K1 (1:200, 14485-1-AP, Proteintech), Phospho-
S6 (Ser240/244) (1:1000, D68F8, Cell Signaling Technology),
MMP3 (1:100, 17873-1-Ap, Proteintech), Aggrecan (1:100, DF7561,
Affinity), Collagen II (1:100, AF0135, Affinity), Cleaved caspase-
3 (1:400, 9661s, Cell Signaling Technology). After rewarming for
1h, tissue slices were added with an enhancing solution and
incubated at 37°C for 20 min after cleaning. After cleaning, the
tissue sections were added with enhanced enzyme-labeled goat anti-
rabbit IgG polymer and incubated at 37°C for 20 min. DAB color
developed at room temperature for 5–8 min. Finally, cell nuclei
were stained with hematoxylin, dehydrated with gradient alcohol,
and sealed with xylene transparent and neutral gum. All images
were taken under an optical microscope. ImageJ software (version
1.53k; National Institutes of Health, Bethesda, MD, USA) was used
to measure the average optical density (IOD value/Area) for semi-
quantitative analysis.

2.6 Cell culture

We purchased human nucleus pulposus cells (Cat NO: CP-
H097) from Procell Life Science& Technology (Wuhan, China) and
cultured them in DMEM/F12 (Solarbio, China) containing 10%
fetal bovine serum (Gibco, Australia) and penicillin (100 U/ml)-
streptomycin (100 μg/mL) (Solarbio, China) and then placed in an
incubator at 37°C with 5%CO2. When 80% confluence was reached,
the cells were detached with 0.25% EDTA-containing trypsin. The
complete expansion medium was changed every other day. The
NPCs of the first three passages were used in all experiments. During
the experiments, the phenol red-free medium was used to avoid the
weak estrogenic effects from phenol red.

The NPCs were cultured in 6-well- or 24-well plates and divided
into the following groups, with three replicates in each group. The
control group was treated with normal culture medium only. The
IL-1β group was treated with IL-1β (75 ng/mL (Wang et al., 2021),
SRP3083, Sigma-Aldrich) for 24 h. The E2 supplement group was
pretreated with E2 (1 μM, HY-B0141, MCE) for 30 min, followed
by IL-1β (75 ng/mL) treatment for 24 h. The PF group was firstly
pretreated with PF4708671 (10 μM (Rosner et al., 2012; Pearce et al.,
2010), HY-15773, MCE) for 30 min, and then treated with
E2 (1 μM) for 30 min, followed by an incubation with IL-1β
(75 ng/mL) for 24 h.

2.7 Western blot analysis

Protease inhibitors (1%) and phosphotransferase inhibitors (1%)
(Solarbio, China) were added to RIPA lysate (Solarbio, China) before
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FIGURE 1
Rat IVDD model induced by needle puncture and OVX and histological staining. Rat IVD sections shown from left to right: sham ovariectomy (Sham),
needle puncture plus ovariectomy with vehicle injection (OVX + Veh), and needle puncture plus ovariectomy with estradiol hormone replacement
injection (OVX + E2). (A, C) Representative X-ray images of rat coccygeal vertebra and measurement result of DHI changes. DHI% was calculated as:
DHI = 2 × (D1 + D2 + D3)/(V1 + V2 + V3+ V4+ V5 + V6), DHI% = post-punctured DHI/pre-punctured DHI × 100%, where D indicates disc height and V
indicates vertebra length. (B, D) MRI images of rat coccygeal IVDs from different treatment groups and the scores of IVDD evaluated by the modified
Thompson classification. (E) There are low-magnification H&E sections and higher magnification images of boxed areas. (F) Low magnification
Safranin O-Fast green sections and higher magnification images of boxed areas. The green components indicate an acidophilic matrix stained by Fast
green, and the red components indicate a basophilic matrix stained by Safranin O. (G) Histological scores for rat IVDs in the three groups above. Values
are mean ± SD (n = 5). ns: not significant; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001. E2, 17β-estradiol; AF, annulus fibrosus; IVD, intervertebral disc; IVDD,
intervertebral disc degeneration; OVX, ovariectomy; veh, vehicle injection; DHI, disc height index; MRI, magnetic resonance imaging; H&E, hematoxylin
and eosin staining; SOFG, Safranin O-Fast Green staining; SD, standard deviation.

being used to lyse NPCs samples from 6-well plates. The total
protein was extracted by centrifugation. The protein concentration
was determined using a BCA protein assay kit (Pierce, 23,225).
For gel electrophoresis, 10% or 12% SDS-PAGE gel was used. The
electrophoresis ran for 70 min at a consistent voltage of 100 V.
Next, membrane transfer was conducted using a PVDF membrane
for 50 min at a consistent current of 400 mA. The membrane
was blocked with a protein-free rapid-sealing solution for 30 min,
followed by incubationwith primary antibodies for overnight at 4°C.

The following primary antibodies were used: p70 S6K1 (1:4000,
14485-1-AP, Proteintech), Phospho-S6 (Ser240/244) (1:1000,
D68F8, Cell Signaling Technology), MMP3 (1:1000, 17873-1-Ap,
Proteintech), Aggrecan (1:1000, DF7561, Affinity), Collagen II
(1:1000, AF0135, Affinity), cleaved caspase-3 (1:1000, 9661s, Cell
Signaling Technology), GADPH(1:500, P04406, Abways), β-actin
(1:10,000, 0,007,907, Proteintech).

Next, the membrane was rinsed by TBST, followed by an
incubation with secondary antibodies for 1 h at room temperature.
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FIGURE 2
E2 inhibits MMPs and cleaved caspase 3 expression and reduces the ECM degradation. The rat IVD sections shown from left to right: sham ovariectomy
(Sham), needle puncture plus ovariectomy with vehicle injection (OVX + Veh), and needle puncture plus ovariectomy with estradiol hormone
replacement injection (OVX + E2) groups. (A, C, D) The expression of aggrecan and collagen II, which are the main components of ECM in NP tissues
stained by immunohistochemical staining. (B, E, F) The expression of MMP 3 and cleaved caspase 3 in NP tissues stained by immunohistochemical
staining. Values are mean ± SD (n = 5). ns: not significant; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001. IVD, intervertebral disc; OVX, ovariectomy;
veh, vehicle injection; E2, 17β-estradiol; MMP, matrix metalloproteinase; ECM, extracellular matrix; NP, nucleus pulposus; SD, standard deviation.

Finally, blots were detected using an ECL imager (ChemiDoc, BIO-
RAD, USA). For semi-quantitative analysis, grayscale values were
measured using ImageJ software (version 1.53k; National Institutes
of Health, Bethesda, MD, USA).

2.8 Immunofluorescence staining

The NPCs were attached to a coverslip and cultured in a 24-well
plate. After harvest, the NPCs were fixed with 4% PFA for 15 min at
roomtemperature.AfterwashwithPBS, thecellswereblockedat room

temperature for 1 h with donkey serum (Solarbio, China) which was
diluted to5%withPBST.Next, anovernight incubationwasperformed
at 4°C with the following primary antibodies: p70 S6K1 (1:50,
14485-1-AP, Proteintech), Phospho-S6 (Ser240/244) (1:800, D68F8,
Cell Signaling Technology), MMP3 (1:800, 17873-1-Ap, Proteintech),
Aggrecan (1:200, DF7561, Affinity), Collagen II (1:200, AF0135,
Affinity), cleaved caspase-3 (1:400, 9661s, Cell Signaling Technology).
After being re-heated for 1h, the primary antibodies were removed,
washedwithPBS.Theanti-rabbit IgG(AlexaFluor555-labeleddonkey
anti-rabbit IgG (H + L), 1:500, A0453, Beyotime) was added and
incubated in the dark at room temperature for 2 h. Nuclear staining
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FIGURE 3
Immunohistochemistry showing that E2 mitigates IVDD by activating the p70 S6K1 signaling pathway downstream of mTOR in vivo. The rat IVD
sections shown from left to right: sham ovariectomy (Sham), needle puncture plus ovariectomy with vehicle injection (OVX + Veh), and needle
puncture plus ovariectomy with estradiol hormone replacement injection (OVX + E2) groups. (A) The levels of p70S6K1 and p-S6 in NP tissues of rat
tails were detected using immunohistochemistry. (B, C) Data analysis of the immunohistochemistry. Values are mean ± SD (n = 5). ns: not
significant; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001. IVD, intervertebral disc; IVDD, intervertebral disc degeneration; OVX, ovariectomy; veh, vehicle injection;
E2, 17β-estradiol; NP, nucleus pulposus; p-S6, Phospho-S6 (the ribosomal protein S6); SD, standard deviation.

was performed with DAPI (Solarbio, China). Finally, all fluorescence
images were acquired with identical exposure time and microscope
settings to ensure comparability of fluorescence intensity across
experimental groups.The images were collected using a confocal laser
scanningmicroscope (Nikon, Tokyo, Japan).The average fluorescence
intensity of NPCs in the images was analyzed using ImageJ software
(version 1.53k; National Institutes of Health, Bethesda, MD, USA).

2.9 Statistical analysis

All data were analyzed and plotted using GraphPad Prism 8.2
(GraphPad Software, San Diego, CA, United States). The normality
of data distribution was confirmed using the Shapiro-Wilk test (p
> 0.05) followed by one-way analysis of variance (ANOVA) for
statistical analysis among groups with the Bonferroni test. All data
were presented as mean ± standard deviation. P < 0.05 was regarded
as statistically significant.

3 Results

3.1 E2 alleviated IVDD progression and
improved ECM homeostasis

As shown in Figure 1, X-ray images showed significant
differences in disc height between the OVX + veh and OVX +
E2 groups. DHI% in the OVX + veh group was significantly lower
compared with the Sham and OVX + E2 groups (Figures 1A,C).
MRI images showed that the signal intensity of the OVX + veh
group was lower compared with the Sham and OVX + E2 groups.
After E2 treatment, the IVD signal intensity of the OVX + E2
group was higher than the OVX + veh group. However, the signal
was still weaker than the Sham group (Figures 1B,D). H&E and
Safranin O-Fast Green staining showed that NPCs and ECM
(aggrecan and collagen) were significantly reduced in the OVX
+ veh group. The NP and ECM structures of the OVX + E2 group
were relatively complete and significantly better than those of the
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FIGURE 4
E2 activates the p70 S6K1 signaling pathway in vitro. (A–D) Western blotting was used to analyze the levels of p70 S6K1, p-S6K1 and p-S6 in human
NPCs. (E, G) The level of p70 S6K1 in human NPCs by immunofluorescence staining. (F, H) The level of p-S6 in human NPCs by immunofluorescence
staining. Values are mean ± SD (n = 3). ns: not significant; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p < 0.0001. E2, 17β-estradiol; NPCs, nucleus pulposus
cells; IL-1β, interleukin-1β; PF, PF4708671 (an p70 S6K1 inhibitor); p-S6, Phospho-S6 (the ribosomal protein S6); SD, standard deviation.

OVX + veh group (Figures 1E,F). In addition, histological scores
were significantly higher in the OVX + veh group compared with
the other two groups (Figure 1G). Immunohistochemical staining
showed that the levels of aggrecan and collagen II in the Sham
and OVX + E2 groups were significantly higher compared with
the OVX + veh group (Figures 2A,C,D). The levels of MMP3
and Cleaved caspase 3 in the Sham and OVX + E2 groups
were significantly lower compared with the OVX + veh group
(Figures 2B,E,F).

3.2 E2 mitigated IVDD progression by
activating the p70 S6K1 signaling pathway

As shown in Figures 3A–C, the IHC staining demonstrated
that compared with the Sham group, the level of p70 S6K1
was significantly increased in the OVX + veh group while the
level of p-S6, the phosphorylated substrate downstream of p70
S6K1, was significantly decreased. After E2 treatment, the level
of p70 S6K1 decreased in the OVX + E2 group while the
level of p-S6 significantly increased (all P < 0.05). Collectively,
these results indicated that E2 promoted the activation of the
p70 S6K1 signaling pathway, downstream of mTOR during the
progression of IVDD.

3.3 E2 activates p70 S6K1 signaling
pathway of human NPCs in vitro

To further explore the potential mechanism by which E2
mitigates the IVDD progression, the p70 S6K1 signaling pathway
was investigated using IL-1β-induced human NPCs apoptosis
model. As shown in Figure 4, Western blot analysis and cellular
immunofluorescence staining were performed to determine the
levels of p70 S6K1, p-S6K1, and p-S6. The p70 S6K1 is one of the
downstream effect targets of mTOR, and the degradation of p70
S6K1 and phosphorylation of S6K1 and S6 proteins represent the
activation of p70 S6K1 signaling pathway. Western blot analysis
showed that compared with the control group, the level of p70 S6K1
in the IL-1β group was significantly increased, while the levels of p-
S6K1 and p-S6 were significantly decreased (all P < 0.05). Compared
with the IL-1β group, the level of p70 S6K1 decreasedwhile the levels
of p-S6K1 and p-S6 increased in the E2 group, suggesting that E2
can inhibit IL-1β-inducedNPC apoptosis by activating the p70 S6K1
signaling pathway (Figures 4A–D).

The immunofluorescence staining indicated that the
pretreatment of PF4708671 (10 μM) increased the level of p70
S6K1 compared to the E2 group, but there was no significance
(Figures 4E,G). By contrast, the level of p-S6 was significantly
decreased after the pretreatment of PF4708671 compared to the
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FIGURE 5
E2 activation of p70 S6K1 signaling pathway improves ECM anabolism in vitro. (A–C) Western blot analysis was used to analyze the expression of
Collagen II and Aggrecan in human NPCs. (D, F) The expression of Aggrecan in human NPCs by immunofluorescence staining. (E, G) The expression of
Collagen II in human NPCs by immunofluorescence staining. Values are mean ± SD (n = 3). ns: not significant; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p < 0.001; ∗∗∗∗p
< 0.0001. E2, 17β-estradiol; NPCs, nucleus pulposus cells; IL-1β, interleukin-1β; PF, PF4708671(an p70 S6K1 inhibitor); ECM, extracellular matrix; SD,
standard deviation.

E2 group (P < 0.05) (Figures 4F,H). Taken together, these results
suggest that E2 can protect NPCs by activating the p70 S6K1
signaling pathway.

3.4 E2 activation of p70 S6K1 signaling
pathway maintains ECM homeostasis in
vitro

As shown in Figure 5, Western blot and cell
immunofluorescence staining showed that IL-1β significantly
decreased the expression levels of aggrecan and collagen II which
were upregulated by the pretreatment of E2. The addition of
PF4708671, a specific p70 S6K1 pathway inhibitor, effectively
downregulated the levels of aggrecan and collagen II.

As shown in Figure 6, IL-1β significantly increased the
expression levels of MMP3 and cleaved caspase 3, while E2
effectively reversed their levels.The effects of E2 can be abolished by
the addition of PF4708671, a specific p70 S6K1 pathway inhibitor,
which significantly increased the levels of MMP3 and cleaved
caspase 3. These results together indicate that E2 maintains ECM

homeostasis and inhibits NPC apoptosis by activating p70 S6K1
downstream of mTOR.

4 Discussion

In recent years, studies have found that IVDD is one of the
leading potential causes of low back pain (Wang et al., 2021;
Wang et al., 2023; Chen et al., 2017), which is a severe health
problem that will reduce the quality of life. To date, the pathology
and mechanism of IVDD have yet to be fully understood. Studies
have found that postmenopausal women have a relatively high
incidence of low back pain, which may be related to the decreased
estrogen level in postmenopausal women (Wang, 2015; Wang,
2017). Some studies have also confirmed that E2 can inhibit the
apoptosis of NPCs, thereby alleviating IVDD (Liu et al., 2018;
Wang et al., 2021; Yang et al., 2015).

The mechanical/mammalian target of rapamycin (mTOR)
is an evolutionarily conserved serine/threonine kinase and an
important member of the phosphocreatine 3-kinase-associated
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FIGURE 6
E2 activation of the p70 S6K1 signaling pathway inhibits MMP3 and cleaved caspase 3 in vitro. (A–D) Western blot analysis was used to analyze the
expression of MMP3 and cleaved caspase 3. (E, F) The expression of MMP3 was determined by immunofluorescence staining. (G, H) The expression of
cleaved caspase 3 was determined by immunofluorescence staining. Values are mean ± SD (n = 3). ns: not significant; ∗p < 0.05; ∗∗p < 0.01; ∗∗∗p <
0.001. E2, 17β-estradiol; NPCs, nucleus pulposus cells; IL-1β, interleukin-1β; PF, PF4708671(an p70 S6K1 inhibitor); MMP3, matrix metalloproteinase 3;
SD, standard deviation.
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kinase (PIKK) family (Mita et al., 2003). mTOR signal transduction-
driven translation regulation is mainly dependent on eukaryotic
translation initiation factor 4E (eIF4E) binding protein (4E-
BP), ribosomal protein S6 kinase (S6K), and its downstream
participants, which play an essential role in the rapid cellular
response to environmental changes (Yang et al., 2022). It has
been found that activated protein kinase S6K, one of mTOR’s
downstream effectors, transfers upstream signals to various effectors
to regulate a variety of cellular processes (Jastrzebski et al., 2009;
Magnuson et al., 2012), such as inhibiting glycogen synthase
kinase-3 (GSK3), Bcl-2/BCLXL-antagonists, causes cell death
and activates the cAMP response element regulator τ (CREMτ)
and the estrogen receptor (ERα) to promote transcription
(Yang et al., 2022).

Meanwhile, relevant studies have shown that the
PI3K/AKT/mTOR signaling pathway is involved in the progression
of IVDD (Kakiuchi et al., 2019; Bai et al., 2021; Ito et al., 2017).
However, the exact role of the p70 S6K1 signaling pathway, one of
the downstream effect targets of mTOR, is unclear. Bai et al. (2021)
reported that the combination of resveratrol and E2 effectively
inhibited the apoptosis of NPCs induced by IL-1β in vitro, mainly
through the PI3K/AKT/mTOR/caspase-3 and PI3K/AKT/GSK-3β
pathways. This study suggests that E2 can inhibit NPCs apoptosis
by activating the PI3K/AKT/mTOR pathway. However, there is
no evidence of the expression of downstream mTOR pathways
in human and rat NP tissues. By using immunohistochemical
staining, our study found that the expression of p70S6K1 and its
phosphorylated products in rat IVD changed with the degree of
IVDD.Our in vitro study showed that the positive expression of p-S6
and p-S6K1 in the OVX+ E2 group was higher than that in the OVX
+ veh group, while the positive expression of p70 S6K1 was lower,
indicating that E2 had an activation effect on p70 S6K1 signaling
pathway. Therefore, these results preliminarily demonstrate a
close relationship between estrogen, p70 S6K1 signaling pathway
downstream of mTOR, and IVDD.

It is well known that there are many causes of IVDD,
including biomechanical factors, spinal instability, NPC apoptosis,
and metabolic disorders of the ECM (Parreira et al., 2018). The
ECM (including collagen, aggrecan, and other matrix proteins)
maintains the trophic balance inside and outside of the IVD,
and its metabolites may induce inflammation when the balance
is disrupted (Wang et al., 2019; Wang et al., 2021; Chen et al.,
2017). MMPs (MMP3 and MMP13, etc.) are the major collagen-
degrading enzymes in the ECM and inhibit collagen II and aggrecan
synthesis, further exacerbating the process of IVDD (Wang et al.,
2019; Wang et al., 2023). Meanwhile, relevant studies have reported
that apoptosis and inflammation of NPCs are key contributing
factors to IVDD, which can accelerate the progression of IVDD by
inducing the high expression ofMMPs to degrade ECM (Wang et al.,
2019; Ding et al., 2013; Risbud and Shapiro, 2014; Chen et al., 2017).
Apoptosis is initiated and executed by the caspase family of cysteine
proteases located in the cytoplasm.Downregulation of caspase-3 can
prevent apoptosis and degenerative changes of the IVD (Wang et al.,
2021; Li et al., 2019; Dai et al., 2021). Based on a previous study, we
established rat IVDD model using bilateral ovariectomy combined
with needle puncture to AF (Wang et al., 2021). Using histological
and imaging analysis, we found that the estrogen therapy could

reduce NPCs apoptosis and promote ECM balance by down-
regulating the levels ofMMP3 and cleaved caspase 3, thus effectively
attenuating IVDD.

In the in vitro experiments, we investigated the effect of E2 on
the p70 S6K1 signaling pathway using humanNPCs. Comparedwith
the IL-1β group, it was found that E2 can significantly decrease the
level of p70 S6K1while increase the expression of its phosphorylated
substrates p-S6 and p-S6K1, indicating that this pathway was
activated by E2.When using a p70 S6K1 signaling pathway inhibitor
(PF4708671), we found that p70 S6K1 expression increased, and
its phosphorylated substrate p-S6 expression decreased compared
to the E2 group. However, p-S6K1 is highly expressed because PF-
4708671 can block the activity of p70 S6K1 kinase and induce its
phosphorylation at T389, which mainly inhibits its downstream
phosphorylation substrate p-S6 (Rosner et al., 2012).Meanwhile, the
effects of the p70 S6K1 pathway on the expression ofMMP3, cleaved
caspase 3, Collagen II, and aggrecan were further examined through
cell experiments. Our results showed that inhibition of the p70 S6K1
pathway in the IL-1β and PF groups increased the expression of
MMP3 and cleaved caspase 3, resulting in the degradation of ECM-
the reduction of collagen II and aggrecan. On the contrary, the
results of the control group and E2 group were similar to those of
previous studies (Liu et al., 2018; Wang et al., 2021; Yang et al.,
2015). These results further suggest that E2 can improve IVDD
by activating the p70 S6K1 signaling pathway, down-regulating
the expression of MMP3 and cleaved caspase 3, and restoring
ECM balance.

There are some limitations in this study. First, we verified the
protective effect of E2 on IL-1β-induced apoptosis of NP cell lines.
However, the impact of E2 on human NPCs isolated from clinical
patients has not been validated. Secondly, only ovariectomized
female rats were selected in our study as the study objects. In
addition, we selected 3-month-old rats, not old rats, which may
impact the experimental results. Finally, the downstream targets
of the mTOR pathway mainly include S6K and 4E-BP, which are
involved in translation control. S6K consists of S6K1 and S6K2,
but mainly, S6K1 is activated to transmit signals to various effector
factors to regulate multiple cellular processes. There are three
homologs of 4E-BP in mammals: 4E-BP1, 4E-BP2, and 4E-BP3.
The regulatory mechanism mediated by 4E-BP is relatively more
complex compared to S6K. Thus, this study only confirmed the p70
S6K1 signaling pathway downstream of mTOR, and the mechanism
of the 4E-BP1 signaling pathway downstream of mTOR remains to
be further studied.

5 Conclusion

In this study, we demonstrate that 17β-estradiol inhibits IL-1β-
inducedNPCs apoptosis andECMdegradation by activating the p70
S6K1 signaling pathway downstream of mTOR, thereby exerting its
protective effect on intervertebral disc.
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