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Liver fibrosis has been proposed as the most important predictive indicator
affecting prognosis of patients with chronic liver disease. It is defined by an
abnormal accumulation of extracellular matrix components that results from
necrotic and inflammatory processes and eventually impairs organ function.
With no approved therapy, comprehensive cellular models directly derived from
patient’s cells are necessary to understand the mechanisms behind fibrosis and
the response to anti-fibrotic therapies. Primary human cells, human hepatic cell
lines and human stem cells-derived hepatic stellate-like cells have been widely
used for studying fibrosis pathogenesis. In this paper, we depict the cellular
crosstalk and the role of extracellular matrix during fibrosis pathogenesis and
summarize different in vitromodels from simple monolayers to multicellular 3D
cultures used to gain deeper mechanistic understanding of the disease and the
therapeutic response, discussing their major advantages and disadvantages for
liver fibrosis modelling.
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1 Introduction

The most prevalent chronic liver disease in the world, metabolic-dysfunction associated
liver disease (MASLD), affects 32% of adults (Riazi et al., 2022), and is characterized
by increased fat accumulation. Its overall prevalence is significantly higher in men than
in women and has increased over the years (Riazi et al., 2022). There are two distinct
histological types: a) simple steatosis, which is defined as the presence of fat droplets,
primarily triglycerides, in the liver without hepatocellular necrosis andwithout, orminimal,
inflammation, and b) metabolic dysfunction-associated steatohepatitis (MASH), which is
characterized by fat accumulation, liver inflammation, and hepatocyte ballooning with or
without fibrosis (EASL EASD EASO, 2016).The advancement ofMASHcan lead to cirrhosis
and, eventually, hepatocellular carcinoma (EASL EASD EASO, 2016).

Fibrosis has been suggested as the most significant predictive factor influencing
prognosis and it has been closely linked to liver transplantation and liver-related death
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in patients with MASLD (Angulo et al., 2015). Major regulatory
authorities such as the Food and Drug Administration
and European Medicines Agency are ordering trials in
advanced MASH (Schwabe et al., 2020).

Fibrosis is the result of excessive production of extracellular
matrix (ECM) that is not sufficiently counterbalanced by
degradation, thus resulting in its accumulation (Schwabe et al.,
2020). The activation of hepatic stellate cells (HSCs) is an important
event in hepatic fibrosis. After liver injury, quiescent HSCs are
activated and differentiate into myofibroblasts. After excessive
proliferation of myofibroblasts, a large amount of ECM such as
collagen is synthesized, accompanied by increased matrix cross-
linking and insufficient ECM degradation, eventually leading
to liver fibrosis (Chen et al., 2019). Liver failure after long
standing cirrhosis is caused by loss of several critical functions
of hepatocytes such as synthesis and secretion of plasma proteins,
storage of biomolecules and micronutrients, regulation of glucose
homeostasis, metabolism of drugs and blood detoxification.
However, hepatocyte loss of function is caused not only by the direct
viral or toxic insult to hepatocytes themselves but is also highly
exacerbated by the disruption of the cellular interaction network
wherein hepatocytes reside (Marrone et al., 2016; van Riet et al.,
2024). Interactions with other non-parenchymal cells (NPC) in this
network include HSCs, liver sinusoidal endothelial cells (LSECs)
and liver macrophages (including both Kupffer Cells (KCs), and
peripheral blood macrophages). Therefore, comprehensive models
including numerous cell types would be necessary to understand
the mechanisms behind liver fibrosis (Kumar et al., 2021).

Lifestyle modification is the primary intervention for the
treatment of fibrosis; thus, research efforts are focused on developing
safe and effective treatments to improve clinical management of
the disease (Diehl and Day, 2017). The control of the mechanisms
involved in the initiation and progression of the disease such
as chronic inflammation, insulin resistance and fibrogenesis, is
the primary focus of research to find new therapeutic targets
for liver fibrosis (Diehl and Day, 2017; Thiagarajan and Aithal,
2019). However, although some anti-fibrotic candidates have shown
robust effects in animal models, the number of clinical trials is
limited, and no approved therapy exists for liver fibrosis. Similar
to the multicellular network involved in fibrogenesis, fibrosis
resolution involves multiple cell types that should be considered
when designing and testing new therapies.Moreover, it is imperative
that future studies standardize clinical endpoints and fibrosis
measurements for a better understanding of drug efficacy.

Abbreviations: 2D, two-dimensional; 3D, three-dimensional; αSMA, α-
smooth muscle actin; ADAM, A disintegrin and metalloproteinases; APAP,
acetaminophen; ARPKD, autosomal recessive polycystic kidney disease;
DAMPs, damage-associated molecular patterns; ECM, extracellular matrix;
EMT, epithelial-to-mesenchymal transition; HSC, hepatic stellate cells;
HUVEC, human umbilical vein endothelial cells; IL, interleukin; iPSC,
induced pluripotent stem cells; KC, Kupffer cell; LOX, lysyl oxidase;
LSECs, liver sinusoidal endothelial cells; MASH, metabolic dysfunction-
associated steatohepatitis; MASLD; metabolic-dysfunction associated liver
disease; MMPs, metalloproteinases; NPC, non-parenchymal cells; OECD,
Organisation for Economic Co-operation and Development; PDGF, platelet-
derived growth factor; PHH, primary human hepatocytes; ROS, reactive
oxygen species; TG, transglutaminases; TGF-β, transforming growth
factor-β; TIMPs, tissue inhibitors of MMPs; TNFα, tumor necrosis factor α.

Detailed understanding of liver diseases is limited by the lack of
appropriate disease models that reveal the molecular mechanisms
implicated; thus, the development of suitable and reproducible
liver tissue models is fundamental for regenerative medicine, drug
screening anddiseasemodeling.The current in vitro liver disease test
systems comprise simple cell-based models to more complex three-
dimensional (3D) organoids. Primary human HSCs are the gold
standard for modeling liver fibrosis, although their use is hindered
by the increasing shortage of suitable donor livers for their isolation
as well as by the insufficient functional quality; thus, new cell-
based models are being developed. In this sense, considering that
liver fibrosis is a complex and multifaceted pathological process
involving the interactions among various cell types, signaling
pathways, and biomechanical changes, new 3D and multicellular
models offer significant advantages for modelling liver fibrosis in
vitro. This review summarizes recent advances in cell-based models
of liver fibrosis and aims to overview the relevant mechanisms and
challenges in the development of anti-fibrotic treatments.

2 Liver extracellular matrix

2.1 Composition and role of ECM in the
liver

The ECM, while a minor constituent of the liver, plays
a critical role in providing structural support and regulating
cell and tissue homeostasis (Martinez-Hernandez and Amenta,
1993; Ortiz et al., 2021). The ECM forms a fibrous network
that facilitates cell adhesion, provides space for cell growth and
migration, and serves as a reservoir for signaling molecules
(Baiocchini et al., 2016). This interaction is mediated by cell
surface receptors, like integrins, that can signal through the cell
membrane in either direction and regulate cell adhesion, migration,
proliferation, apoptosis, survival or differentiation (Mezu-Ndubuisi
and Maheshwari, 2021; Ortiz et al., 2021).

The liver matrisome consists of more than 150 different ECM
proteins and ECM-associated proteins, such as collagens, elastins,
fibronectins, and laminins, responsible for the cellular phenotype
and function (Ortiz et al., 2021). It is also composed by ECM
regulators and modifiers, like matrix metalloproteinases (MMPs)
and secreted factors that bind to the ECM, like transforming
growth factor-β (TGF-β) and other cytokines (Arteel and Naba,
2020). ECM can be divided into two structurally distinct types: an
epithelial/endothelial basement membrane and interstitial matrix.
The most abundant components of the basement membrane
are laminins, nidogen/entactin, non-fibrillar collagens, like
collagen type IV, VIII and X, and heparan sulfate proteoglycans.
Instead, the interstitial matrix is mainly composed by elastin,
fibronectin, tenascin, and the fibrillar collagens type I, II, III and
V (Karsdal et al., 2013; Karsdal et al., 2017; Lonsmann et al., 2023).
Furthermore, a unique ECM separates the sinusoidal endothelium
from the epithelial hepatocytes, the basement membrane-like
matrix, which contains basement membrane constituents and
non-basement membrane components (like type I collagen and
fibronectin). This unique composition is essential for hepatocytes’
viability and function, and changes in it are associated with
hepatic failure (Zeisberg et al., 2006).
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2.2 ECM in liver fibrosis

Regardless of the cause, hepatic fibrosis is characterized by an
increase in ECM constituents caused by an unbalanced chronic
wound-healing process, which affects its structure and biophysical
properties. As a consequence, hepatic scar appears and tissue fibrosis
develops (Ortiz et al., 2021; Walraven and Hinz, 2018).

A fibrous scaffold is usually formed as a result of pathological
ECM remodeling, increasing local tissue stiffness and affecting
the behavior of surrounding cells through mechanical forces
(Zhang et al., 2024). Clinically, patients with liver fibrosis who
have increased hepatic stiffness as a result of excessively deposited
highly insoluble matrisome are at risk for decompensation, liver
malignancy, and even mortality (Zhang et al., 2024).

Increased de novo collagen production is the main characteristic
of fibrogenesis (Arteel and Naba, 2020). Consequently, variations in
collagen synthesis/deposition biomarkers could be used to forecast
the severity of liver illness. For instance, it has been determined
that the Type III collagen precursor has areas under the receiver
operating characteristics curve (AUROC) values for predicting the
severity of liver disease that are better than imaging and/or scoring
methods (Arteel and Naba, 2020). Moreover, ECM remodeling in
thematrisome components, their covalent intra- and intermolecular
crosslinking, and the alteration of the chemical and mechanical
microenvironment of the ECM are common features of liver
fibrogenesis (Chen et al., 2023). Certain proteins, such as elastin,
aggregate and stabilize in fibrotic livers, increasing density and
stiffness, preventing fibrinolysis and changing liver homeostasis
(Chen et al., 2023; Karsdal et al., 2017).

On the other hand, using proteomics Daneshgar and cols
(2020) revealed a significant fraction of 70 distinct matrisome
proteins that are widely expressed in both healthy and fibrotic
and cirrhotic liver scaffolds. Additionally, the expression of 59
distinct matrisome proteins varied between livers in various stages
of fibrosis and healthy livers. Some of these matrisome proteins’
expression may hold promise for the creation of tissue or serological
biomarkers and possible liver fibrosis treatment targets. Finally,
compared to their healthy counterparts, 19 different matrisome
proteins were completely reduced in all phases of fibrosis. Among
these proteins, hemopexin plays a crucial role in metabolism and
inflammation (Daneshgar et al., 2020).

The progression of liver fibrosis depends, among other things,
on the cross-links of the different collagens in the basement
membrane and the interstitial matrix (Brown et al., 2006).
Liver fibrosis also increases the type IV collagen, laminin and
nidogen (Hudson et al., 2003). Changes in the quantity and
the quality of collagen crosslinking, which produces an increase
in their stiffness, are produced by different enzymes, like lysyl
oxidases (LOX) and transglutaminases (TG), or by non-enzymatic
glycation (Hynes and Naba, 2012). Also, collagens and other ECM
proteins have proteolytic cleavage due to MMP, A disintegrin and
metalloproteinases (ADAM) and ADAM with thrombospondin
motives proteases, as well as other proteolytic enzymes like elastases,
cathepsins, and different serine esterase proteases (Kisseleva and
Brenner, 2021; Lu et al., 2011). This formation of different collagens
during liver fibrosis induces myofibroblast activation, the main
producers of ECM. These cells, together with hepatocytes and
macrophages, regulate hepatic fibrogenesis and its progression.

Another important signaling peptide derived from collagen XVIII,
located in the basement membrane, is endostatin. This collagen is
produced by hepatocytes and is associated with advanced stages of
liver fibrosis (Ding et al., 2014; Kisseleva and Brenner, 2021).

3 Mechanisms of liver fibrosis

3.1 The key role of hepatic stellate cells in
liver fibrosis

Liver fibrosis is a complex pathological process that virtually
involves all cell types present in the liver, although the key role of
HSCs is widely recognized. ActivatedHSCs are themain responsible
of excessive accumulation of ECM in injured liver tissue, although
other cell populations such as bone-marrow derived myofibroblasts
or portal fibroblastsmay also contribute to ECMdeposition (Bataller
and Brenner, 2005; van Grunsven, 2017).

HSCs are mesenchymal type cells located at the space of Disse,
the perisinusoidal space of the liver between hepatocytes and LSECs.
Under physiological conditions, they are in a quiescent status
showing a characteristic dendritic morphology with cytoplasmatic
extensions that promote their interactions with the surrounding
cells (Sato et al., 2003). Quiescent HSCs contain large lipid
droplets containing vitamin A and have important roles in the
regulation of retinoid homeostasis, the physiological synthesis of
ECM components and the production ofMMPs responsible of ECM
remodeling (Sato et al., 2003).

As a result of liver injury, quiescent HSCs undergo an
activation or transdifferentiation process acquiring a myofibroblast-
like phenotype. Hallmarks of HSCs activation are the loss of
lipid droplets and the presence of new phenotypic features such
as the expression of α-smooth muscle actin (αSMA) and other
myofibroblastic markers (Higashi et al., 2017). In this activation
process two phases, termed initiation and perpetuation, are
considered (Friedman, 2000). During initiation, HSCs undergo
early gene expression changes rendering cells more responsive to
extracellular stimuli. Perpetuation step involves several cellular
and phenotypic changes (proliferation, migration, contractility,
ECM secretion, retinoid loss, cytokine release) that amplify HSC
activation and accelerates ECM accumulation. Both initiation and
progression are multifactorial processes regulated by a variety of
cell-cell and cell-biomatrix interactions, and by multiple chemical
mediators and signaling pathways (Bataller and Brenner, 2005;
Higashi et al., 2017). Once activated, HSCs exhibit profibrinogenic
and proinflammatory characteristics with production of fibrillary
collagens (type I and III), tissue inhibitors of MMPs (TIMPs),
cytokines and growth factors (Wang et al., 2022).

In advanced disease stages, the liver matrix undergoes marked
increases in the content of collagen and other ECM components,
such as laminin, elastin, fibronectin and hyaluronic acid (Matsuda
and Seki, 2020). ECM accumulation is the result of dysregulated
synthesis and remodeling functions in HSC. MMPs, the main
collagen degrading enzymes, are downregulated in activated HSCs
while TIMP-1 and -2, specific inhibitors of MMP enzymes, are
overexpressed, which results in a blockage of ECM degradation and
fibrosis progression. Other enzymes, such as LOX and TG, are also
upregulated during liver fibrosis, promoting protein cross-linking
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and/or stabilization of ECMproteins (e.g., collagen I or fibronectin),
increasing their resistance to proteolytic degradation (Ortiz et al.,
2021). Therefore, net outcomes of sustained HSC activation are
increased ECM deposition and changes in ECM composition due
to the formation of pathological fibrillary collagen forms.

3.2 Role of cell-cell and cell-matrix
interactions in HSC activation and liver
fibrosis

Hepatocyte injury is a key initial event in liver fibrosis. In
the context of diverse chronic liver diseases, damaged hepatocytes
release reactive oxygen species (ROS), damage-associatedmolecular
patterns (DAMPs), or soluble factors, that directly, or indirectly
with the contribution of diverse NPCs, can trigger HSC activation
(Bataller and Brenner, 2005; Lee and Friedman, 2011; Liedtke et al.,
2021) (Figure 1). ROS and other damage signals from hepatocytes
activate KCs and monocyte-derived macrophages leading to
further release of proinflammatory mediators such as transforming
growth factor β (TGF-β), platelet-derived growth factor (PDGF),
tumor necrosis factor α (TNFα), interleukin (IL)-1β and IL-6
(Bataller and Brenner, 2005; Liedtke et al., 2021; Ying et al.,
2017). In response to these stimuli quiescent HSCs become
activated through specific receptors and signaling pathways, leading
to increased ECM deposition. Other cell populations, such as
natural killers, lymphocytes, proliferating bile duct epithelial cells,
cholangiocytes and LSECs can also drive fibrosis progression
(Higashi et al., 2017; Zhang et al., 2022). Normal LSECs degrade
ECM components, playing an important homeostatic function.
When damaged, LSECs lose their typical fenestrae and form a
basement membrane. These structural alterations are accompanied
with the loss of ECM degradative capacity and release of soluble
factors, such as TGF-β or PDGF, that activate neighboring HSCs
in a paracrine manner (Ni et al., 2017). In addition to paracrine
activation of HSCs triggered by other cell types, activated HSCs
secreted chemokines (e.g., TGF-β, PDGF and endothelin-1) that
contribute to perpetuating their activated state in an autocrine loop
(Friedman, 2000; Lee and Friedman, 2011).

Progressive changes in the composition and mechanical
properties of ECM serve as additional stimuli for HSC activation.
Fibrotic tissue is characterized by an increase of ECM stiffness,
due to an excessive deposition and crosslinking of extracellular
proteins, which affects cell behavior. Fibrillar collagens type I and
III can directly interact with surface adhesion receptors, integrins,
and mediate profibrotic pathways and intracellular response
(Hudson et al., 2017). Integrin-signaling plays an essential role
in the cleavage and activation of latent TGF-β, considered a major
fibrogenic chemokine in the liver (Fan et al., 2019; Ortiz et al., 2021).

The most prominent phenotypic changes associated with
the transformation of HSCs into myofibroblast-like cells are
synthesis of type I and III collagen, expression of αSMA,
production of TGF-β, augmented expression of TGF-β receptors
and release of TIMPs 1 and 2. In addition to αSMA, vimentin
and desmin are phenotypic features of activated HSCs commonly
used as histological/immunological markers of liver fibrosis. All
these phenotypic changes are accompanied by alterations in the
expression of several genes (e.g., COL1A1 and 2, COL3A1, ACTA2,

MMP1, LOX) and are strictly regulated by signaling pathways,
such as TGF-β, PDGF or Toll-like receptor pathways (widely
reviewed in (Higashi et al., 2017)).

Discontinuation of the stimulus of liver damage and remission
of the tissue injury can lead to resolution of fibrosis, which involves
both elimination of activated HSCs (by apoptosis, senescence or
regression to quiescent phenotype), anddegradation of fibrotic ECM
with active participation of macrophages and LSECs (Matsuda and
Seki, 2020; Ni et al., 2017).

Despite numerous studies focused on liver fibrosis, currently,
its pathogenesis remains to be insufficiently elucidated. Further
research efforts are needed to increase the understanding of
the cellular and molecular mechanisms driving the initiation,
progression and regression of fibrosis to contribute to the
identification of new diagnostic markers and therapeutic agents
with clinical application in themanagement of patients with chronic
liver diseases.

4 Cell culture models for liver fibrosis
study

Liver fibrosis is caused by a variety of cell types, and animal
models have been traditionally used for understanding the disease’s
mechanism. However, the interpretation of in vivo models is
sometimes complex and difficult to extrapolate to a clinical context.
On the other hand, human cell-based models are easier to use and
helpful in comprehending the molecular processes behind HSC
activation (Lee and Seki, 2023). Table 1 summarizes themain in vitro
models used in the study of liver fibrosis.

4.1 Primary hepatic stellate cells

Primary HSCs are the gold standard for modeling liver fibrosis.
In vitro, in a quiescent state, these cells keep key functions
such as the storage of vitamin A in lipid droplets (Zhai et al.,
2019) and the expression of genes involved in maintaining ECM
stability (Lua et al., 2016).

In vitromodels of liver fibrosis frequently involve exposingHSCs
to profibrotic molecules and cytokines. Stimulation with PDGF or
TGF-β plays a key role in driving HSC proliferation, migration,
and activation of MMPs, processes that are essential for hepatic
matrix remodeling (El Taghdouini et al., 2015). Moreover, TGF-β
suppresses the expression of genes associated with the quiescent
state, such as PPARγ, while simultaneously upregulating genes
linked to ECM remodeling, including ACTA2, COL1A1, PDGFR-β,
VIM, TIMP-1, and LOX. These molecular changes are accompanied
by increased production of type I collagen and α-SMA, hallmarks of
the fibrotic response (Lin et al., 2006; Marti-Rodrigo et al., 2020).

Furthermore, IL-17 A amplifies the HSC response to TGF-
β by upregulating the expression of its receptor on the cell
surface via a JNK-dependent pathway. This leads to increased
production of type I collagen, α-SMA, and TIMP-1, ultimately
exacerbating fibrosis (Fabre et al., 2014).

The use of primary HSCs has shown promise for modeling in
vitro liver fibrosis, but it comes with certain limitations. Firstly,
the yield of isolated HSCs is low, and their proliferation rate in
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FIGURE 1
Mechanisms of liver fibrosis. As a result of liver injury, damaged hepatocytes release inflammatory cytokines, reactive oxygen species (ROS),
damage-associated molecular patterns (DAMPs) and other soluble factors, that directly, or indirectly with the contribution of other cells such as Kupffer
cells (KC) or liver sinusoidal endothelial cells (LSEC), can trigger activation of hepatic stellate cells (HSC) into myofibroblast-like cells. Activated HSCs
synthesize large amounts of ECM components and secrete additional cytokines that perpetuate their activated state. Excessive ECM accumulation and
liver fibrosis are the result of dysregulated ECM synthesis and remodelling due to downregulation of MMPs (matrix metalloproteinases) and increased
production of TIMPs (tissue inhibitors of MMPs).

the quiescent state is minimal (Meurer et al., 2023). Additionally,
the quiescent phenotype is difficult to maintain in vitro, as the
cells begin to activate spontaneously after 4–5 days in culture.
During this activation, HSCs develop pseudopodial morphology,
lose their lipid droplet stores, and exhibit increased expression
of COL1A1, α-SMA, FN1, and COL2A1 (Chang et al., 2014;
Sekiya et al., 2011).

4.2 Hepatic stellate cell lines

Immortalized cell lines have been developed to address the
limitations of primary HSCs. These immortalized HSC lines offer
several advantages, including unlimited proliferation, lower costs,
and a more consistent phenotype. Among the most used cell lines
for liver fibrosis research are the GRX line, derived from mouse liver
(Borojevic et al., 1985); the HSC-T6 line, derived from rat stellate
cells (Vogel et al., 2000); and human lines such as LX-2, LX-1, and
LI90 (Murakami et al., 1995; Xu et al., 2005).

Like primaryHSCs, HSC cell lines respond to profibrotic stimuli
such as TGF-β and PDGF. Exposure to TGF-β in LX-2 cells increases
the expression of myofibroblast markers, such as MMP-2, TIMP-
1, α-SMA, endothelin-1, PDGF-BB, type IV collagen α1, and type
I collagen α1, both at the mRNA and protein levels. Additionally,
TGF-β suppresses the expression of matrix-degrading proteins like
MMP-1 and MMP-3, while also upregulating proinflammatory
cytokines and chemokines, including IL-1β, TNF-α, CXCL1, and
CCL2 (Robert et al., 2016). Similarly, exposure to IL-1β mimics the

effects of TGF-β, boosting the production of vimentin, fibronectin,
and α-SMA, as well as enhancing both the expression and enzymatic
activity of MMP-2 (Masola et al., 2019).

A key component in the profibrotic mechanism triggered by
TGF-β in LX-2 cells is the AGAP2 protein. AGAP2 regulates
LX-2 activation by modulating critical effects induced by TGF-
β1, such as proliferation, migration, and the expression of
profibrotic genes. Furthermore, AGAP2 promotes the increase
of collagen I production in LX-2 cells through FAK activation
and influences the trafficking of the TGF-β type II receptor,
which sustains signaling and accelerates fibrosis progression
(Navarro-Corcuera et al., 2019).

In an in vivo profibrotic environment, various liver cells
contribute to the production of proinflammatory cytokines like
IL-17. In vitro, both IL-17 A and IL-17 F enhance the profibrotic
effects of TGF-β through SMAD2/3 activation, increasing the
expression of TGFBRII in LX-2 cells. Blocking IL-17 R A reduces
the surface expression of TGFBRII on LX-2 cells and decreases the
expression of profibrotic markers, such as COL1A2 and TIMP1,
demonstrating the synergistic profibrotic interaction between these
two stimuli (Matsuda et al., 2024).

Despite their advantages over primary HSCs, these cell lines
have certain limitations. They have lost the typical morphology
of HSCs and some of their functions. Furthermore, they
more closely resemble myofibroblasts, lacking lipid droplets,
and are more activated than primary HSCs, as they express
profibrotic genes at levels comparable to those found in
activated HSCs (Herrmann et al., 2007).
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TABLE 1 Major cellular models for studying liver fibrosis.

In vitro model Highlights Advantages Disadvantages

Primary HSCs ➢ Isolated from human tissue
➢ Both HSC and myofibroblasts can be

isolated from healthy and injured
livers, respectively

➢ Response to profibrotic stimuli such
as TGF-β or IL17 A

➢ Closer to the in vivo situation
➢ Maintenance of key functions, i.e.,

storage of vitamin A in lipid droplets

➢ Technical difficulties in the isolation
process. Low yield

➢ Reduced lifespan
➢ Contamination with other NPC
➢ Activated when cultured in plastic

plates
➢ Shortage of tissue for isolation

HSC lines ➢ Immortalized from primary HSCs
➢ Response to profibrotic stimuli such
as TGF-β, IL-17 or PDGF

➢ Availability
➢ Easy handling

➢ Loss of some functions (i.e., lipid
droplets) and typical morphology

➢ Basal activation (expression of
profibrotic genes)

iPSC-derived HSC ➢ Differentiation with a multi-step
protocol

➢ Response to profibrotic stimuli such
as TGF-β or PDGF.

➢ Derived from patients
➢ Reflect variability in the population
➢ Disease modelling

➢ Immature phenotype
➢ Variability in the efficiency of

differentiation

Co-cultures ➢ Culture of different hepatic cell types
➢ Response to profibrotic stimuli such

as TGF-β

➢ Closer to the in vivo situation allow
to study the contribution of different
cell types

➢ Allow the analysis of cell-cell
interactions

➢ Normally, are simply based on
hepatocytes and HSC

➢ Reduced functionality if cell lines are
used

Liver organoids ➢ Derived from human tissue or iPSC
➢ Response to profibrotic stimuli such

as TGF-β

➢ 3D organization
➢ Disease modelling
➢ Allow the analysis of cellular

interactions

➢ Shortage of tissue for isolation
➢ Restricted maturity

Precision-cut Liver slices ➢ Liver explants
➢ Response to profibrotic stimuli such

as TGF-β

➢ Closer to the in vivo situation
➢ All cell populations are present

➢ Limited lifespan

3D, three-dimensional; HSC, hepatic stellate cells; IL, interleukin; iPSC, induced pluripotent stem cells; NPC, non-parenchymal cells; PDGF, platelet-derived growth factor; TGF-β,
transforming growth factor-β.

4.3 Co-cultures

HSCs are the main drivers of liver fibrosis, but the development
and progression of this pathology relies on interactions among
various liver cell types. An ideal in vitromodelwould have functional
hepatocytes that can be harmed by a chemical and HSCs that can
activate towards a myofibroblast phenotype. Repeated hepatocyte
cell death (or damage) triggers a reaction that aims to restore the
liver’s structure and function. This response includes macrophages
clearing the dead hepatocytes, HSCs producing ECM to stabilize
the hepatic architecture, and hepatocyte regeneration to replace
the damaged cells. Moreover, although it is clear that hepatocyte
injury dead can trigger fibrogenesis, it can also trigger stress
reactions in a number of hepatic cell types, which in turn trigger
fibrogenesis (van Grunsven, 2017). In vitro cultures of hepatocytes
and HSC have been widely used for modelling liver fibrosis, being
primary human hepatocytes (PHH) the most common source of
hepatocytes, although human hepatocyte cell lines or stem cell-
derived hepatocytes are also commonly used (van Grunsven, 2017).
The most crucial limiting aspect of using PHH is that once the cells
are plated, they cannot be maintained in their original form quickly
lose their differentiated phenotype and do not proliferate.

On the other hand, hepatocytes derived from stem cells are not
fully mature. Profibrotic substances released by damaged hepatic

cells can activate HSCs. Replicating these interactions in vitro
is essential to understanding the initiation and progression of
liver fibrosis.

Acetaminophen (APAP) is a widely used drug for pain relief,
and it is metabolized by the enzymes CYP2E1 and CYP3A4 into
NAPQI, a toxic and profibrotic compound. The inflammatory
component plays a critical role in its toxicity. When APAP is
combined with cytokines such as TNF-α, IL-1β, IFN-γ, and IFN-
α in a model of primary HSCs co-cultured with the HepaRG line
(hepatocarcinoma cells that retain many characteristics of primary
human hepatocytes), it produces a more pronounced increase in the
expression of COL1A1, COL3A1, and LOXL2 compared to APAP
alone, suggesting a synergistic profibrotic effect (Leite et al., 2016).

Similarly, other fibrotic compounds such as methotrexate and
allyl alcohol after repeated exposure in spheroids of primary HSCs
and HepaRG cells increases COL1A1 and LOXL2 expression and
pro-collagen type I production, exceeding levels seen in HSC
monocultures (Leite et al., 2016).

Co-culture systems with greater complexity allow the analysis of
cellular interactions in liver fibrosis development. For example, co-
cultures of HepaRG, LX-2, and human umbilical vein endothelial
cells (HUVEC) in agarose microwells have shown that TGF-
β/SMAD pathway stimulation induces epithelial-to-mesenchymal
transition (EMT) in HepaRG cells. This is evident from the
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upregulation of EMT-associated genes such as SNAIL1, SNAIL2,
VIM, N-CDH2, ZEB1, and ZEB2. TGF-β also reduces the metabolic
activity of CYP enzymes and lowers albumin secretion, highlighting
its impact on cellular functions (Zahmatkesh et al., 2022).
Advanced systems like the co-culture of THP1 (monocyte cell
line), HSC-TERT (immortalized HSCs), and HepaRG on scaffold-
free platforms further replicate cellular interactions. Methotrexate
and thioacetamide exposure increased macrophage and HSC
proliferation while activating cellular defense mechanisms, as
indicated by elevated mRNA levels of Nrf2 and Keap1. ECM
remodeling, characteristic of fibrosis progression, is also observed
in co-cultures treated with these compounds. Dose-dependent
upregulation of COL1A1, COL4A1, FN, and CD44 correlates with
increased type I collagen andMMP-2 secretion, aswell as heightened
deposition of type I collagen and α-SMA (Prestigiacomo et al., 2017).
More recently, a co-culture system composed of HSC-derived LX-
2 cells, primary macrophages and HepaRG cells showed typical
features of MASLD (steatosis, fibrogenesis, inflammation) after
exposition to a mixture of fatty acids and was proposed as a
valuable in vitro model for the early detection of at-risk drugs in
MASLD patients (Bronsard et al., 2024).

4.4 Hepatic stellate cells from iPSCs

Induced pluripotent stem cells (iPSCs) represent a breakthrough
in developing cell models for studying diseases, thanks to their
ability to self-renew, differentiate into any cell type, and generate
models with disease-specific mutations. Several protocols have
been established to derive HSCs from iPSCs, mimicking the
embryonic development of these cells. The resulting HSCs exhibit
a morphology comparable to primary HSCs and display hallmark
features of the quiescent state, such as vitamin A storage in
lipid droplets, as well as the expression of genes like DES,
PDGFRβ, ALCAM, LRAT, ACTA2, PPARγ, and COL1A1, and
the production of proteins including PCDH7, vimentin, type I
collagen, fibronectin, and α-SMA (Koui et al., 2021; Lai et al., 2022;
Martinez Garcia de la Torre et al., 2025; Vallverdu et al., 2021).

Like primary HSCs and established cell lines, iPSC-derived
HSCshave proven to be effective as in vitromodels for fibrosis.When
exposed to profibrotic stimuli, such as PDGFRβ, these cells become
activated, showing increased proliferation andmigration.Moreover,
treatment with TGF-β further enhances the expression of profibrotic
genes such as COL1A1, COL3A1, ACTA2, TIMP1, and TGFB, as
well as the production of type I collagen, nestin, and α-SMA
(Coll et al., 2018; Lai et al., 2022). Recently, the Retinoic Acid Related
Oprhan Receptor Alpha has been identified as a key transcription
factor which is needed for HSC differentiation, commitment and
activation (Martinez Garcia de la Torre et al., 2025).

In a Transwell system, exposure to APAP and thioacetamide
induced the expression of COL1A1, COL3A1, and ACTA2 in HSCs
derived from iPSC.Moreover, thesemodels have also been validated
for studying virus-induced fibrosis, as exposure to hepatitis B or C
viruses enhances the expression of COL1A1, COL3A1, and ACTA2,
along with increased production of type I collagen and α-SMA
in iPSC-derived HSCs cocultured with HepG2 and Huh7.5 cells,
respectively (Lai et al., 2022).
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On the other hand, iPSC-derived HSCs co-cultured with
HepaRG cells in spheroids allow for the evaluation of profibrotic
molecule deposition and cellular organization in response to
profibrotic stimuli. TGF-β treatment induced the expression of
fibrogenesis markers, along with the secretion of pro-collagen type
I and increased staining of phalloidin and collagen. Additionally,
this system has been used to model drug-induced fibrosis: exposure
to APAP activated iPSC-derived HSCs, as evidenced by increased
expression of fibrogenesis-related genes and the secretion of pro-
collagen type I and α-SMA (Coll et al., 2018).

4.5 Organoids

Organoids are 3D structures derived from stem cells that mimic
the architecture and basic functions of organs on a smaller scale.
These models have revolutionized biomedical research by providing
a more accurate representation of human tissue physiology and
pathology compared to traditional 2D systems.

Liver organoids are a promising model for studying the
development, progression, and treatment of conditions such as
fibrosis, steatosis, and liver cancer. They preserve key liver tissue
features, including cellular organization, metabolic function, and
toxin responses, enabling detailed pathological analyses and offering
an ideal platform for personalized drug testing (Nuciforo and
Heim, 2021).

In other approximation Wu et al. (2023) generated organoids by
differentiating iPSCs into spheroids embedded in a Matrigel matrix
enriched with EGF, FGF2, VEGF, CHIR9902, A83-01, ascorbic
acid, and retinoic acid to promote the specification of parenchymal
and non-parenchymal cells. After 20 days, the organoids expressed
markers of hepatocytes, HSCs, macrophages, and cholangiocytes.
Methotrexate treatment for 7 days in these spheroids increased type
I collagen deposition and lipid accumulation, hallmarks of fibrosis
and steatosis. Profibroticmarkers such asCOL1A1, ACTA2, SMAD7,
TGFB1, and TIMP1 were also upregulated (Wu et al., 2023).

Finally, organoids are valuable tools for studying congenital
hepatic fibrosis. Autosomal recessive polycystic kidney disease
(ARPKD), a monogenic disorder affecting the kidney and liver,
leads to progressive hepatic fibrosis, the primary cause of mortality
in surviving patients. Organoids derived from iPSCs with PKDHD1
mutations replicate the hepatic disease phenotype. These organoids
show irregular bile duct formation and ECM deposits occupying
25%–30% of their volume. Cholangiocytes are immature, with
activated TGF-β signaling driving collagen fiber formation.
Increased myofibroblast generation, enhanced STAT3 pathway
activity, collagen production, and PDGFRB expression further
contribute to the pathogenesis of hepatic fibrosis (Guan et al., 2021).

4.6 Precision-cut liver slices

Cell cultures derived from individual cells fail to fully replicate
the complex cellular interactions that occur in vivo in the liver.
Liver slices have emerged as valuable tools for studying liver diseases
because they can preserve the cellular interactions present in the
original organ (Fisher and Vickers, 2013).

The use of liver slices offers the possibility not only to create
fibrosis models by exposing healthy donor cultures to profibrotic
molecules but also to generate fibrosis models using liver slices
from patients with liver fibrosis at different stages. Liver slices from
patients at various fibrosis stages display fibrotic markers such as
α-SMA and collagen type 1 (de Mesquita et al., 2017).

Moreover, liver slices respond to various fibrosis inducers,
including viruses, alcohol, and fat. For instance, exposing liver
slices from healthy donors or fibrosis patients to ethanol, HCV,
or palmitate leads to an increased expression of fibrosis markers
such as TGF-β1, α-SMA, HSP47, MMP-2, MMP-9, ProCol1A1, and
VEGF. This increase is more pronounced in liver slices obtained
from fibrosis patients. Additionally, a synergistic effect between
different fibrosis inducers has been observed, accelerating fibrosis
progression (Kartasheva-Ebertz et al., 2021). Despite the results
obtained using liver slices, they still present important limitations
such as poor availability of fresh human liver tissue or significant
technical requirements, that limit their wider application.

5 Overcoming 2D model limitations
with new 3D model approaches

Liver fibrosis is a complex andmultifaceted pathological process
characterized by different mechanisms involving the interactions
among various cell types, signaling pathways, and biomechanical
changes, posing challenges for researchers in understanding the
disease and developing effective therapies (Mazza et al., 2017). 3D
models offer significant advantages over 2D models in replicating
the complex microenvironment of the liver. While 2D models
have been valuable for their simplicity, reproducibility and ease
of use, they fail to mimic the intricate spatial interactions and
microenvironmental cues critical in liver pathophysiology. In
contrast, 3D models effectively recreate essential aspects of the liver
microenvironment, including cell-cell and cell-ECM interactions,
signaling pathways, cellular migration, chemotaxis, gradients of
oxygen and growth factors. These features enable 3D models to
support cellular phenotype more effectively, resulting in a more
accurate representation of liver fibrosis for research and drug
testing purposes (van Grunsven, 2017). Although 3D in vitromodels
have shown increased functionality, within the setting of liver
disease models, controlling the properties of the ECM is basic
to understand the start of the disease as well as its progression
and regression (Carvalho et al., 2024). In this sense, the use of
biomaterials that allow to understand how biomechanical and
biochemical network signals impact cell behavior would provide
a deeper understanding of liver fibrosis. In fact, myofibroblasts’
differentiation of HSCs is encouraged by a stiffer matrix, which
also increases the release of ECM. Additionally, stiffness enhances
the expression of MMPs’ inhibitors while downregulating the
expression of MMPs (Lachowski et al., 2019). In the last years,
several 3D in vitro models have been developed to recreate the
complex microenvironment of the fibrotic liver: hydrogels, scaffolds
and liver-on-chips (Gong et al., 2023). Biomaterials can be generally
classified according to their origin as natural or synthetic. Natural
biomaterials such as collagen and hyaluronic acid have been
widely used because of their biocompatibility and interaction with
cells, although their mechanical properties are commonly weak
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and hard to fine-tune. On the contrary, synthetic materials such
as polyacrylamide provide tunable and reproducible mechanical
properties, but do not interact with cells (Perez et al., 2013). Table 2
exemplifies 3D cellular systems used for modelling liver fibrosis.

Given the intricate nature and diversity of fibrosis development,
there are several key functions that researchers can consider in the
3Dmodels. One important clinicalmarker of fibrosis is the stiffening
of the ECM. It significantly affects the activation of HSCs and their
transformation into myofibroblasts, making it a focal point in some
studies (Liu et al., 2021). In fact, HSCs cultured in conventional
plastic plates are activated due to the high tension of the plastic
surface (20 GPa), which can lead to artifactual activation of HSCs in
these models (Caliari et al., 2016b; Thanapirom et al., 2021). Some
models have been designed to prolong the culture of HSCs in the
quiescent state. Gong et al. developed a model based on collagen
type I hydrogel to generate iPSC-derivedHSCs in the quiescent state
andmaintain them in an inactivated state for up to 5 days.The iPSC-
derived HSCs retained their activation capability and were tested for
their response toTGF-β1 exposure (Gong et al., 2023).Designing 3D
models that exhibit stiffening and biomechanical fibrosis properties
(4–5 kPa) is crucial to ensure in vivo physiopathology and drug
testing (Caliari et al., 2016b; Lemine et al., 2024). Synthetic hydrogels
have been selected bymany researchers for recreating environments,
as they allow for highly controlled properties (Caliari et al., 2016a;
Ravichandran et al., 2021; Sorrentino et al., 2020). For example,
researchers created polyethylene glycol hydrogels decorated with
liver matrix biomolecules (fibronectin, laminin, and collagen IV) to
model healthy and fibrotic liver tissues of 1.2 kPa and 4 kPa stiffness,
respectively (Sorrentino et al., 2020). They evaluated the behavior of
progenitor cells under high stiffness. Cells exhibited reduced liver
markers in the fibrotic model with increased MMPs profiles. Other
authors prefer using natural biomaterials like collagen, the main
component of the liver ECM. For example, Brovold et al. modelled
fibrosis in type I collagen hydrogels at different degrees of fibrosis
severity (Brovold et al., 2020). They observed that primary HSCs
exhibit a higher fibrotic phenotype than the LX-2 line, and both
respond to fibrotic inductors and inhibitors. The same model was
used to co-culture with undifferentiated HepaRG cells and evaluate
the effects on biliary progenitor cells (Brovold et al., 2021).This study
proved again that primary HSCs created a more severe fibrotic state
than LX-2, characterized by higher ECM contraction and rigidity
and increased expression of fibrosis-related genes such as TGF-β,
TIMP-1, LOXL2, andCOL1A2.They found a considerable expansion
of CK19+ biliary cells, mimicking conditions in congenital biliary
diseases closely linked to fibrosis.

Despite the physiological significance of matrix stiffening in
fibrosis development, only a few models have successfully recreated
it in situ (Cacopardo and Ahluwalia, 2021; Caliari et al., 2016b).
In their innovative study, Cacopardo and Ahluwalia developed
a two-step model with gelatin that effectively mimics liver fibrosis
progression. In the first step, cells were encapsulated in the hydrogel.
Then, the already-formed hydrogels were exposed to further TG,
subsequently increasing gelatin fiber crosslinking, successfully
simulating the overproduction of ECM and the associated
tissue stiffening. This approach transformed the hydrogels into
increasingly elastic and stiffer structures, closely replicating the
mechanical changes observed in liver fibrosis (Cacopardo and
Ahluwalia, 2021).

Liver-on-a-chip devices are advanced in vitro models that
combine microfluidics, tissue engineering, and microfabrication.
It has been demonstrated that these systems could significantly
enhance drug discovery and development, enabling producers
to provide safer, more potent medications faster and at a
lower cost (Ewart et al., 2022). Organ-on-a-chip replicates liver
microarchitecture, metabolic zonation and dynamic blood flow,
offering more realistic environments for studying the liver ECM
remodeling with the fluid flow (Liu et al., 2023; Mannaerts et al.,
2020). Li et al. explored how mechanical factors (stiffness and flow)
affect liver cell function in fibrosis using a microfluidic platform
with a stiff-tunable collagen membrane (Li et al., 2021). They
proved that increased matrix stiffness reduces hepatocyte albumin
production and cytochrome P450 reductase expression, while low
shear stress enhances hepatocyte function, and high shear stress
leads to phenotype loss. This research highlights the complex
interplay between matrix stiffness and shear stress in regulating
hepatocyte behavior (Li et al., 2021). On the other hand, Lee and
cols. developed a 3D liver fibrosis-on-a-chip model using gelatin-
based bioinks and cell-printing technology with precise control
of cellular delivery (Lee et al., 2020). This study demonstrated
the potential to model fibrotic processes with the upregulation
of vimentin, α-SMA and desmin and downregulation of CYP3A4
(key markers of HSCs activation). They also observed collagen
type I deposition coupled with a reduction in viability verified
by the TUNEL assay (Lee et al., 2020). Additionally, liver-on-
a-chip devices have been also used for modelling MALSD and
MASH, showing the successful recapitulation of the main histologic
features and endpoints, emerging as in vitro platforms to study
disease pathogenesis and to test and develop new treatments
(Freag et al., 2021; Kostrzewski et al., 2017).

Current 3D models often fail to fully capture the complex
interactions between the liver and the immune system, which are
strongly interconnected. Its crosstalk contributes to the development
of fibrosis. However, models that are capable of representing this
crosstalk are limited. Jung et al. developed 3D models for better
understanding the crosstalk between hepatocytes and THP1 cells in
methacrylate gelatin (Jung et al., 2024).

Significant progress has been made in developing 3D models for
studying liver fibrosis. These 3D models provide a more accurate
platform to replicate the biomechanical and biochemical conditions
of the hepaticmicroenvironment, which is crucial for understanding
fibrosis progression and evaluating new therapies. However, many
mechanisms remain to be understood and modelled, presenting an
ongoing challenge in the search for effective treatments. The lack
of adequate models that fully capture the complexity of cell-matrix
interactions and the biomechanical changes associated with fibrosis
limits our ability to discover new therapeutic targets. Therefore, it
is essential to continue developing and optimizing these models to
advance the treatment of fibrotic liver diseases.

6 Assessment of anti-fibrotic
treatments in vitro

The progression of liver fibrosis is caused by a variety of cells
and signaling pathways, which poses a great challenge in clinical
therapy. At the moment, the eradication of etiologies is the main
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TABLE 3 Examples of therapeutic strategies for liver fibrosis and target cells or pathways.

Drug/Therapeutics Modality Phase/NTC Target Mechanism of
action

References

Obeticholic acid Small molecule III/NCT02548351 FXR agonist - Decreased HSC activation
- Suppression of metabolic
stress-induced p53
activation and cell death in
hepatocytes

Goto et al. (2018);
Verbeke et al. (2016)

Resmeritom Small molecule III/NTC03900429 THR-β agonist - Increased lipophagy,
mitochondrial biogenesis
and mitophagy, stimulating
increased hepatic fatty acid
β-oxidation

Karim and Bansal, (2023)

Aramchol Small molecule III/NTC02279524 SCD1 inhibitor - Inhibition of de novo
lipogenesis in hepatocytes
- Inhibition of
transdifferentiation and
activation of HSC

Ratziu et al. (2021)

Lanifibranor Small molecule III/NCT04849728 PPAR inhibitor - HSC deactivation
- Improvement of
hepatocyte’s functionality
- LSEC deactivation
- Downregulation of
cytokines expression in
macrophages

Boyer-Diaz et al. (2021)

Pegbelfermin Biomacromolecule II/NTC03486912 FGF21 analogue - Inhibition of
gluconeogenesis in
hepatocytes

Sanyal et al. (2019)

Cenicriviroc Small molecule III/NTC03028740 CCR2 and CCR5 inhibitor - Reduced
monocyte/macrophage
recruitment
- M2 macrophage
polarization

Neokosmidis and
Tziomalos, (2018)

Emricasan Small molecule II/NTC02138253 Pan-caspase inhibitor - Inhibition of hepatocyte
apoptosis
- Reduction of
inflammation and fibrosis

Barreyro et al. (2015)

Hydronidone Small molecule II/NTC02499562 HSC proliferation inhibitor - Inhibition of HSC
activation
- Upregulation of Smad7 in
HSC cells
- Smad7-mediated TGFβRI
degradation and inhibition
of the TGF-β signaling
pathway

Liu et al. (2017)

Liraglutide Small molecule II/NCT01237119 GLP-1 receptor agonist - Reduction of the activation
of KC and HSC
- Effects on carbohydrate
metabolism

Perakakis et al. (2021)

Simtuzumab Antibody II/NTC01672866 Inhibition of LOXL2 - Decrease of the stability of
ECM by antagonizing
collagen cross-linking

Meissner et al. (2016)

ECM, extracellular matrix; HSC, hepatic stellate cell; KC, kupffer cell; MASH, metabolic dysfunction-associated steatohepatitis; TGF-β1, Transforming Growth Factor β1.
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TABLE 4 Examples of preclinical in vitromodels for the assessment of anti-hepatic fibrosis molecules.

In vitro model Induction of
fibrosis

Anti-fibrotic
drugs

Outcomes/Comments References

Human liver
myofibroblasts

TGF-β Pirfenidone
Losartan (negative
control)

- α-SMA expression was chosen as a reliable
activation marker
- Coll1 was previously chosen as a marker for
ECM production
- Human liver myofibroblasts could reflect
inter-patient variability in fibrosis progression

Aoudjehane et al. (2016)

Human precision-cut
liver slices, HSC and
LX-2 cells

7-day plastic activation Liraglutide - Amelioration in HSC phenotype when
treated with liraglutide

de Mesquita et al. (2017)

PHH, human skin stem
cell-derived hepatic cells
(hSKP-HPC), HepaRG,
HepG2 and LX-2 cells

FA and inflammatory
cytokines (TNF-α,
IL-1β, and TGF-β)

PPAR agonists
(bezafibrate, elafibranor,
fenofibrate, lanifibranor,
pemafibrate,
pioglitazone,
rosiglitazone, and
saroglitazar)

- The comparative study in different cell
models showed that PHH, hSKP or a
combination of both as the most sensitive
models for determining anti-NASH responses
- PPAR agonists produced differential
responses regarding the reduced expression of
profibrotic genes, inflammatory chemokine
production, and fat accumulation, allowing
creating a score system to grade potencies
- Elafibranor and saroglitazar showed the
strongest anti-NASH properties

Boeckmans et al. (2021)

PHH + NPC spheroids Spontaneous, FFA or
TGF-β

Cenicriviroc,
Elafibranor, lanifibranor

- A fibrotic phenotype (expression of COL1A1
and SMA) was found in a number of
spheroids, either spontaneously (mostly in
PNPLA3 mutant donors) or in response to
FFA.
- The incubation with anti-fibrotic compounds
for 7 days prevented fibrillary deposition

Hurrell et al. (2020)

Human liver slices TGF-β
Alcohol
Virus infection

A-tocopherol
Ursodeoxycholic

- The model remains viable up to 21 days,
allowing long-term studies
- The described test system reproduces liver
fibrogenesis related to HCV infection, ethanol
or FA exposure
- A significant decrease in TGF-β and
procollagen1A1 expression and in
triglycerides production after anti-fibrotic
therapy

Kartasheva-Ebertz et al.
(2021)

LX-2 + HepG2 in 3D
healthy and cirrhotic
human liver scaffolds

TGF-β Sorafenib - Gene expression and pro-collagen1 secretion
were 1–3 times more abundant in cells
cultivated in 3D cirrhotic compared to healthy
scaffolds
- Co-cultures 3D ECM scaffolds can
reproduce molecular and cellular processes
that result from TGF-β exposure and cause
fibrosis
- The pro-fibrogenic effects of TGF-β1 were
markedly inhibited by sorafenib, and a
downregulation of STAT3 phosphorylation

Thanapirom et al. (2021)

Human liver organoids TGF-β
Methotrexate
LPS

60 componds (i.e.,
SD208, Imatinib,
Cilofexor, Silymarin)

- It modelled liver fibrogenesis after
incubation with TGFβ or LPS.
- Collagen I staining was employed as a
readout for liver fibrosis using high-content
analysis technology
- Gene expression analysis showed that SD208
and Imatinib downregulated the expression of
different fibrogenic (i.e., ACAT2, COL1α1,
LOX, TIMP1)

Wu et al. (2023)

(Continued on the following page)
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TABLE 4 (Continued) Examples of preclinical in vitromodels for the assessment of anti-hepatic fibrosis molecules.

In vitro model Induction of
fibrosis

Anti-fibrotic
drugs

Outcomes/Comments References

Liver microtissue
(Huh-7, THP-1, and
LX-2 and HUVEC cells)

OA + PA Liraglutide
Withdrawal of FFA

- Steatotic profile of liver tissues was
established after 3 days and advanced to
initial fibrosis by day 8
- Liraglutide significantly reduced MALSD
profile at different stages, including fibrotic
markers (i.e., COL1A1 expression)

Asadollahi et al. (2024)

Human liver spheroids
(hepatocytes, HSCs, and
NPCs)

MASH cocktail (OA, PA,
Fructose, glucose, LPS,
TGF-β)

Supression of metabolic
injury

- Human liver spheroids incubated with
MASH cocktail upregulate lipid
accumulation, expression of
FFA-regulating enzymes ACSL4 and
CPT1A, and raise mRNA levels of
inflammatory cytokines such as CXCL1,
IL6 and IL8
- After stopping the metabolic injury, the
expression of fibrogenic genes was
decreased

Kim et al. (2024)

HSC derived from iPSC Activation by plastic
dish culture for 7 days

Lanifibranor, SB431542,
Dorsomorphin, retinoic
acid, palmitic acid and
Y27632 + screening

- Actin score (quantification of F-Actin
accumulation) is defined as an indicator
activated HSC that can be used as a
screening tool
- The combination of test compounds,
reduced the expression
- of activation marker genes (ACTA2,
COL1A1) and increased the expression of
LHX2 and LRAT which are expressed in
quiescent cells

Nakano et al. (2024)

PHH, NPC and LSECs
spheroids

FFA Lanifibranor,
mevastatin, cencrivroc,
molsidomine,
SB-525334, BI1467335,
AGI-1067

- TIMP1 knockdown in the test system led
to a reduction in COL1A1 accumulation as
well as a decreased pro-COL1A1 in the
medium
- Differential responses to anti-MASH
drugs were observed in spheroids with and
without LSEC. For instance, AGI-1067 (a
VCAM-1 inhibitor) decreased COL1A1
only when LSEC were present

van Riet et al. (2024)

3D, three-dimensional; αSMA, α-smooth muscle actin; FFA, free fatty acids; HSC, hepatic stellate cells; iPSC, induced pluripotent stem cell; KC, kupffer cell; LPS, lipopolysaccharide; LSECs,
liver sinusoidal endothelial cells; NPC, non-parenchymal cells; OA, oleic acid; PA, palmitic acid; PHH, primary human hepatocyte; TGF-β1, transforming growth factor β1.

focus of liver fibrosis treatment. In the case of hepatic metabolism
problems, bariatric surgery and lifestyle modifications have been
investigated (Vilar-Gomez et al., 2015). On the other hand,
clinical evidence for treating hepatic fibrosis has been generated
by antiviral medications for viral hepatitis (D'Ambrosio et al.,
2012; Marcellin et al., 2013), which suggests that scarring can
be reversed (Mohammed et al., 2023).

Currently, no effective treatment for liver fibrosis is available;
thus, as a result, ongoing studies regarding anti-fibrotic therapy are
underway. The development of successful anti-fibrotic treatments
requires the ability to identify additional mechanisms of liver
fibrosis through the understanding of intercellular molecular
networks, as well as to target specific cell types (Odagiri et al.,
2021). Numerous factors, including the overproduction and
secretion of pro-inflammatory cytokines, the rise in hepatocyte
apoptosis, the proliferation of activated HSC, and the excessive
production and deposition of ECM, will contribute to the imbalance
of pro-fibrosis/antifibrosis mechanisms and facilitate the onset

and progression of liver fibrosis (Campana and Iredale, 2017;
Roehlen et al., 2020). In contrast, a number of factors, such as the
increase of anti-inflammatory cytokines, hepatocyte proliferation,
apoptosis and the restoration of the resting phenotype of activated
HSC, and an increase in the degradation of ECM, successfully
prevent the occurrence and progression of liver fibrosis, postpone
liver fibrosis, and even reverse the process and go back to the
normal functionality and structure (Campana and Iredale, 2017;
Roehlen et al., 2020; Tan et al., 2021). Consequently, developing
drugs that can balance pro- and anti-fibrotic events is essential for
developing effective anti-fibrotic drugs. Table 3 provides examples
of anti-hepatic fibrotic drugs assessed in clinical trials, highlighting
their mechanisms of action.

Antifibrotic drug candidates can be tested early in the
drug development process using different preclinical models.
The well-known interspecies differences in drug metabolism,
pharmacokinetics and drug targets limit the prediction of drug
effects using animal models. Human cell models offer advantageous
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tools for assessing the anti-fibrotic potential of drugs as well as
allowing studying the potential mechanisms implicated and even
deciphering the cell targets implicated in drug responses. Due to
the multicellularity and complexity of the fibrotic process, in recent
years, multicellular models have been widely used for the efficacy
assessment of these drugs. For inducing the profibrotic phenotype,
different stimuli can be used, although the use of TGF-β1 is one
of the most common factors used in vitro assessments. Table 4
summarizes some of the cell models used and the major outcomes
of these models for assessing anti-fibrotic therapies.

It should be considered that liver fibrosis is associated with
changes in ECM components and mechanical properties that can
promote the progression of the disease in more serious stages.
Therefore, by controlling ECM characteristics and improving the
understanding of diseasemechanisms, the regression of liver fibrosis
could be achieved in vitro and finally translate the results to the
clinical practice (Carvalho et al., 2024). In this sense, there are still
many challenges of bridging preclinical findings to clinical trials
since standardization and validation are key factors to contemplate
(Carvalho et al., 2024). The “Guidance Document on Good In Vitro
Method Practices” published by the Organisation for Economic Co-
operation and Development (OECD) describes how to standardize
procedures for guaranteeing their appropriate design, description
and reliability for their use in a regulatory context (OECD, 2018).
This guideline could be used to improve the consistency and
applicability of new in vitro platforms. On the other hand, validation
is defined as the process by which the reliability and relevance
of a procedure are established for a specific purpose (OECD,
2005). So, following adequate method development and parameter
definition, an internal validation procedure should be carried out
to evaluate the in vitro method’s repeatability, selectivity, sensitivity,
and stability. Validation guarantees a methodical and scientific
assessment of in vitro techniques and approaches and sits at the
nexus of in vitro method development and optimization, regulatory
approval, and translational medicine.

7 Conclusions and future perspectives

For an in-depth examination of the processes underlying liver
fibrosis, cell-based models are essential. The limited primary cell
supply and lack of heterotypic essential cell–cell interactions are two
of the drawbacks of the monoculture of HSCs. In this sense, co-
cultures might be superior in vitro models since they enable the
interactions between HSCs and other hepatic cells (i.e., hepatocytes,
KCs), which are essential to the start of the fibrotic process. On
the other hand, stem cell-based systems, which are based on the
differentiation of stem cells of various origins into mature HSCs,
represent a very promising test system that would allow to obtain
different hepatic cells for studying liver disease (Asahina et al., 2009;
Miyata et al., 2008). Additionally, using 3D models allows to mimic
cell-cell and cell-ECM interactions as well as nutrients and oxygen
gradients in order to better replicate liver microenvironment.
Optimized multicellular 3D cultures will provide robust and
accurate in vitro systems for disease modelling. These platforms
will improve translational research to increase knowledge of
mechanisms and factors involved in disease progression and help
to identify potential new biomarkers for early diagnosis of liver

fibrosis. However, current models do not completely recapitulate
liver’s structure since vascularization should be also considered.
Moreover, other immune cells different from KC would also help to
better mimic the immune-mediated pathomechanisms in MASLD
and liver fibrosis (Bronsard et al., 2024). It is clear that multicellular
interaction within a pro-fibrotic microenvironment leads to liver
fibrosis, thus a key issue to achieve the reversal of liver fibrosis
may be the restoration of microenvironmental homeostasis, which
could help all types of liver cells to maintain a more stable and
long-lasting state and prevent liver cells from changing into a
profibrotic state (Meng et al., 2022). In this sense, the identification
of reliable biomarkers of fibrosis in vitro would help to clearly make
a step forward in the translation to the clinical setting.

In addition, such in vitro platforms will contribute to high-
throughput assessment of new anti-fibrotic drugs with potential to
revert the disease. Thus, these new methods and technologies will
surely aid in the creation of effective clinical treatment plans for liver
fibrosis, which will improve human health.
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