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Liquiritigenin (LIQ) is a dihydroflavononemonomer compoundwith a planar ring
structure that exhibits potent anti-inflammatory activity. The post-translational
modifications (PTMs) of histones are closely associated with inflammatory
diseases. To explore the relationships between the anti-inflammatory effects
and epigenetic regulatory mechanisms of LIQ, we optimized the super stable
isotope labeling by amino acids in cell culture (super-SILAC) method combined
with a compound stimulation strategy. Moreover, we evaluated the identification
coverage and demonstrated high reliability as well as reproducibility of the
optimized method at both the peptide and cellular lysate levels, which are
promising for elucidating disease pathology and drug mechanisms. We further
applied the method to a system-wide characterization of histone PTMs in M1
macrophages treated with LIQ. The quantitative results showed that H4K5ac,
H4K16ac, H3K9ac, H3K27ac, and H2BK12ac are significantly upregulated.
Transcriptome analysis revealed that LIQ could exert anti-inflammatory effects
by modulating the histone PTMs and regulating gene expressions through
the peroxisome proliferator-activated receptor (PPAR) signaling pathway.
Collectively, we provide a sensitive and universal strategy for research on the
epigenetic mechanisms of natural products as well as facilitate epigenetic
understanding of LIQ in inflammatory therapies.
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GRAPHICAL ABSTRACT

Introduction

Natural products with structural diversity often exhibit
therapeutic activities against various diseases (Baker et al., 2007;
Zhao et al., 2023). Approximately 25%–50% of commercially
marketed drugs are derived from natural products (Kingston,
2011). Flavonoid compounds play important roles in anti-
inflammatory activities through their planar ring structures, which
make them promising lead compounds for inflammatory therapy
(Theoharides et al., 2001; Wang et al., 2021; Li et al., 2023). Previous
studies have revealed that most flavonoids and their derivative
dihydroflavones exert anti-inflammatory effects by reducing the
expressions of proinflammatory cytokines like IL-6, IL-8, TNF-α,
and IL-1β through the NF-κB, MAPK, and JNK-STAT pathways
(Serafini et al., 2010; Santangelo et al., 2007). Liquiritigenin (LIQ) is
a dihydroflavonone monomer compound isolated from licorice that
has been demonstrated to have potent anti-inflammatory effects
through inhibition of the activation of NF-κB in macrophages as
well as reduction of the production of inducible nitric oxide synthase
(iNOS) and proinflammatory cytokines (Babu et al., 2023; Kim et al.,
2008; Wang et al., 2015). Additionally, LIQ positively modulates the
activity of sirtuin 3 (SIRT3), which is one of the most prominent
deacetylases (Zhou et al., 2022). Nonetheless, the relationships
between the anti-inflammatory effects of LIQ and regulation of
its epigenetic mechanisms remain unclear.

Epigenetic regulation plays a crucial role in the regulation
of gene expression. Epigenetic marks can alter the chromatin
structure, thereby influencing gene expressions and cellular
functions as well as participating in the pathogenesis of various
diseases (Zhang and Cao, 2021; Zhu et al., 2021). Histone

post-translational modifications (PTMs) are critical epigenetic
regulatory factors that are regulated in a highly dynamic and
complicated manner owing to the enzymes that catalyze the
addition of specific PTMs (writers), reader proteins that recognize
and bind specific domains (readers), and enzymes that remove
PTMs (erasers) (Millán-Zambrano et al., 2022; Choudhary et al.,
2014; Hyun et al., 2017). Small-molecule metabolites are closely
associated with specific epigenetic modifications. For instance,
various acyl-CoA donors can be catalyzed through a range of
acylations by histone acetyltransferases (HATs) (Xie et al., 2024;
Egger et al., 2024; He et al., 2023). Histone PTMs exert diverse effects
on physiological and pathological processes. Typically, histone
methylation and acetylation can impact histone–DNA binding
affinity, alter chromatin accessibility, and regulate subsequent
downstream gene transcriptions (Kuznetsova et al., 2020; Lawrence
and Natoli, 2011; Sinha et al., 2023). In contrast, dysfunction of
histone PTMs has been extensively studied in various diseases,
including neurological disorders, inflammatory diseases, and
cancers (Li et al., 2019; Netea et al., 2016; Noberini et al., 2018).
Inhibition of H3K18/K27ac expression has been reported to
significantly impact proliferation and metastasis of liver cancer cells
(Cai et al., 2021). Histone deacetylase 3 (HDAC3) has been reported
to be a crucial mediator of macrophage differentiation, activation,
and polarization (Schultze, 2017; Van den Bossche et al., 2014).
Comprehensive identification and quantitation of histone PTMs
remain great challenges owing to several factors. First, histone PTMs
exhibit a high degree of variability with more than 30 structurally
distinct modifications, which are located on over 180 amino acid
residues of histones (Millán-Zambrano et al., 2022; Zhao et al.,
2024). Second, PTM crosstalk adds an additional layer of functional
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protein regulation and leads to expansion of the information content
of a proteome. For instance, acetylation and methylation compete
for the same site (H3K27) in embryonic stem cells (Huang et al.,
2018; Ferrari et al., 2014). Third, histone PTMs are highly dynamic
and reversible; histone PTMs with low abundances can further
complicate identification and quantitation (Chan and Maze, 2020).

Mass spectrometry (MS)-based proteomics has advantages of
high resolution, accuracy, and sensitivity, thereby providing the
most accessible opportunity for global characterization of the
histone PTM landscape (Cravatt et al., 2007). Among the MS-
based quantitative strategies, stable isotope labeling by amino acids
in cell culture (SILAC) is widely used in protein profiling and
PTM analysis, where distinct isotopically encoded amino acids are
introduced at the cellular level to reduce the experimental variability
caused by sample preparation and improve quantitative accuracy
(Kirchner and Selbach, 2012; Maile et al., 2015). Technological
advancements from SILAC to super-SILAC have significantly
expanded the quantitative capabilities of proteomics (Cuomo et al.,
2011). The super-SILAC method utilizes a labeled mixture as an
internal standard and is subsequently spiked into diverse samples
for quantitative analysis (Noberini et al., 2016). This approach
is beneficial for tissue samples and high-throughput sample sets.
A standardized protocol for the super-SILAC method has been
developed that utilizes treatment-naïve histone standard samples
derived from various cell lines (Noberini and Bonaldi, 2017;
Noberini et al., 2023). Tissue-specific histone propionylation and
butyrylation were developed through derivatization methods in
conjunctionwith super-SILAC, and compound stimulation has been
suggested to increase the abundance of PTM peptides to facilitate
further identification and quantitation (Vai et al., 2024).

In the present study, we optimized the super-SILAC method
using multiple compound stimulations to increase the modification
abundances of our histone standard samples. After assessing the
identification depth, quantification reproducibility, and accuracy of
our method at the synthetic peptide and whole-cell lysate levels,
we applied the approach to M1 macrophages to elucidate the
anti-inflammatory mechanism of LIQ. Quantitative transcriptomic
results revealed the potential roles of histone PTMs in inflammatory
processes and are expected to provide insights for further biological
research on histone PTMs.

Materials and methods

Cell lines and reagents

TheMCF-7, A549,MCF-10A,MDA-MB-231, THP1, andMDA-
MB-468 cell lines used in this work were obtained from ATCC.
The reagents used include DMEM for SILAC (cat. no. 88425,
Thermo Fisher Scientific), dialyzed fetal bovine serum (FBS; cat.
no. 30067334, GIBCO), 13C6-Lys (cat. no. 211204102, Silantes),
13C6-15N4-Arg (cat. no. 201604102, Silantes), protease inhibitor
cocktail (cat. no. 6538282001, Roche), modified sequencing-
grade trypsin (HLS TRY001N, HuaLishi Scientific), GSK-LSD1
dihydrochloride (GSK-LSD1·2HCl; S7574, Selleck), Jumonji
histone demethylase inhibitor (JIB-04; S7281, Selleck), vorinostat
or suberoylanilide hydroxamic acid (SAHA; HY-10221, MCE),
nicotinamide (NAM; S1761, Beyotime), trichloroacetic acid (TCA;

T0699, Sigma), Sep-Pak C18 cartridges (WAT023590, Waters),
acetyl lysine antibody (ICP0380, Immunechem), methylated (ε-N)
lysine antibody (ICP0501, Immunechem), horseradish peroxidase
anti-histone H3 antibody (ab21054, Abcam), acetyl-histone H3
(Lys14) (D4B9) rabbit mAb (7627S, Cell Signaling), acetyl-histone
H3 (Lys27) rabbit mAb (F0271, Selleck), anti-acetyl-histone H3
(Lys9) rabbit pAb (PTM-112, PTM Biolabs), anti-acetyl-histone
H4 (Lys5) rabbit pAb (PTM-119, PTM Biolabs), acetyl-histone H4
(Lys16) (E2B8W) rabbit mAb (13534S, Cell Signaling), anti-histone
H2B (acetyl K12) (Ab61228, Abcam), anti-histone H2A (acetyl K5)
(Ab45152, Abcam), anti-monomethyl-histone H3 (Lys4) antibody
(07-436, Millipore), trimethyl-histone H3 (Lys4) antibody (Cell
Signaling, 9727S), dimethyl-histone H3 (Lys9) (D85B4) antibody
(Cell Signaling, 4658S), trimethyl-histone H3 (Lys9) (D4W1U)
antibody (Cell Signaling, 13969T), dimethyl-histone H3 (Lys27)
rabbit mAb (F0329, Selleck), anti-trimethyl-histone H3 (Lys27)
antibody (05-1951-S, Millipore), and dimethyl-histone H3 (Lys36)
antibody (2901S, Cell Signaling).

Peptides

The histone peptides were synthesized by Nanjing TGpeptide
Biotechnology Co. Ltd. (Supplementary Table S1).

Cell cultures

MCF-7, A549, MDA-MB-231, and MDA-MB-468 cells were
cultured in DMEM containing 10% FBS (cat. no. 10091148,
GIBCO) and 1% penicillin and streptomycin (CM-0525, Procell).
The THP1 cells were cultured in RPMI 1640 medium containing
10% FBS and 1% penicillin and streptomycin solution. The MCF-
10A cells were cultured with DMEM/F12 containing 5% horse
serum (HS), 20 ng/mL of epidermal growth factor (EGF), 0.5 μg/mL
of hydrocortisone, 10 μg/mL of insulin, 1% non-essential amino
acids (NEAAs), as well as 1% penicillin and streptomycin.TheTHP1
cells were treated with 500 nM of phorbol myristate acetate (PMA)
for 6 h, followed by treatment with 100 ng/mL of lipopolysaccharide
(LPS) and 20 ng/mL of IFNγ for 12 h to activate the M1 type
macrophages. Lastly, the M1-type cells were treated with LIQ for
another 24 h. All cells were grown at 37°C supplied with 5% CO2.

SILAC-based cell culture

For SILAC, the MCF-7 and A549 cells were labeled in DMEM
with 13C6 lysine and 13C6

15N4 arginine containing 2 mM of L-
glutamine, 1% penicillin and streptomycin, and 10% dialyzed
FBS (cat. no. 04-011-1A, Biological Industry) for 6–8 passages.
The labeling efficiency was determined by liquid chromatography
mass spectrometry (LC-MS/MS) analysis before histone extraction.
When the labeling efficiency was above 95%, the cells were treated
with 2.0 μM of GSK-LSD1·2HCl and 0.1 μM of JIB-04 for another
7 d; on the sixth day, 5 μMof SAHA and 10 mMofNAMwere added
to themedium for 24 h. After 7 d, the cells were harvested for histone
extraction.
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Histone extraction

Theharvested cells were lysed using an extraction buffer (10 mM
of HEPES at pH 7.0, 10 mM of KCl, 1.5 mM of MgCl2, 0.34 M of
sucrose, and 1× protease inhibitor cocktail) with 0.5% nonidet P-
40 (NP-40) on ice for 30 min. After centrifugation, the pellets were
washed with the extraction buffer without NP-40, resuspended in
0.2 M of H2SO4, and incubated overnight at 4°C. The supernatant
was collected for TCA precipitation, and the precipitate was washed
with cold acetone. The histone precipitate was dried at room
temperature and dissolved in ddH2O.

In-solution digestion

Histone was diluted in 100 mM of NH4HCO3. Then, sequence-
grade trypsin was added at a trypsin-to-protein ratio of 1:50 and
incubated overnight at 37°C.The sample was dried using SpeedVac.
Lastly, the histone peptide sample was desalted using Sep-Pak C18
cartridges (Waters).

In-gel digestion

Histone was separated in 12% gel and stained with Coomassie
brilliant blue. Then, the histone bands were cut and gel particles
were washed with 50% ethanol to remove the blue color. Next, the
gels were washed with water twice for 20 min each, and the gel
bands were cut into 1 mm3 pieces.The gels were dehydrated in 100%
acetonitrile (ACN) until they shrank into white pieces and were
then dried using a SpeedVac. Later, the gels were rehydrated with
10 ng/μL of trypsin solution in 50 mM of NH4HCO3 and incubated
overnight at 37°C.We then washed the gels in 50 μL of 50%ACN for
15 min, 75%ACN/0.1%TFA for 15 min, and 100%ACN for another
5 min. The three extracts were finally combined and dried using the
SpeedVac. The tryptic peptides were desalted using Sep-Pak C18
cartridges.

LC-MS/MS analysis

The histone peptides were detected using the Orbitrap Ascend
Tribrid™ mass spectrometer (Thermo Fisher Scientific) coupled
with the Vanquish Neo high-performance liquid chromatography
(HPLC) system (Thermo Fisher Scientific). The peptides were
dissolved in 0.1% formic acid in water (v/v), centrifuged at 21,130g
for 10 min, and the supernatant was injected into a self-made
capillary liquid chromatography column filled with C18 resin. The
flow phase A contained 0.1% formic acid in water (v/v), while
the flow phase B included 0.1% formic acid, 90% ACN, and 10%
water. The gradient elution steps were as follows: 0–7 min, 0%–5%
B; 7–36 min, 5%–12% B; 36–101 min, 12%–30% B; 101–111 min,
30%–45% B; 111–120 min, 45%–80% B. Then, the eluted peptides
were analyzed using the Ascend mass spectrometer, which was used
for full MS scans from 300 to 1500 m/z with a resolution of 120,000.
In the data-dependent mode, the precursor ions with charge states
1–5 were selected for higher energy collisional dissociation (HCD)

fragmentation at 30% collision energy, and the secondary fragment
ions were detected using Orbitrap with the dynamic exclusion time
set to 10 s.

Analysis of histone PTMs

The histone PTMs were analyzed using Mascot software
(version 2.3.01) and the UniProt human histone database.
Trypsin/P was selected as the enzyme with five missed
cleavages. The fixed modifications include label:13C(6)(K)
and label:13C(6)15N(4) (R), while the variable modifications
include oxidation (M), label:13C(6)(K) + methyl, label:13C(6)(K)
+ dimethyl, label:13C(6)(K) + trimethyl, label:13C(6)(K)
+ acetyl, label:13C(6)(K) + propionyl, label:13C(6)(K) +
butyryl, label:13C(6)(K) + crotonyl, label:13C(6)(K) +
malonyl, label:13C(6)(K) + succinyl, label:13C(6)(K) + GlyGly
(ubiquitination), label:13C(6)(K) + lactyl, label:13C(6)(K)
+ hydroxyisobutyryl, label:13C(6)15N(4) (R) + dimethyl,
label:13C(6)15N(4) (R) + trimethyl, and phospho (S/T).The peptide
tolerance was 10 ppm and MS/MS tolerance was 0.02 Da. The
analyses were conducted for five representative histone variants,
including P0C0S8 (H2A1), P0C0S5 (H2A.Z), P62807 (H2B1C),
P84243 (H3.3), and P62805 (H4).

Quantitative analysis of histone PTMs

A comprehensive wildcard database search was conducted using
Byonic software (ProteinMetrics Inc.) with the following parameter
configurations. The precursor mass tolerance was set at 6 ppm, and
the fragment ion mass tolerance was defined as 0.5 Da. Trypsin/P
was designated as the digestion enzyme, and up to five missed
cleavages were permitted. Data analyses were performed against
the human histone sequence database derived from the UniProt
database (version 2023-06-08, comprising 86 sequences). The fixed
modifications include label:13C(6)(K) and label:13C(6)15N(4)
(R); the variable modifications were label:13C(6)(K) + methyl,
label:13C(6)(K) + dimethyl, label:13C(6)(K) + trimethyl,
label:13C(6)(K) + acetyl, label:13C(6)(K) + propionyl,
label:13C(6)(K) + butyryl, label:13C(6)(K) + crotonyl,
label:13C(6)(K) + succinyl, label:13C(6)(K) + glutaryl,
label:13C(6)(K) + GlyGly (ubiquitination), label:13C(6)(K) + lactyl,
label:13C(6)(K) + hydroxyisobutyryl, label:13C(6)15N(4)(R) +
methyl, label:13C(6)15N(4)(R) + dimethyl, and phospho (S/T).
A Byonic score threshold of 250 was applied (Bern et al., 2009;
Pirro et al., 2021; Riley et al., 2019), and only the peptide spectra with
sequence lengths exceeding five residues were retained for analyses.
For peptides identified with only heavy labels, we complemented
their light-labeled data through in silico methods using Byonic.
The valence states identified across unique peptides were integrated
to ensure comprehensive representation. All quantitative analyses
were conducted for six representative histone variants, including
P0C0S8 (H2A1), P0C0S5 (H2A.Z), P62807 (H2B1C), P84243
(H3.3), P68431 (H3.1), and P62805 (H4). All spectra and ion-
current integration regions were manually checked to ensure
reliability prior to quantification.
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RT-qPCR

The total RNA was extracted from the cells using the
RNA extraction kit (Abclonal RK30120), and cDNA was
obtained using the reverse transcription kit (Abclonal RK20429).
Quantitative PCR (qPCR) was then performed using the
SYBR Green Fast qPCR Mix (Abclonal RK21203) on the Bio-
Rad system (Supplementary Table S2).

Western blotting (WB)

Appropriate proteins or histones were lysed with 2× loading
buffer (100 mM of Tris-Cl, 4% SDS, 0.2% bromophenol blue,
20% glycerol, and 200 mM of DTT), and the solution was boiled
at 99°C for denaturation. Then, approximately 2.0 μg of the
protein or histone was separated using a polyacrylamide gel before
transferring to a nitrocellulose membrane. The membrane was then
blocked and immunoblotted with appropriate antibodies, before
washing and incubating with peroxidase-conjugated secondary
antibodies. Lastly, the membranes were washed and imaged by
chemiluminescence (Clinx, chemiscope 6000).

RNA isolation and library preparation

RNA was extracted from M1 macrophages treated with 30 μM
of LIQ (three control and three LIQ groups) using TRIzol
reagent according to manufacturer protocols (Invitrogen, CA,
United States). Then, RNA purity and quantification were achieved
using the NanoDrop 2000 spectrophotometer (Thermo Fisher
Scientific). The RNA integrity, library construction, transcriptome
sequencing, and analysis were conducted by OE Biotech Co., Ltd.
(Shanghai, China).

Statistical analysis

Statistical analyses were performed using GraphPad Prism
software. All data were presented as mean ± standard error of
the mean (SEM). Unpaired two-tailed Student’s t-test with equal
variance was performed. The statistical details of each experiment
are shown in the figure legends. The significance is indicated with
symbols as follows: ∗∗p < 0.01 or ##p < 0.01, ∗p < 0.05, and not
significant: p > 0.05.

Results

Optimization of the super-SILAC strategy

HDACs are divided into the Rpd3/Hda1 and sirtuin families,
which function through either zinc-dependent or NAD+-dependent
mechanisms (Seto and Yoshida, 2014; Yang and Seto, 2008).
Vorinostat (SAHA) is the first marketed inhibitor of the Rpd3/Hda1
family of HDACs, and NAM is an effective biochemical inhibitor of
sirtuins (Anderson et al., 2003; Gallo et al., 2004; Bitterman et al.,
2002). The synergistic effects of SAHA and NAM can significantly

increase histone acetylation levels (Figure 1A). Similarly, lysine-
specific demethylase (LSD) and Jumonji C (JMJC) are two
evolutionarily conserved families of histone demethylases that have
different reactionmechanisms.The LSD family is demethylated into
monomethylated and dimethylated substrates by the flavin adenine
dinucleotide (FAD)-dependent amine oxidation reactions, and the
JMJC family id demethylated into mono-, di-, and tri-methylated
residues through Fe (II) and α-ketoglutarate (Bitterman et al., 2002).

We combined the two compounds GSK-LSD1·2HCl and JIB-
04 to increase the histone methylation levels. Owing to the slower
dynamics of methylation compared to acetylation, no significant
changes were detected over a short period of time (Zee et al.,
2010).We then explored the time-dependent changes inmethylation
levels, which showed that the histone methylation sites were
upregulated after the 7-day treatment, especially at the H3K4me3,
H3K9me3, H3K27me2, H3K27me3, and H3K36me2 modification
sites (Figures 1B, C). Therefore, we employed GSK-LSD1·2HCl and
JIB-04 to treat the cells for 7 d, where SAHA and NAM were added
over the last 24 h to prepare the SILAC histone standard samples
(Figure 1D). SDS-PAGE results indicate that the histone standard
samples have high purity (Figure 1E). Based on increased levels
of acetylation and methylation modifications, we obtained heavy-
labeled histone mixture standards with labeling efficiencies of K >
95% and R > 95%.

Histone standard samples improve
identification coverage of histone PTMs

To evaluate qualitative coverage, we utilized the in-gel digestion
approach to collect H1, H2A, H2B, H3, and H4 of our histone
standard samples. Following LC-MS/MS analysis, the data were
analyzed against the UniProt human histone sequence database
using Mascot software, which helped identify 12 modification types
and 151 modification sites (Figure 2A; Supplementary Table S1).
Among these, we found 59 histone PTM sites located on the
N-terminal of H3, nine different modification sites on H3K18,
and 10 different modification sites on H3K23. In addition, we
identified a total of 123 acylation sites containing 42 acetylation
sites and 81 other novel acylation sites (Figure 2B). The identified
PTM peptides comprised 135 acetylated, 49 propionylated, and 26
crotonylated peptides (Figures 2C, D). Consequently, the diversity
of the above modification sites and peptides can assist with
subsequent qualitative and quantitative analyses.

We compared our results with the findings of other proteomics-
based histone PTM profiling studies. Vai et al. (2024) identified 66
histone PTM sites in clinical breast cancer tissue with the optimized
histone in-gel derivatization procedure. Sidoli et al. (2019) identified
85 histone PTM sites using the SILAC method in the murine T
lymphoblast cell line EL4. Huang et al. (2018) identified 111 histone
PTM sites in six cancer cell lines using in-gel digestion. Zheng et al.
(2016) identified 97 histone PTM sites through in-gel digestion in
mouse embryonic stemcells andneural progenitor cells. Luense et al.
(2016) obtained 103 histone PTM sites in human germ cells using
propionylation labeling and trypsin digestion. Compared with these
results, our optimized super-SILAC strategy shows deeper peptide
coverage and more histone modification sites (Figure 2E). The
proposed compound stimulation strategy enhances the abundances
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FIGURE 1
Optimization of the super-SILAC strategy: (A) immunoblot analysis of the global acetylation levels after treatments with SAHA (5.0 μM) and NAM
(10 mM) for 24 h; (B, C) immunoblot analyses of the global and site-specific methylation levels following treatments with GSK-LSD1·2HCl (2.0 μM) and
JIB-04 (0.1 μM); (D) workflow for the optimized super-SILAC strategy; (E) SDS-PAGE analysis of the purity of heavy histones extracted from A549 and
MCF-7 cells.

of various histone PTMs, especially those with low abundances,
which allows an in-depth profiling dataset of the histone PTMs.

Optimized super-SILAC approach shows
good quantitative performances at the
peptide and cellular lysate levels

We initially synthesized five histone-modified peptides, namely,
H3K18ac, H3K23ac, H3K27ac, H3K23pr, and H3K18bu/K23ac,
to evaluate the quantitative reproducibility and accuracies of
our histone standard samples. The purity of these peptides was

verified by LC-MS/MS, and the results show that the heavy-labeled
histone standard peptide and light-labeled synthesized peptide
exhibit high-quality and nearly consistent retention times of the
MS/MS spectra (Figures 3A, B). Based on the purities of the five
synthesized peptides, we combined them into a mixture with
specific proportions to ensure approximately equal quantitative
areas under the curve (AUCs) in the extracted ion chromatograms
(XICs); then, the histone standard peptides were mixed with
above synthesized peptide mixture at ratios of 1:1, 1:3, and 1:9
(Figure 3B).Thequantitative results showhigh correlation (R> 0.99)
between the replications in different groups, demonstrating good
reproducibility (Figure 3C; Supplementary Table S2). Furthermore,
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FIGURE 2
Deep identification of histone post-translational modifications (PTMs) by super-SILAC; (A) map of histone PTM sites identified by in-gel digestion; (B)
list of identified histone PTM sites; (C, D) global distribution of histone PTM peptides; (E) number of histone PTM sites identified in this study and
comparison with those of other histone PTM profiling studies. Abbreviations: lysine acetylation (Kac), monomethylation (Kme1), dimethylation (Kme2),
trimethylation (Kme3), propionylation (Kpr), butyrylation (Kbu), crotonylation (Kcr), malonylation (Kmal), succinylation (Ksucc), ubiquitination (Kub),
lactylation/carboxyethylation (Kla/Kca), 2-hydroxyisobutyrylation/β-hydroxybutyrylation (Khib/Kbhb), arginine monomethylation (Rme1), arginine
dimethylation (Rme2), and serine/threonine/tyrosine phosphorylation (S/T/Ypho).

we evaluated the normalized ratio and absolute relative error of
each peptide, whose results show consistent quantitative trends
with the mixing ratios (Figure 3D) and less than 30% error
compared to the theoretical values (Figure 3E). The coefficient of
variation (CV) values of all groups were below 20%, indicating
relatively low variability (Figure 3F). Thus, our histone standard

samples demonstrate effective reproducibility and high accuracies
for quantitative analysis at the peptide level.

It is widely acknowledged that histone PTMs play crucial
regulatory roles in cancer. Extensively studied histone marks, such
as H3K9me3, H3K9ac, and H3K14ac, that are associated with the
activation of gene expression (Liu et al., 2023) exhibit consistent
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FIGURE 3
Quantification of the synthesized histone modification peptides with heavy histone standards: (A) representative MS/MS spectrum of the light-labeled
synthesized peptides and heavy-labeled histone peptides with the sequence KSAPATGGVK (H3K27ac); (B) relative abundances of the representative
peptides in (A) at different mixing ratios (blue: light-labeled peptide; yellow: heavy-labeled peptide); (C) correlation analysis between two replicates at
different mixing ratios (REP1: replicate 1, REP2: replicate 2); (D) quantification intensities of the peptides and normalized ratios across different groups;
(E, F) absolute relative errors and coefficient of variation (CV) values for different groups.
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FIGURE 4
Systematic analysis of the histone PTMs in breast cancer cells: (A) immunoblot analyses of the levels of H3K9ac, H3K14ac, and H3K9me3 in breast
cancer and non-tumorigenic breast epithelial cells; (B) workflow for the systematic analysis of histone PTM sites in breast cancer cells; (C) scatter plot
analysis of the differential histone PTM sites (red dots p < 0.05); (D) heatmap analysis of the quantitative sites with p-values <0.05 in MCF-10A and
MDA-MB-231 groups based on three replicates (R1: replicate 1, R2: replicate 2, R3: replicate 3); (E, F) comparative analysis of the numbers and overlaps
of H3/H4 PTM sites identified in this study with those from a previous study by Noberini et al. (2018); (G) comparative heatmap analysis of the
quantitative H3/H4 PTM sites identified by Noberini et al. (2018); (H) immunoblot analysis of specific histone PTM sites in breast cancer and
non-tumorigenic breast epithelial cells.

increasing trends in Luminal A-like, Luminal B-like, and triple-
negative breast cancer, suggesting that they could be used as
potential biomarkers (Noberini et al., 2019). Similarly, our WB
results show consistent upregulation of these sites in triple-negative
breast cancer cells (MDA-MB-468 and MDA-MB-231) relative to
non-tumorigenic breast epithelial cells (MCF-10A) (Figure 4A).
Some authors have systematically analyzed histone PTMs in breast
cancer cell lines through the super-SILAC method (Cuomo et al.,
2011; Noberini et al., 2018; Noberini et al., 2019); however, their
works have only focused on histone PTMs of H3 and H4.Therefore,
we aimed to systematically assess the differences between cancer
cells and ordinary epithelial cells to further evaluate our approach
in a complex sample system.

By applying the optimized super-SILAC method, we extracted
histones from MCF-10A and MDA-MB-231 cell lines as
well as performed quantitative analyses of the histone PTMs
(Figure 4B). Compared to non-tumorigenic breast epithelial cells,
a total of 82 histone PTM sites were quantified (Figure 4C;
Supplementary Table S3A), which contained 31 significantly
upregulated sites (p < 0.05) (Figure 4D). In addition to previously
reported upregulated sites, such asH3K4me,H3K9ac, andH4K14ac,
we quantified two uncharacterized sites, namely, H4K91pr and

H2BK120bu, which were also significantly upregulated (p <
0.05) (Figure 4D). Focusing on H3 and H4, we quantitatively
analyzed 45 sites that encompass the majority of sites identified
by Noberini et al. (2018) (Figures 4E, F; Supplementary Table S3B).
The comparison of overlapping identified sites showed consistent
quantitative results formost sites (Figure 4G). For further validation,
we assessed the variation trends of the PTM sites via WB, which
were consistent with the above quantitative results (Figure 4H). In
conclusion, our optimized super-SILAC method for quantitative
analysis demonstrates high reliability at both the peptide and
cellular lysate levels. These results highlight the potential of our
histone standard samples in elucidating disease pathology and
drug mechanisms.

Epigenetic regulation of histone PTMs by
LIQ in M1 macrophages

Histone PTMs, especially acetylation, enable regulation of the
transcriptional repression of macrophage inflammatory responses
(Shi et al., 2024). The THP1 cells, which are commonly used
to model macrophage differentiation, were induced into the M0,

Frontiers in Cell and Developmental Biology 09 frontiersin.org

https://doi.org/10.3389/fcell.2025.1566567
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Liu et al. 10.3389/fcell.2025.1566567

M1, and M2 phenotypes; their acetylation levels were assessed by
pan-acetylation antibodies, and the results revealed a significant
downregulation of acetylation in M1 macrophages and marked
upregulation in M2 macrophages (Figure 5A).

LIQ is a dihydroflavonone monomer found in licorice and
has been widely demonstrated to exert natural anti-inflammatory
effects (Babu et al., 2023; Tu et al., 2019; Yu et al., 2015). To
explore the epigenetic regulatory mechanisms of LIQ, we treated
M1 macrophages with varying concentrations of LIQ (3, 10, 30,
and 50 μM), with dimethyl sulfoxide (DMSO) as the control. The
qPCR results showed that LIQ treatment significantly inhibited
the expressions of inflammatory factors (IL-1β and TNF-α) in
M1 macrophages (Figure 5B). Furthermore, statistical analysis
of the inflammatory factors revealed significant downregulation
of IL-1β, IL-R1, NOS2, and TNF (Supplementary Figure S1C),
indicating potential anti-inflammatory effects of LIQ. WB revealed
that LIQ treatment upregulated histone acetylation levels in a
concentration-dependent manner (Figure 5C), suggesting that LIQ
may modulate inflammatory responses through the regulation of
histone PTMs.

We next applied super-SILAC to identify LIQ-mediated histone
PTMs in M1 macrophages (Figure 5D; Supplementary Table S4).
Comparisons of the DMSO and LIQ groups across three biological
replicates revealed a high degree of correlation (r > 0.91)
(Figure 5E). A total of 49 histone PTM sites were quantified,
which were mapped to 15 PTM types. We found that most of the
acetylation sites and several methylation sites were upregulated
in the LIQ-treated groups (p < 0.05) (Figure 5F). Scatter plot
analysis revealed significant upregulation of these sites across all
three replicates (p < 0.05), such as H3K9ac, H3K27ac, H4K5ac,
H4K16ac, and H2BK12ac (Figure 5G). WB analysis confirmed
consistency with the MS analysis results (Figure 5H). The above
findings highlight that LIQ can potentially regulate epigenetic
modification alterations to participate in anti-inflammatory
mechanisms.

LIQ may regulate the peroxisome
proliferator-activated receptor (PPAR)
signaling pathway to exert
anti-inflammatory function

LIQ treatment resulted in changes to the histone PTM
landscape in macrophages, suggesting that it could affect the
expressions of certain genes. Volcano plot analysis and principal
component analysis (PCA) of the altered genes revealed significant
differences between the LIQ-treated and control groups (Figure 6A;
Supplementary Figure S1A; Supplementary Table S5A). A total
of 473 differentially expressed genes (DEGs) were identified
based on a significance threshold of p < 0.05 and fold change
>2.0 (Supplementary Table S5B). Among these, 157 genes were
significantly upregulated, whereas 316 genes were significantly
downregulated (Figure 6B; Supplementary Figure S1B). Gene
ontology (GO) molecular function analysis revealed that LIQ
affected the structural constituents of the ribosomes, rRNA binding,
and histone deacetylase binding (false detection rate (FDR) <0.05).
In addition, these DEGs were involved in biological processes such
as translation, protein localization, inflammatory responses, and

miRNA metabolism. The GO cellular components analysis showed
that these genes were primarily located in the ribosomes and protein
complexes (FDR <0.05) (Figure 6C).

Gene set enrichment analysis (GSEA) was used to identify
the significantly enriched pathways, such as PPAR signaling
and ribosome pathways (FDR <0.05) (Figure 6D). The PPAR
signaling pathway is reportedly involved in anti-inflammatory
responses. Moreover, activation of the PPARs may influence
acetylase activity, and changes to the acetylation levels could in
turn modulate PPAR signaling (Zeng et al., 2022). Considering
the upregulation of histone acetylation by LIQ, we also examined
the genes related to deacetylases. The results showed significant
downregulation of deacetylases, such as HDAC4, HDAC5, HDAC8,
HDAC10, SIRT2, SIRT3, and SIRT7, indicating that their genes
may influence epigenetic regulation by mediating alterations in
deacetylase upon LIQ treatment (Supplementary Figure S1D).
In summary, transcriptome analysis revealed that LIQ may
exert anti-inflammatory effects by modulating the histone
PTMs and regulating gene expressions through the PPAR
signaling pathway (Figure 6E).

Discussion

Given their planar ring structures, dihydroflavonones exhibit
a broad spectrum of biological activities, encompassing anti-
inflammatory and antitumor effects. LIQ is a dihydroflavonone
monomer compound derived from natural products. However,
the relationships between its anti-inflammatory effects
and epigenetic regulatory mechanisms remain unclear
(Hu et al., 2017; Chagas et al., 2022). In the present study,
we optimized the super-SILAC method through compound
stimulations and found that LIQ could exert anti-inflammatory
activity by regulating the histone PTMs and gene expressions
through the PPAR signaling pathway in M1 macrophages. The
optimized method provides a powerful tool for the epigenetic
study of natural products and offers insights into the epigenetic
mechanisms of LIQ.

Compared with previous research, we improved the abundances
of the PTM peptides through compound stimulations. Based on
quantitative analyses at the peptide and cellular lysate levels, we
demonstrated high accuracy and reproducibility of our histone
standard samples. Moreover, the optimized method was applicable
to both cell and tissue sample types. Notably, the quantitative
accuracy of high-abundance modifications was relatively higher
than that of low-abundance modifications at the synthesized
peptide level. At the cellular lysate level, the shared identified
sites between the findings of Noberini et al. (2018) and our
results showed consistent trends for most sites, and discrepancies
were observed only in a few sites, such as H4K20me3 and
H4K16ac, which could be attributed to variations in the cell
line cultures or MS detection method. Notably, the widespread
upregulation highlights aberrant epigenetic regulation in breast
cancer cells, potentially driving the expressions of oncogenes.
The underlying mechanisms of this phenomenon merit further
exploration.

Histone acetylation and methylation are associated with
transcriptional activation and chromatin structure alterations
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FIGURE 5
Systematic analysis of histone PTMs regulated by liquiritigenin (LIQ) in macrophages; (A) immunoblot analysis of the global acetylation levels in M0, M1,
and M2 phenotype macrophages. (B) RT-qPCR analysis of the IL-1β and TNFα mRNA expressions following LIQ treatment from three replicates; mean
± standard error of the mean (SEM) (n = 3), ##p < 0.01 compared with the control group, ∗∗p < 0.01 compared with the lipopolysaccharide + IFN-γ
group; (C) immunoblot analysis of the global acetylation levels in M1 macrophages treated with LIQ; (D) workflow for the identification of
LIQ-mediated histone PTM sites in M1 macrophages; (E) correlation analysis of the heavy peptides between dimethyl sulfoxide (DMSO) and LIQ groups
based on three replicates; (F) heatmap analysis of the quantitative histone PTM sites with p < 0.05 across the replicates; (G) scatter plot analysis of the
differential histone PTM sites, where red dots represent up-regulated sites and blue dots represent down-regulated sites (p < 0.05); (H) immunoblot
analysis of the specific histone PTM sites after LIQ treatment.
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FIGURE 6
LIQ regulates gene expressions through the peroxisome proliferator-activated receptor (PPAR) signaling pathway in anti-inflammatory processes. (A)
Volcano plot of the genes identified in M1 macrophages following LIQ treatment; the red and blue dots represent significantly upregulated and
downregulated genes, respectively, while the gray dots represent non-differential genes; representative differentially expressed genes (-log10 p = 0–30,
p < 0.05) are displayed, and all significant data are shown in Supplementary Figure S2. (B) Cluster analysis of the differentially expressed genes (fold
change >2.0 and p < 0.01) in the DMSO and LIQ groups. (C) Gene Ontology (GO) analysis of the related genes with p < 0.05, showing top-10 biological
processes (BPs) and cellular components (CCs) as well as top-15 molecular functions (MFs). (D) Gene set enrichment analysis (GSEA) through
comparisons with the KEGG database for the PPAR signaling pathway and ribosome enrichment in the LIQ groups (FDR <0.05). (E) Proposed
mechanisms underlying the anti-inflammatory effects of LIQ.

Frontiers in Cell and Developmental Biology 12 frontiersin.org

https://doi.org/10.3389/fcell.2025.1566567
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Liu et al. 10.3389/fcell.2025.1566567

(Shahbazian and Grunstein, 2007). We found that LIQ upregulated
the acetylation and methylation sites, such as H3K9ac, H3K27ac,
H4K5ac, H4K16ac, and H2BK12ac, in M1 macrophages. Thus,
we hypothesized that LIQ exerted anti-inflammatory function
through epigenetic regulation. Through transcriptome analysis, we
found that LIQ significantly affected the PPAR signaling pathway,
which is involved in lipid metabolism and inflammatory responses
(Daynes and Jones, 2002; Ahmadian et al., 2013; Han et al., 2017;
Maréchal et al., 2018). PPAR activation affects deacetylase activity,
enhancing H3 acetylation and promoting macrophage polarization
(Liu et al., 2020; Wang et al., 2022); alteration of the acetylation level
thus regulates PPAR signaling, which is cooperatively involved in
the regulation of gene expression (Zeng et al., 2022). Furthermore,
H3K27ac directly affects the expression of PPARγ by enhancing
its transcriptional activity (Duan et al., 2022). The increase in
H3K9ac/14ac positively regulates the transcriptional activity of
PPARγ (Małodobra-Mazur et al., 2024), and PPARγ activation is
an indispensable factor in maintaining the acetylation levels of
H3K9 and H3K27 (Yuan et al., 2021). All of the above evidence
further confirms that the anti-inflammatory mechanisms of LIQ
are closely related to histone epigenetic regulation and the PPAR
signaling pathway. In addition, we found that the XIST and
CD200 genes were silenced by LIQ, and several transcription
factors like the RXRG, KLF4, FOXP3, and ERG were significantly
regulated (p < 0.05, fold change >2.0) (Supplementary Table S5).
Thus, the detailed mechanisms by which LIQ silences
XIST, CD200, and their transcription factors need further
investigation. In summary, the findings of this study advance
our understanding of the anti-inflammatory mechanisms of
dihydroflavonones in macrophages and provide a strategy
for future research on the epigenetic mechanisms of
natural products.
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