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Roles of LRRK2 and its orthologs
in protecting against
neurodegeneration and
neurodevelopmental defects

An Phu Tran Nguyen*, Linh Thi Nhat Nguyen, Bailey A. Stokke
and Christopher C. Quinn*

Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, United States

In humans, variants in the LRRK2 gene are the most prevalent risk factors
for Parkinson’s disease (PD). Whereas studies in model organisms have long
indicated that the orthologs of the wild-type LRRK proteins protect against
neurodegeneration, newer findings indicate that they also protect against
neurodevelopmental defects. This normal role of the LRRK proteins can be
disrupted by either gain-of-function (GOF) or loss-of-function (LOF) mutations,
leading to neurodegeneration and neurodevelopmental defects. Here, we
review the roles of the LRRK proteins and their orthologs in these processes, with
a focus on autophagy as a common factor that maymediate both of these roles.
We also highlight the potential for experiments in vertebrate and invertebrate
model systems to synergistically inform our understanding of the role of LRRK
proteins in protecting against neurological disorders.
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Introduction

Variants in the LRRK2 gene have been associated with Parkinson’s disease (PD) in
humans and studies of model organisms suggest that orthologs of this gene protect against
both age-related neurodegeneration and defects in neurodevelopment. For example, in
mice, neurodegeneration can be caused by either a gain-of-function variant in LRRK2
or by a double mutation that deletes both LRRK2 and its functional homolog LRRK1
(Dusonchet et al., 2011; Ramonet et al., 2011; Kang et al., 2024). More recently, it has
become apparent that LRRK2 and its orthologs also protect against neurodevelopmental
defects. For example, gain-of-function and loss-of-functionmutations in LRRK2 cause axon
guidance defects in mice (Onishi et al., 2020). Likewise, loss of function mutations in the
lrk-1 ortholog of the LRRK genes also causes axon guidance defects in Caenorhabditis
elegans (Kuwahara et al., 2016; Drozd et al., 2024). These observations suggest that the
normal role of the LRRK proteins (Human LRRK1, Human LRRK2, C. elegans LRK-
1, and Drosophila dLRRK) is to protect against both neurodegeneration and defects in
neurodevelopment. Moreover, these normal roles of the LRRK proteins can be disrupted
by either gain-of-function or loss-of-function mutations. Here, we review the roles of
the LRRK proteins in protecting against neurodegeneration and neurodevelopmental
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defects and consider the regulation of autophagy as a common factor
for both of these functions.

Overview of the LRRK2 and LRRK1 proteins

LRRK2 is a large (286 kDa), multidomain, homodimeric protein
that is ubiquitously expressed, with the highest levels detected in the
kidneys, lungs, and brain. As a member of the Roco protein family,
LRRK2’s structure includes several functional domains (Figure 1A):
armadillo (ARM) repeats, ankyrin (ANK) repeats, leucine-rich
repeats (LRR), a GTP-binding Ras of complex (ROC) domain
coupled to C-terminal of ROC (COR), a catalytic kinase (KIN)
domain, a WD40 domain, and an extended C-terminal αC-helix
(Myasnikov et al., 2021). Notably, LRRK2 exhibits two enzymatic
activities: a Ras-like GTPase and a kinase, a unique feature of certain
Roco family proteins (Alessi and Pfeffer, 2024).

Within the Roco protein family, LRRK1 is a functional
homolog of LRRK2, sharing similar LRR, ROC, COR, and kinase
domains (Figure 1B) (Marin, 2008). Despite structural similarities,
LRRK1 exhibits distinct mechanisms of autoinhibition/activation
and physiological functions compared to LRRK2 (Metcalfe et al.,
2023; Reimer et al., 2023). Autosomal recessive variants in the
LRRK1 gene that cause frameshift or truncating mutations in
the C-terminal domain of the LRRK1 protein, likely lead to loss
of function and are associated with osteosclerotic metaphyseal
dysplasia, a severe metabolic bone disorder (Alessi and Pfeffer,
2024). Functionally, LRRK1 efficiently phosphorylates Rab7A at
Ser72 but does not target Rab8A or Rab10, the primary LRRK2
substrates in cells (Malik et al., 2021).

Pathogenic variants in the LRRK2 protein
can cause Parkinson’s disease in humans

Mutations in the LRRK2 gene are the most common genetic
cause of familial autosomal dominant Parkinson’s disease (PD),
accounting for 2%–40% of cases depending on the population
studied (Mata et al., 2023). Clinically, the progression of symptoms
and neuropathology in patients with LRRK2-associated PD
(LRRK2-PD) are indistinguishable from those observed in sporadic
PD cases (Aasly et al., 2005; Healy et al., 2008). Thus, investigations
of LRRK2 are thought to be a platform for understanding the
molecular mechanisms that underlie all forms of Parkinson’s.

Seven pathogenic missense mutations have been identified in
LRRK2 (Figure 1A), located in the ROC-GTPase domain (N1347H,
R1441 C/G/H), COR domain (Y1699C), and kinase domain
(G2019S, I2020T). These mutations highlight the critical role of
enzymatic activity in LRRK2 function. Mutations in the kinase
domain (G2019S and I2020T) enhance LRRK2 kinase activity
in vitro, while those in the ROC-COR domain (R1441 C/G/H
and Y1699C) disrupt dimer stability and reduce GTPase activity
(Nguyen and Moore, 2017). LRRK2 kinase phosphorylates various
substrates, including a group of ∼14 Rab-GTPases (LRRK2-Rabs),
implicating LRRK2 in endosomal and vesicle trafficking pathways
(Steger et al., 2016). All seven pathogenic mutations increase
LRRK2-Rab phosphorylation, suggesting a gain-of-function
mechanism through enhanced kinase activity (Steger et al., 2016).

LRRK2 GOF proteins cause age-related
neurodegeneration in model organisms

Pathogenic LRRK2 missense mutations that cause increased
kinase activity consistently cause axonal degeneration and
neuronal cell death across various model systems. In Drosophila,
expression of the common pathogenic LRRK2 mutant protein
G2019S causes severe retinal degeneration, selective dopaminergic
neuron loss, reduced climbing ability, and early mortality
(Liu et al., 2008; Lin et al., 2010). Additionally, G2019S LRRK2
expression exacerbates tau-induced dendritic degeneration,
microtubule fragmentation, and inclusion formation in fly neurons
(Lin et al., 2010). In C. elegans, dopaminergic neuron-specific
expression of pathogenic LRRK2 mutant proteins R1441C and
G2019S induces age-dependent locomotor impairments, axonal
degeneration, and dopaminergic neuronal loss (Yao et al., 2010;
Cooper et al., 2015; Senchuk et al., 2021).

In mammalian models, overexpression of G2019S LRRK2 in
mice using the PDGFβ promoter leads to progressive loss of
dopaminergic neurons in the substantia nigra pars compacta (SNpc)
by 19–20 months of age (Ramonet et al., 2011). Similarly, in
rats, overexpression of G2019S LRRK2 via recombinant human
adenoviral vectors (Ad5) in the nigrostriatal pathway results in
progressive dopaminergic neuron loss in the SNpc (Dusonchet et al.,
2011). Remarkably, neurodegenerative phenotypes associated with
G2019S LRRK2 are kinase-dependent, as shown by the suppression
of these phenotypes through expression of the kinase-dead mutant
G2019S/K1906M or treatment with LRRK2 kinase inhibitors
(Nguyen et al., 2020). Common pathological features observed in
transgenic and adenoviral LRRK2 animal models include axonal
abnormalities such as hyperphosphorylated tau accumulation,
fragmented axons with spheroids and dystrophic neurites, increased
Gallyas silver deposits, and APP-positive inclusions (Li et al., 2009;
Li et al., 2010;Melrose et al., 2010; Dusonchet et al., 2011; Tsika et al.,
2015; Yue et al., 2015; Nguyen et al., 2020).

LOF mutations in LRRK genes cause
age-related neurodegeneration in model
organsisms

While gain-of-function mutations in LRRK2 proteins can cause
axonal degeneration and neuronal death, evidence suggests that
loss of LRRK proteins can also result in similar pathologies.
LRRK loss-of-function mutations in Drosophila exhibit severe
locomotor deficits, reduced tyrosine hydroxylase immunoreactivity,
and atrophic dopaminergic neurons (Lee et al., 2007). In mice,
deletion of the LRRK2 gene alone does not cause brain phenotypes
(Tong et al., 2010;Herzig et al., 2011).The lack of a pronounced brain
phenotype in LRRK2 knockout mice may be due to compensatory
effects by LRRK1. Supporting this, deletion of both LRRK1 and
LRRK2 leads to age-dependent, progressive loss of dopaminergic
neurons in the SNpc and dopaminergic terminals in the striatum
starting at 14 months of age (Giaime et al., 2017; Huang et al., 2022).
Recently, Kang and colleagues demonstrated that specific deletion
of both LRRK1 and LRRK2 in mouse dopaminergic neurons causes
age-dependent progressive loss of SNpc dopaminergic neurons at
20–24 months of age (Kang et al., 2024). These findings underscore
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FIGURE 1
Overview of human LRRK2/LRRK1 structure and function. (A) LRRK2 is a multi-domain protein containing Armadillo domain (ARM, Red), Ankyrin repeat
(ANK, Orange), Leucine rich repeat (LRR, Yellow), Ras-of-complex (Roc, Green), C-terminal of ROC (COR, Blue), Kinase (KIN, Navy), and WD40 (Purple).
LRRK2 contains two key enzymatic domains: a Roc-GTPase domain and a kinase domain. PD-linked LRRK2 variants with reported kinase and GTPase
activities were indicated. LRRK2 kinase can phosphorylate LRRK2 itself at Ser1292 residue (auto-phosphorylation). Several intracellular substrates have
been identified for LRRK2 kinase, including a subset of Rab-GTPases. (B) Comparison of domain organization of LRRK1 and LRRK2. LRRK1 and LRRK2
contain similar domain organization: Ankyrin repeat, Leucine rich repeat (LRR), Ras-of-complex, C-terminal of ROC, Kinase and WD40 domain. Dash
lines represent loss of LRRK1 and LRRK2 expression.

the critical roles of both LRRK1 and LRRK2 in maintaining
dopaminergic neuron homeostasis in animal models.

Whereas LRRK family loss-of-function can cause
neurodegeneration in animal models, the role of LRRK2 loss-of-
function in humans remains uncertain. On one hand, analysis
of predicted loss-of-function variants in the LRRK1 and LRRK2
genes failed to find any association with Parkinson’s disease
(Blauwendraat et al., 2018). On the other hand, two LRRK2 risk
variants have been reported that may have loss-of-function effects.
For example, LRRK2 G2385R is one of the most prevalent risk
variants worldwide and is reported to cause a reduction in LRRK2
kinase activity in vitro and a reduction in LRRK2 stability in cells

(Rudenko et al., 2012). However, some studies have reported that
the LRRK2 G2385R variant increases LRRK2-Rab phosphorylation
(Steger et al., 2016; Zhang et al., 2019; Kalogeropulou et al., 2022).
Recently, another LRRK2 loss-of-function variant, G2294R, has
been identified in a patient with familial PD. Consistent with a loss-
of-function mechanism, this variant reduces LRRK2 protein levels
and LRRK2-mediated Rab10 phosphorylation in cells (Ogata et al.,
2021). Together, these observations suggest the hypothesis
that LRRK2 loss-of-function variants can contribute to
PD in humans. Nonetheless, more research will be
needed to determine if and how LRRK2 loss of function
contributes to PD.
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The LRRK proteins protect against defects
in neurodevelopment in model organisms

Inmice, wild-type LRRKproteins protect against defects in axon
guidance, and this process is disrupted by either gain-of-function or
loss-of-function alleles in the LRRK genes (Onishi et al., 2020). For
example, knockout of either LRRK1 or LRRK2 causes axon guidance
defects in the commissural axons of the spinal cord. Likewise,
the double knockout of LRRK1 and LRRK2 causes axon guidance
defects in the midbrain dopamine neurons. The LRRK2 G2019S
gain-of-function mutant protein causes axon guidance defects in
both spinal cord commissural neurons and mid brain dopamine
neurons. These observations indicate that neurodevelopment can
be disrupted by either GOF and LOF alleles of LRRK2, suggesting
that precise regulation of LRRK2 activity is required for normal
development.

Recent work has begun to reveal the mechanisms through
which the LRRK proteins promote axon guidance. For example,
LRRK proteins promote axon guidance by phosphorylating
Frizzled3, thereby promoting its interaction with the planer
cell polarity pathway. Moreover, observations of cultured
neurons suggest that LRRK2 and the planer cell polarity
pathway promote axon guidance by regulating the interaction
between growth cones. Together, these observations suggest that
LRRK2 promotes axon guidance by regulating the planer cell
polarity protein, thereby influencing the interactions between
growth cones.

Additional mechanistic insight for the role of the LRRK proteins
in neuronal development comes from studies of theC. elegans LRK-1
ortholog of the LRRK1 and LRRK2 proteins. First, LRK-1 is required
for termination of the growth of the PLM and ALM axons. These
axons normally extend along the body wall and terminate at defined
locations. Loss of LRK-1 function causes these axons to overshoot
their normal termination sites (Kuwahara et al., 2016; Drozd et al.,
2024). Second, LRK-1 is required for the polarized distribution of
synaptic vesicle proteins within neurons. For example, the SNB-
1 synaptic vesicle protein is normally localized to axons and
excluded fromdendrites. Loss of LRK-1 function causes SNB-1 to be
localized in both axons and dendrites, suggesting that LRK-1 helps
to exclude synaptic vesicle localization in dendrites (Sakaguchi-
Nakashima et al., 2007). Moreover, LRK-1 can function with the
UNC-16 (JIP3) adaptor protein and the SYD-2 active zone protein to
regulate the protein composition and trafficking of synaptic vesicles
precursors (Choudhary et al., 2017; Nadiminti et al., 2024).

In humans, defects in neurodevelopment are associated
with neurodevelopmental disorders such as autism (ASD) and
intellectual disability (ID). In this regard, it is interesting to
note that growing evidence suggests a potential association
between Parkinson’s disease and ASD/ID. For example, a
small study has reported a high incidence of Parkinson’s
disease in autistic individuals (Starkstein et al., 2015).
Moreover, although unpublished, a recent large study has
suggested that diagnosis of ASD and/or ID is a risk factor for
Parkinson’s disease (Naddaf, 2024). Although this association
is still not well understood, it could reflect the dual roles of
LRRK proteins in protecting against both neurodegeneration and
neurodevelopment.

Regulation of autophagy may underlie the
role of LRRK proteins in PD and
neurodevelopment

There is growing evidence suggesting that abnormal LRRK2
activity disturbs the autophagy/lysosomal pathways, including
mitophagy, the process of specific elimination of mitochondria
by autophagy (Erb and Moore, 2020; Singh and Ganley, 2021).
In cultured neurons, expression of G2019S and R1441C/H
LRRK2 decreased autophagic flux or autolysosome maturation,
possibly through disruption of axonal autophagosome transport
(Schapansky et al., 2018; Wallings et al., 2019; Boecker et al.,
2021; Dou et al., 2023). In C. elegans, G2019S or R1441C
LRRK2 expression causes accumulation of LC3-homolog lgg-
1:RFP, suggesting a reduction of autophagy flux (Saha et al.,
2014). In mice, expression of G2019S or R1441C LRRK2 display
increased numbers of large intra-axonal autophagic vacuoles
(Ramonet et al., 2011). Mechanistically, the increase of LRRK2
kinase activity was shown to enhance the recruitment of JIP4,
a motor adaptor known to bind to LRRK2-phosphorylated Rab
proteins, to the autophagosomal membrane. Increased JIP4
levels induce abnormal recruitment and activation of kinesin-
1, resulting in an unproductive tug-of-war between anterograde
and retrograde motors bound to autophagosomes (Boecker and
Holzbaur, 2021).

In contrast to the LRRK2 GOF variants, deletion of the
LRRK2 gene caused an increase in autophagic flux in neurons
cultured from postnatal day 1 rats, although this did not reach
statistical significance (Wallings et al., 2019). Nonetheless, this
LRRK2 deletion did cause a statistically significant increase in
lysosomal protein degradation. The opposite effect was observed
in the brains of ageing mice, where deletion of both LRRK2
and LRRK1 leads to anaccelerated decline of autophagic clearance
and accumulation of large autophagic vacuoles in surviving
dopaminergic neurons (Giaime et al., 2017; Huang et al., 2022).
Taken together, these observations suggest that the deletion of the
LRRK genes might have opposite effects on autophagy in young
and old neurons. Consistent with this idea, loss of LRRK2 enhances
autophagy in young rat kidneys and decreases autophagy in old
rat kidneys (Tong et al., 2012).

Work in multiple systems has implicated LRRK2 mutations
in the dysregulation of mitophagy, a selective form of autophagy
that is critical for the homeostasis of mitochondria. Studies
of fibroblasts and neurons derived from patients carrying the
G2019S or R1441C LRRK2 mutations revealed abnormalities in
mitochondrial morphology, and an increase of mitochondrial
DNA damage (Mortiboys et al., 2010; Sanders et al., 2014;
Wauters et al., 2020). In C.elegans, G2019S or R1441C LRRK2
expression increased the response of the mitochondrial hsp6
reporter to stress (Saha et al., 2014). In mice, G2019S LRRK2
expression was shown to induce progressive mitochondrial
morphology changes and reduce basal mitophagy as indicated
by the reduction of fluorescent reporter for mitophagy (“mito-
QC”) (Yue et al., 2015; Singh et al., 2021). Mechanistically,
LRRK2 was shown to form a complex with Miro, which
is required for its efficient removal during PINK1/Parkin-
dependent mitophagy (Hsieh et al., 2016). Expression of LRRK2
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G2019S disrupted Parkin-dependent mitophagy, potentially
via reducing Parkin’s interaction with outer mitochondrial
membrane proteins, including the fission regulating GTPase
DRP-1 (Bonello et al., 2019). Additionally, LRRK2 mutations
impair depolarization-induced mitophagy through inhibition
of mitochondrial accumulation of Rab10, a downstream
substrate of LRRK2 (Wauters et al., 2020).

Emerging evidence suggests that the role of the LRRK proteins
in axon development is also mediated through dysregulation of
autophagy.This idea is supported by interactions betweenmutations
in the genes that encode the UNC-16 (JIP3) adaptor protein, the
LRK-1 ortholog of LRRK2, and the WDFY-3 selective autophagy
protein (Drozd et al., 2024). UNC-16 is required for the retrograde
transport of late endosomes and autophagosomes and its loss
of function causes axonal accumulation of late endosomes and
autophagosomes, which contain LRK-1 protein (Hill et al., 2019;
Celestino et al., 2022; Drozd et al., 2024). Moreover, loss of unc-
16 causes overextension of the PLM axon and this phenotype can
be suppressed by loss of lrk-1 function (Drozd et al., 2024). The
PLM axon overextension phenotype can also be suppressed by
loss of wdfy-3, which encodes a selective autophagy protein. These
observations suggest that excessive activity of LRK-1 and WDFY-
3 might cause axon overgrowth in unc-16 mutants. Furthermore,
no additional suppression of this phenotype is observed in in lrk-
1;wdfy-3;unc-16 triple mutants, suggesting that wdfy-3 and unc-16
function in a genetic pathway with each other.

Based on these observations, we hypothesize that LRK-1
and WDFY-3 function within a pathway that can promote axon
extension and that excessive accumulation of these proteins in the
axon can cause axon termination defects. Moreover, it is interesting
to note that that the C. elegansWDFY-3 protein is an ortholog of the
human WDFY3 selective autophagy protein, which is encoded by a
gene that has been associated with ASD and ID (Fu et al., 2022).
Therefore, we hypothesize that the WDFY3 and LRRK proteins
could function together to protect against autism.

Studies of cultured mammalian neurons also support the idea
that the role of the LRRK family in axon growth is mediated
through the dysregulation of autophagy. Multiple studies have
indicated that the LRRK2 G2019S mutation reduces the growth
of axons and dendrites in cultured primary neurons (Stafa et al.,
2012; Sepulveda et al., 2013; Stafa et al., 2014; Kang et al., 2024).
One study of the SH-SY5Y neuroblastoma cell line has also
found that the LRRK2 G2019S mutation causes an accumulation
of autophagosomes within neurites along with a decrease in
neurite length (Plowey et al., 2008). Moreover, both of these
phenotypes can be suppressed by knockdown of either the
ATG7 or LC3 autophagy proteins. These observations suggest that
LRRK2 G2019S disrupts axon growth through the dysregulation
of autophagy. These observations are also consistent with the
hypothesis that wildtype LRRK2has a role in regulating axon growth
through the regulation of autophagy.

Discussion

Here, we have reviewed the roles of the LRRK proteins
in protecting against neurodegeneration and promoting axon

development in multiple model organisms. We have also
considered evidence that the LRRK family regulates autophagy,
and that disruption of autophagy is likely to underlie the
neurodegenerative and neurodevelopmental phenotypes of
LRRK gene variants. Moreover, we have discussed genetic
interactions suggesting that the LRK-1 ortholog of LRRK2
regulates axon development by functioning in a pathway with
the ortholog of the WDFY3 selective autophagy protein (aka
Alfy), which is encoded by an autism-associated gene. Taken
together, these observations suggest the hypothesis that the
role of the LRRK proteins in regulating autophagy could
underlie their roles in protecting against neurodegeneration and
neurodevelopmental defects. We also hypothesize that these dual
roles for LRRK proteins could explain the association between
ASD and PD. Further investigation of this hypothesis will require
additional work in model organisms and further human genetic
analysis.

A key question for future investigation is the potential
involvement of LRRK2 in protecting against neurodevelopmental
disorders. Given the role of LRRK genes in protecting against
neurodevelopmental defects in mice, Drosophila and C. elegans,
we propose that they might protect against neurodevelopmental
disorders in humans. Thus far, investigations of LRRK2 association
with neurodevelopmental disorders have been inconclusive. On
one hand, comparative genomic mapping with microdeletions has
suggested that deletion of LRRK2 can cause a syndrome that presents
as intellectual disability and autism (Labonne et al., 2020). On the
other hand, a large study of human LRRK2 loss of function variants
failed to identify an association with any disorders (Whiffin et al.,
2020). One possible reason for this discrepancy is that autism may
occur as a result of a genetic interaction between LRRK2(LOF)
and variants in other neurodevelopmental genes. Thus, the
microdeletions could cause autism by synergizing with variants
in one or more other autism-associated genes. Therefore, we
propose that an important goal for future research with model
organisms will be to identify synergistic genetic interactions
between mutations in LRRK genes and neurodevelopmental
disorder-associated genes. With regards to human genetic
analysis, it may be useful to investigate a potential association
between LRRK2(GOF) variants and neurodevelopmental
disorders.

Another key question for future investigation is the
potential involvement of the WDFY3 gene in protecting against
Parkinson’s disease and other neurodegenerative disorders.
Considering the genetic interactions between wdfy-3 and lrk-
1 in C. elegans, we propose that the WDFY3 gene could be
involved in protecting against Parkinson’s disease. Although
WDFY3 gene has not been associated with Parkinson’s, the
WDFY3 protein has been implicated in mitophagy, which
is thought to be involved in Parkinson’s (Gao et al., 2017;
Napoli et al., 2018). In addition, WDFY3 has been implicated
in protecting against Huntington’s disease, suggesting that it
can protect against neurodegeneration (Fox et al., 2020). To
further investigate the role of WDFY3 in neurodegeneration,
future investigations may seek to explore genetic interactions
between variants in WDFY3 and LRRK2 in animal models of
Parkinson’s disease.
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