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Diversity of Drosophila egg
patterning: The missing tools to
explore embryonic axis
formation

Helen L. Stott1 and Nir Yakoby1,2*
1Center for Computational and Integrative Biology, Rutgers, The State University of NJ, Camden, NJ,
United States, 2Department of Biology, Rutgers, The State University of NJ, Camden, NJ, United States

Focusing on selected model organisms to establish scientific communities and
resources has greatly advanced our understanding of biological processes,
including embryogenesis, and facilitated the translation of these data into
developing human remedies. However, by restricting our research to a small
number of model organisms, we risk overlooking the underlying mechanisms
controlling animal diversity and speciation. Changes in cell signaling, protein
compatibility, and genetic tinkering are often neglected due to the lack of
molecular tools in non-traditionalmodel organisms. The era of high-throughput
genome sequencing, computational gene prediction, and emerging genome
editing and imaging tools, offers an opportunity to explore novel mechanisms
of organismal development and homeostasis. As we develop new model
platforms, it is imperative to prioritize resources effectively. What criteria make
an organism a “good” candidate for becoming a new model organism for
exploring embryogenesis? The axis of the Drosophila embryo is set during
eggshell patterning. Although species with a dorsal ridge exhibit dramatically
different patterns of the dorsalization signal, epidermal growth factor receptor
activation, compared toDrosophila melanogaster, the embryonic dorsal-ventral
axis remains consistent. Despite the increasing number of sequenced fly species’
genomes, the experimental tools necessary to study these species are still
lagging. Here, we emphasize the need to further develop genetic and molecular
tools for studying nontraditional model organisms to understand complex
processes like evolution of maternal contribution and correct embryonic body
axis. We address current challenges in achieving these goals, such as genetic
markers, selectable markers, and the efficiency of CRISPR/Cas9 mediated
genomic editing.
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1 Introduction

The use of model organisms has been essential in unraveling complex mechanisms of
biological functions. The similarity of biological functions across living organisms allows
the scientific community to leverage the experimental advantages of model organisms for
studying questions in many fields: cell division, transcriptional regulation and profiling, cell
signaling, signaling integration, protein translation, tissue morphogenesis, organogenesis,
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and models for human diseases (Wangler et al., 2017; Bertile et al.,
2023). The importance of these organisms was recognized by the
Human Genome Project, the seminal scientific achievement of the
20th century. In addition to sequencing the entire haploid genome of
humans, model organisms, such as bacteria, yeast, worms, flies, and
mice were also sequenced (Lander et al., 2001; Hood and Rowen,
2013). This project opened the genomics era, prompting a shift
from the traditional practice of testing one gene at a time to a high
throughput quantitative study of all genes at organismal and single-
cell levels. This transition was aided by using simple organisms such
as C. elegans and Drosophila melanogaster, in addition to mice, as
effectivemodels for humandiseases.Most research resources are still
invested in a fewmodel organisms that allow us to deeply investigate
cellular components in the large puzzle of embryogenesis. However,
some changes do not depend on a single modification, which
requires the exploration of evolutionary changes in the native
species. However, we still lack efficient molecular and genetic tools
to study them.

2 Model organisms are useful and
important tools for scientific research

Model organisms such as Neurospora, C. elegans, D.
melanogaster, Arabidopsis, and Mus musculus, successfully
established large communities to study metabolism, cell lineage and
differentiation, signaling pathways and patterning, plant biology,
and disease (Davis, 2004; Irion and Nusslein-Volhard, 2022; Jacob
and Monod, 1961; Sinclair et al., 1998; Phifer-Rixey and Nachman,
2015; Victor Atoki et al., 2025).The fundamental similarities of basic
processes across organisms permit the lateral transfer of information
across distant organisms and consequently facilitates the translation
of this knowledge to fight human pathologies. Traditional mutation
screens generated thousands of mutant lines associated with
various phenotypic groups (Nusslein-Volhard andWieschaus, 1980;
Schupbach and Wieschaus, 1986; Jorgensen and Mango, 2002;
St Johnston, 2002; Mullins et al., 1994). Some of these mutations
were in the same genes and others in genes that participate in the
same process (i.e., axis formation, organogenesis, segmentation,
etc.). These large-scale screens were bed-rock initiatives which
created model-organism centered communities of scientists
producing large bodies of work mechanistically connecting these
phenotypes to genes.

3 Limitations of current model
organisms

Model organisms have been essential to discovering a multitude
of fundamental processes common in animals. For example,
morphological and patterning changes can be simply explained by
alteration in cis-regulatory modules. Examples include the fish egg-
spot, digit number, wing spots, and limbs, to mention a few (Carroll,
2008; Carroll et al., 2008; Beldade and Brakefield, 2002; Santos et al.,
2014; Lettice et al., 2008; Xu et al., 2020; Sagai et al., 2005). At the
same time, evolution has tinkered with these mechanisms, adjusting
species to exhibit unique functions. For example, the expression

pattern of neuronal ectoderm (NEE) genes in flies’ embryos
occupy the same ventral-lateral position across species. Reporter
genes driven by the NEE enhancers successfully recapitulated the
endogenous pattern in the corresponding native species. However,
when the same reporters were expressed in D. melanogaster, they
showed a large deviation from the ectoderm domain (Crocker et al.,
2008).These findings display how co-evolving cellular environments
maintain correct axis patterning, however, a single component, such
as an enhancer, cannot fully account for the conserved domain
across species.

The emergence of genome engineering tools, like CRISPR/Cas9,
have reduced the need for substantialmutation screens in traditional
model organisms (Bier et al., 2018; Biering et al., 2022; Kramer et al.,
2018; Xu et al., 2017) and opened up a new avenue formore faithfully
representing the cellular environments of species of interest. This
allows the traditional approach of exploring one component at
a time in a heterologous organism to be replaced by a new
approach that allows us to explore the co-evolution of multiple
components, some of them as yet unidentified (Cooper, 2024).
Despite readily available genomes for many related species, both
the computational methods and the genetic tools for conducting
mechanistic studies outside of model organisms are limited
(Tomoyasu and Halfon, 2020).

Notably, the common practice of using traditional model
organisms to test functions of regulatory DNA or proteins
from closely related species may conceal the actual interacting
partners in the native species. Furthermore, testing functions
in model organisms that are too evolutionary distant may
lead to conclusions that do not automatically reflect their
native function, but rather their function in the model
organism. Phenotypes obtained through perturbation reflect the
impact (sufficiency/necessity) of this mutation in the model
organisms (Cooper, 2024).

As we work to explore developmental complexity and
identify new mechanisms underlying species-specific traits,
molecular tools should be expanded and adjusted for use in
additional organisms. This broader approach will help to capture
the scope of co-evolutionary processes across multiple levels
(molecular, cellular, tissue, organismal, community). Additionally,
deviation from focusing on a handful of traditional model
organisms would facilitate the exploration of novel mechanisms
in cell signaling, development, and homeostasis, helping us
to better understand pathologies and find new strategies for
curing diseases.

4 What makes an organism a good
model?

Mendel’s research pioneered the field of genetics. His selection
of peas as a model system was viewed unfavorably at the time and
perceived as an isolated example. Yet, selecting a system that is
easy to grow, has a short life cycle, produces many offspring by
controlled crossing, and has discrete and easily identifiable true bred
phenotypes made peas an excellent model organism for exploring
the laws of inheritance (Stenseth et al., 2022). Similar rules apply
for the discovery of the Lac-operon. A short generation time, a
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large number of progeny for finding rare mutations, no dependance
on lactose for growth, and inducible genes, all made bacteria an
excellent system to study the coordinated regulation of genes that
participate in the same metabolic process (Jacob andMonod, 1961).
Hence, the selection of a model system is essential once the research
question is defined.

The successful path from model system to “true” model
organism rests on building large and collaborative communities to
develop robust and sophisticated resources, including molecular,
genetic, and genomic tools, strategies for maintaining and sharing
stocks, the creation and maintenance of databases, and the
advancement of computational and bioinformatics tools (Irion
and Nusslein-Volhard, 2022). A crucial first step in selecting new
model organisms is leveraging the information and resources
of an already established community. This can save time and
effort, as genome engineering tools can be adapted to operate in
related species with relatively modest adjustments. This approach
opens new opportunities for exploring evolutionary tinkering in
embryogenesis.

5 Focusing on Drosophila

Several productive communities have been working with a few
model organisms. In this perspective, we focus onDrosophila, which
has been central to breakthrough discoveries in developmental
biology, cell signaling, neurobiology, computational modeling
and bioinformatics, evolution, and genetics, to name a few
(Victor Atoki et al., 2025). Research utilizing D. melanogaster
embryos has cemented the connections between genomic and
phenotypic change and provided countless translational insights
into human diseases (Verheyen, 2022; Perrimon et al., 2016). From
Morgan’s white-eyed phenotype (Morgan, 1910), through Muller’s
X-ray mutation screens on the X chromosome (Muller, 1928), the
large screens inHeidelberg (Nusslein-Volhard andWieschaus, 1980;
Schupbach andWieschaus, 1986; Wieschaus and Nusslein-Volhard,
2016), the discovery of Hox genes (Lewis, 1978; McGinnis et al.,
1984), the investigation of immune response (Hoffmann, 2007),
and the elucidation of and circadian clock (Allada et al.,
1998), Drosophila has been at the forefront of embryogenesis
studies. These seminal discoveries have been recognized by the
international communitywith numerous awards including sixNobel
prizes (Mohr, 2018).

Most resources have been directed at D. melanogaster with
some investment in otherDrosophila species, including comparative
genomics, evolution of cell signaling, patterning, morphologies,
vision, behavior, and communication. However, the tremendous
diversity among Drosophila species provides an unparalleled
opportunity to study the nature of speciation in vivo, accounting
for the complex co-evolving systems unique to each species. We
argue that the lack of effective genome engineering tools prevents
researchers in the Drosophila research community from fully
leveraging this co-evolutionary wealth (Tomoyasu and Halfon,
2020). The combination of short life cycles, complex tissue
organization with low genetic redundancy, sequenced genomes
across multiple species, availability of species with novel patterning
and morphologies, ease of quantitative imaging in both live and
fixed samples, as well as advances in molecular and genome

engineering tools, all make theDrosophila group an exciting “model
clade” for exploring mechanisms underlying evolutionary changes
(Kim et al., 2021; Brand and Perrimon, 1993; Niepielko et al.,
2011; Niepielko et al., 2014; Kanca et al., 2022; Garcia et al.,
2013). Hence, the conditions have ripened to systematically
explore co-evolving circuits at both molecular and
organismal levels.

6 A comprehensive example: EGFR
signaling and embryo axis formation

The dorsal-ventral (DV) axis inDrosophila is established during
oogenesis by the epidermal growth factor receptor (EGFR) (Roth,
1993). Specifically, in egg chambers, the precursor of the mature
egg, the TGF-alpha like ligand Gurken (GRK), localized around the
oocyte nucleus, activates EGFR in the overlaying follicle cells after
being secreted into the perivitelline space (Nilson and Schupbach,
1999). During DV axis formation, EGFR signaling represses pipe
(pip), limiting it to the ventral domain (Sen et al., 1998; Cho et al.,
2010; Moussian and Roth, 2005). The ventral restriction of Pip
confines the cleavage of the Toll pathway ligand, Spätzle, to the
ventral side of theDrosophila embryo, thereby setting domains along
the DV axis. Through pip regulation, the DV axis is highly sensitive
to changes in EGFR activation levels; reduced levels ventralize the
embryo by increasing the pip domain dorsally, and elevated levels
dorsalize the embryos by reducing pip expression (Roth, 1993;
Schupbach and Roth, 1994).

The level and duration of EGFR signaling on the dorsal side of
the egg chamber, is dramatically different amongDrosophila species
during DV axis determination (Niepielko et al., 2014; Niepielko and
Yakoby, 2014; Kagesawa et al., 2008). In D. melanogaster, EGFR
activation is initially restricted to the dorsal midline of egg chamber
(Figure 1A). This signal expands laterally a few hours later by
activation of EGFR through Spitz (Figure 1B). EGFR activation leads
to the formation of two dorsal appendage primordia on either side of
the dorsal midline, marked by fasciclin III (FASIII) (Figures 1A’, B’),
which give rise to the two embryonic respiratory structures, the
dorsal appendages (Figure 1C). The mesoderm, marked by Twist
(Twi), is restricted to ∼30% of the cells in the ventral domain of
the embryo (Figure 1D).

InDrosophila species with a dorsal ridge - a lumen-like structure
on the embryo casing (Niepielko and Yakoby, 2014) - the level,
duration, and domains of EGFR activation differ considerably from
the pattern observed in D. melanogaster. In D. nasuta, EGFR
signaling levels are substantially elevated along the dorsal side of
the egg chamber during early stage 10A (Figure 1E). The memory
of this activation pattern is reflected in the extended expression of
FASIII at stage 10B (compareD.melanogaster Figure 1B’ toD. nasuta
Figure 1F’). Additionally, the lateral expansion of EGFR signaling
at stage 10B is more extensive in D. nasuta than D. melanogaster
(compare D. melanogaster Figure 1B to D. nasuta Figure 1F) and
contributes to the formation of four dorsal appendages in the
final eggshell (Figure 1G).

Interestingly, despite the expansion of dorsal EGFR signaling
in D. nasuta and the expected change in DV axis, the mesoderm
of the D. nasuta embryo still spans the same number of cells
as in D. melanogaster (Figures 1F, 2A,B). Furthermore, in D.
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FIGURE 1
EGFR signaling and dorsal-ventral axis formation in D. melanogaster (A–D) and D. nasuta (E–H). Stage 10A (A-A”) and 10B (B-B″) egg chambers of D.
melanogaster stained for EGFR signaling (dpERK), FasIII, and merged (n = 7 and n = 28, respectively). D. melanogaster (C) eggshell (n = 12), dorsal
appendages (yellow), and (D) embryo stained for Twist (n = 5). Stage 10A (E-E″) and 10B (F-F″) egg chambers stained for dpERK, FASIII, and merged (n
= 12 and n = 9, respectively). D. nasuta (G) Eggshells (n = 27). Dorsal appendages (yellow) and dorsal ridge (blue), and (H) embryo stained for Twist (n =
5). Immunohistochemistry, confocal imaging, and SEM imaging were performed as described before (Niepielko and Yakoby, 2014; Stevens et al., 2022)
(anti-dpERK antibody, 1:100, Cell Signaling; anti-FASIII antibody, 1:100, DSHB 1D4). Rat anti-TWIST (1:1,000; gift from the Wieschaus lab) was
used as in (He et al., 2014). Anterior to the left for all images, dorsal views for egg chambers and eggshells, ventral views for embryos. The yellow
broken line denotes the anterior of the oocyte. Arrowhead denotes the dorsal midline. Asterisk denotes the posterior end.

nasuta, the dorsal anterior activation of EGFR expands laterally,
yet the anterior mesoderm domain unexpectedly trends to span
more nuclei (Figures 1D,H; Figure 2). Given the sensitivity of the
embryos’ DV axis to changes in EGFR signaling (Queenan et al.,
1997), it is intriguing to explore how the mesoderm maintains
a consistent ventral domain despite the differences in
EGFR signaling.

7 What’s next? How do we explore
diverse EGFR activation levels with
constant DV axis?

To account for the spatial changes in EGFR signaling in these
species, molecular and computational tools must be employed to

explore directly co-evolving components of EGFR signaling and
downstream targets.

7.1 Experimental tools to explore casual
effects

The long history of D. melanogaster as a prominent model
organism for genetic research has led to the development of an
extraordinary array of molecular and genetic tools to unravel
complex processes in biology. Some of the key innovations
include the use of dominant, homozygous lethal mutations and
balancer chromosomes to track genetic manipulations and prevent
recombination, the implementation of targeted expression systems
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FIGURE 2
Quantification of mesoderm width using Twist positive nuclei. Dorsally oriented embryos were divided into thirds (anterior, middle, posterior). Twist
positive nuclei were counted along a line in the center of each third [(A), red lines]. Nuclei counts were averaged for each region and compared across
both species [(B), D. melanogaster n = 5, D. nasuta n = 5]. Comparison of nuclear counts at each region using the Student’s t-test revealed no
significant differences.

like UAS/Gal4 for functional perturbations, the cultivation white-
eyed flies allowing for easy screening of transgenics and the
optimization of gene insertion techniques like the phiC31 integrase
vector system and genome editing techniques like CRISPR/Cas9
(Brand and Perrimon, 1993; Kanca et al., 2022; Stern et al.,
2023; Gratz et al., 2014). For example, we can insert coding and
non-coding sequences from other Drosophila species into the D.
melanogaster genome to test their effects on signaling intensity or
gene expression. Inserting grk from D. willistoni, a dorsal ridge
species, into D. melanogaster not only rescued a grk null fly, but
also generated a short dorsal ridge in a low percentage of the
eggshells (Niepielko and Yakoby, 2014).

Importantly, the same grk in D. willistoni is necessary for
the robust formation of dorsal ridge, however, the penetrance
in D. melanogaster is very low, likely due to other components
unique to D. willistoni (Niepielko and Yakoby, 2014). Similar

experiments can be done with grk from D. nasuta and D. nebulosa,
as well as other components related to EGFR signaling pathway,
including downstream targets like rhomboid, spitz, sprouty, and
kekkon controlling both positive and negative feedback loops of
signaling (Zartman et al., 2009; Shilo, 2005). However, testing one
component at a time in D. melanogaster is time consuming, costly,
and does not always reflect the full function of the gene in the
native species. August Krogh noted in his 1929 essay that for a
given question, there is usually a particular animal model best
suited to address that question (Garcia et al., 2013). The most
suitable system for answering coevolutionary questions is not a
single model organism. Answering these questions requires the
development of a “model clade,” a group of closely related species
accompanied by the genetic and molecular tools necessary for
reciprocal editing to more accurately examine predicted functions
in the relevant context.
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7.2 Challenges in manipulating other
Drosophila species

CRISPR/Cas9 was used successfully to disrupt genes in
other Drosophila species (Baker et al., 2024; Lamb et al., 2020;
Sottolano et al., 2022), however, unlike its use in D. melanogaster,
achieving homology directed repair (HDR) in non-model
Drosophilids has been mostly unsuccessful with one exception
(Stern et al., 2023). Additionally, the lack of balancer chromosomes
and dominant genetic markers makes it difficult to follow and
maintain edits to the genome. Most D. melanogaster transgenic
flies rely on complementation of the white gene mutation, or
the use of fluorescent eye markers to track successful integration
of transgenes in a white-eyed fly (Bellen and Yamamoto, 2015).
Despite this common practice, the disruption of the white gene
affects courtship behavior and mating success in D. melanogaster
(Xiao et al., 2017). Althoughwhite-eyed stocks have been established
in other Drosophila species (Holtzman et al., 2010), in D. nebulosa,
white-eyed males do not attempt to mate at all, preventing the
effective use of white-eyed flies and fluorescent eye markers in this
species (Sottolano et al., 2022). Likewise, mutations in the Of-white
gene of the Milkweed bug Oncopeltus fasciatus were lethal (Reding
and Pick, 2020).

Genome manipulations in D. melanogaster were not always
simple and have undergone a series of optimizations. Incorporating
Cas9 and phiC31 integrase under the control of germ line
promoters greatly improved transgenesis efficiency in this species
(Bischof et al., 2007; Kondo and Ueda, 2013). This same strategy
has been used in a variety of non-model insects to improve gene
editing outcomes (Li et al., 2017; Sun et al., 2017). Several labs
have recently published methods for increasing HDR efficiency in
D. melanogaster, including the use of short homology arms and
the pJAT plasmid platform (Kanca et al., 2022; Stern et al., 2023).
Incorporating a species-specific native nos promoter to drive cas9
in the germline, together with the more efficient CRISPR strategies
may expedite successful HDR in a variety of non-model Drosophila
species. Options for maintaining the inheritance of edited loci are
also emerging. A suite of transgenic tools developed by the Stern lab
was used to generate a balancer chromosome forD. simulans (Stern,
2022). It may be possible to replicate this success in other non-
model Drosophilids to stabilize transgenic constructs by preventing
recombination.

Another recent innovation is the use of antibiotic resistance
genes as selectable markers in flies (Matinyan et al., 2021), which
eliminates the need to screen for visible selection markers and
reliance on white-eyed fly strains. Growing transgenic flies on
antibiotic treated food may permit the maintenance of deleterious
edits across multiple generations without the use of balancer
chromosomes. Additionally, titration of antibiotic concentrations
could facilitate the selection of offspring homozygous for edits
without the use of additional markers to follow the edited and
unedited chromosomes through sequences of crosses. Anothermore
traditional option is to identify non-vision related mutations on
the X chromosome (like the white gene). The Drosophila wing has
two cross-veins regulated by crossveinless-2 (cv-2). Mutations in cv-
2 lead to the loss of the two cross veins on the wing, a simple
visual phenotype (Conley et al., 2000). The cv-2 cDNA (4329bp) is

of similar size to the commonly used mini-white cassette (4136bp)
in transformation vectors.

7.3 Computational tools to predict
co-evolution

Beyond the ability to perturb known genes in a signaling
pathway and their known targets in new model systems, we can
also leverage computational predictions of co-evolving domains in
interacting proteins to further refine our exploration of co-evolving
systems. The sequenced genomes of flies like D. nasuta and D.
nebulosa provide a good starting point for exploring how evolution
along the EGFR signaling pathway can both maintain stasis for
critical functions like mesoderm specification while also permitting
the emergence of new forms like the dorsal ridge, a downstream
target of elevated EGFR signaling (Niepielko et al., 2014; Niepielko
and Yakoby, 2014). Phylogenetic comparative methods like
iBIS2 (protein-protein co-evolution, (Oteri et al., 2022)) and
PhyloACC (convergent evolution in regulatory elements, (Hu et al.,
2019)) can highlight significant areas of convergence and
divergence linked to selected phenotypic outcomes like
the dorsal ridge.

One hurdle in implementing this approach is the lack
of comprehensive collections of phenotype data, particularly
data that identifies instances of phenotypic convergence, to
match our growing library of high-quality genomes. Once
implemented, labeling strategies like immunohistochemistry and
Single Molecule Fluorescent in situ Hybridization can provide
complimentary insights by revealing cross-species changes in gene
expression patterns, protein localization, and signaling intensity.
These methods can provide valuable spatiotemporal markers to
further support the insights from phylogenies. Although these
methods are still correlative, the generated predictions can be
prioritized and validated in the new gene editing platforms, thus
accounting for the overall evolutionary changes that occurred
during speciation.

8 Concluding remarks

The triangle of a biological question, experimental tools to
address the question, and computational tools to analyze the
data have come to a full circle in the post-genomics era. High-
quality genome sequences of many species, beyond the traditional
model organisms, are available (Kim et al., 2021). Additionally,
predictive computational tools to identify co-evolving domain are
also accessible (Oteri et al., 2022; Hu et al., 2019). Therefore, the
groundwork is in place to tackle the next challenge: understanding
speciation in native species. To accomplish that, computational tools
will need to be supplemented with species’ traits (e.g., morphology,
pattern, function, etc.) to narrow down the list of predicted co-
evolving domains. Moreover, adjusting genome engineering tools
to enable HDR, together with robust and inexpensive selection
of transgenic organisms will allow the scientific community to
explore complex, heterogenous systems within their native context.

Frontiers in Cell and Developmental Biology 06 frontiersin.org

https://doi.org/10.3389/fcell.2025.1569318
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Stott and Yakoby 10.3389/fcell.2025.1569318

We argue that branching out from established communities, like that
of Drosophila, is the most efficient path forward.
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