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Evaluation of image analysis
tools for the measurement of
cellular morphology

Matthew D. Bourn, Lauren F. Daly, Jim F. Huggett,
Julian Braybrook and Jeanne F. Rivera*

National Measurement Laboratory, LGC Ltd., Teddington, United Kingdom

Morphological cell analysis offers a means of identification and classification of
key morphological measurement parameters linked to cell bioactivity and cell
health and, as such, it is of great interest to academic and industrial research
sectors. Widespread adoption of this approach has yet to occur, partially due
to the lack of alignment in analysis methodologies and output metrics, limiting
data comparability. Work within the cell metrology and wider multidisciplinary
community aims to reduce data variability through the improved alignment of
image acquisition and analysis methodologies. Furthermore, to improve data
comparability, research has also focused on the identification of a minimal set
of morphological measurands, often termed critical quality attributes (CQAs),
which are traceable to standardised (SI) units of measurement. Whilst efforts
in defining CQAs have progressed significantly for healthcare applications,
there are still numerous measurement challenges associated with image
analysis of cultured cells due, in part, to their complex heterogenous nature.
This review evaluates the various automated image analysis tools developed
for morphological analysis of four commonly considered cell morphological
features: the nucleus, actin cytoskeleton, mitochondria, and the cell membrane.
The measurement methodologies and outputs from each tool have been
evaluated and coinciding outputs have been highlighted as potential CQAs.

KEYWORDS

morphological cell analysis, critical quality attribute (CQA), metrology, traceability,
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1 Introduction

Morphological cell analysis utilises the data from cell microscopy images to
generate quantitative data which portrays key information about the cells structure
and cell bioprocesses (Chandrasekaran et al., 2021; Vincent et al., 2022; Stirling et al.,
2021). This practice, often referred to as cell profiling, involves the analysis of key
morphological features of differing cell populations and organelles, which generally
consists of analysing fluorescent intensity, shape features, and co-localisation of signals
(Piccinini et al., 2017). Cell profiling is often used for high-throughput investigations
during drug development to identify mechanisms of drug uptake and toxicity, by
comparing cell morphologies of treated cells with those of untreated cells (Kang et al.,
2016; Ziegler et al., 2021; Scheeder et al., 2018). Furthermore, advances in imaging
technologies allow for analysis of complex cell models, such as organoids, for disease
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characterisation, and optimisation of immunotherapies - bridging
the gap between preclinical and clinical research (Silva-
Pedrosa et al., 2023). The consideration of cell morphology
overcomes limitations of alternative analysis methods such as
plate-based viability assays or cytometry-based expression assays,
which are unable to discriminate subtle morphological variations
(Chen et al., 2016). Although morphological cell analysis is a
desirable technique which provides extensive information about
the state of various cell populations, there are still numerous
challenges within the workflow of cell profiling that need to
be addressed to facilitate its adoption by the wider scientific
community. A particular application for image-based cell profiling
is during drug development process, due to its high-throughput
potential to assess large datasets and improve analysis efficiency.
However, discrepancies on the quality of training data sets influence
the unbiased strategy of image-based profiling. The definition
of good quality data for training sets remains unclear, though
some QC guidelines for tools like Cell Painting assays for well-
characterized cell lines (e.g., A549) and data preprocessing methods
in CellProfiler enhance image-based profiles (Garcia-Fossa et al.,
2023; Assefa et al., 2023). Furthermore, continuous improvements
in experimental workflows are also increasingly being published,
that should address challenges associated with morphological
perturbations (Cimini et al., 2023).

Cellular analysis through evaluation of morphology derived
from bio-imaging techniques is an important emerging area of
cell metrology (Faruqui et al., 2020). Metrology is the science of
measurement and its application to cell analysis (cell metrology)
aims to improve the accuracy of methods for cell measurement.
Central to cell-based measurement is an accurate definition of the
identity of the cells being analysed.This also represents an expanding
area of science as cell measurements advance. For example, the
identification of a set ofmorphological attributes, often referred to as
critical quality attributes (CQAs), associated with cellular bioactivity
is key to advancing morphological cell analysis (Lin-Gibson et al.,
2016). Furthermore, the establishment ofmaterial standards to allow
metrological traceability would greatly improve the reproducibility
of measurements.

Whilst identification of CQAs would aid cell measurements,
the lack of workflow standardisation relating to cell organelle
staining, image acquisition, analysis tools, and mathematical
analysis models currently contributes to undetermined variations
in morphological measurement data. Efforts to remove and reduce
these challenges have been made throughout the field of digital
pathology where the analysis methods of images derived from
histological samples have been developed significantly to enable
precise characterisation and improve clinical diagnostic practices.
Furthermore, ISO (International Organisation of Standardisation)
standards related to the use of AI and image analysis are
currently under development (ISO/AWI 24051–2 Part 2: Digital
pathology and artificial intelligence-based image analysis under
ISO/TC212 (Bankhead, 2022; ISO, 2025a). However, these analytical
methods cannot be applied to cell culture-based images due
to their morphological complexity and heterogeneous nature.
Documentary standards such as ‘ISO/CD23511: Biotechnology-
General requirements and considerations for cell line authentication
under ISO/TC276’ are beginning to identify and address the
challenges in this field (ISO, 2025b). These efforts highlight the

critical need for precise methodologies to improve measurement
confidence, support global efforts in biotechnology, and enable
increased translation of research evidence into practice.

Development of a set of robust, validated methods and a concise
set of high-confidence measurement parameters is reported to be
pivotal for the functionality of morphological cell profiling and
would further facilitate its utilisation throughout the research and
biomanufacturing sectors (Plant et al., 2014; Plant et al., 2018;
Faruqui et al., 2020). The ability to accurately measure viable
cell count, classify the number of proliferating, senescent and
quiescent cells, and to identify apoptotic cells using morphological
cell analysis offers a means of improving quality control in cell
therapeutic product manufacturing, viral vector manufacturing,
and protein production (Lin-Gibson et al., 2016; Simon et al.,
2016; Sarkar et al., 2017; Huang et al., 2021; Pierce et al., 2021).
Morphological cell profiling could provide complementary data to
existing biological techniques such as molecular profiling, protein
biomarker detection and plate-based assays and provide a link
acrossmultiple analysismethodologies. For example,morphological
profiling of mesenchymal stem cells (MSCs)may provide ameans of
characterising their functional heterogeneity and quantifying their
therapeutic potency (Phinney, 2012). In another example, Treiser
et al. have previously demonstrated the ability of actin cytoskeleton
morphological analysis to predict the fate of MSCs grown on
differing substrates (Treiser et al., 2010). ISO have established
a dedicated committee (Biotechnology ISO/TC 276/SC1) that
primarily aims to publish standard documents outlining general
guidance and key considerations for cell counting methodologies
and evaluation of CQAs. These include, but not limited to, ‘the
determination of the intended use of the cells’ and ‘awareness
of the cell morphology under the microscope’ and are currently
working towards further guidance for cellular morphological
analysis (Huang et al., 2021; Allocca et al., 2024).

The Cells Analysis Working Group (CAWG), under the
Consultative Committee for Amount of Substance (CCQM)
metrological organisation, is also working towards improving the
global comparability of cell-based measurements and identification
of CQAs by performing interlaboratory comparison studies
across international metrological research institutes (CCQM,
2021). Together, these organisations are facilitating measurement
comparability of morphological cell profiling. The benefits of
measurement standardisation can be observed in other cell-
based techniques such as flow cytometry, where efforts from
international comparative studies resulted in the development of
candidate reference materials for CD4+ cell counting for HIV/AIDS
diagnosis. These studies documented measurement uncertainty, a
critical biomarker for these cell type of interest (WHO BS/10.2153)
and proficiency testing through providers such as the National
External Quality Assessment Scheme (NEQAS). NEQAS aims
to improve global diagnostic testing for improved quality of
care by providing flow cytometry programmes (Stebbings et al.,
2015; Rajagopal et al., 2020; NEQASUK, 2024). Similar types of
material standards may offer an additional route needed to guide
morphological cell analysis.

Since cell imaging focuses on morphological features such as
cell nuclei, actin cytoskeletons, mitochondria networks and cell
membranes, these will be the primary cell components considered
throughout this review. The method by which images are analysed
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likely exhibits the greatest amount of variation across this field,
and multiple tools and analysis packages have been developed to
accommodate a range of purposes. This review will highlight cell
staining and imaging strategies focusing primarily on compiling and
assessing the various tools developed for the analysis of each cellular
component and adjacent bioprocesses.Themetric outputs fromeach
analytical tool will be discussed with reference to the identification
of a minimal set of CQAs that encompass key measurements
related to cell bioactivity. Reducing the number of potentially
redundant measurands would streamline cell characterisation and
linkmeasurements directly to the cell products intended use.Thus, a
set of CQAs may consist of singular measurements of cell structures
along with measurements of the relationship between structures,
to fully describe the confirmational changes occurring within each
cell. This review will discuss potential CQAs in reference to their
ability to be expressed in standardised units (SI) of measurement.
This is an essential characteristic for any potential CQA as it enables
traceability back to a reference material, therefore facilitating data
comparability across multiple instruments and laboratories. Such
metrological considerations are often overlooked when developing
analysis tools and methodologies, which can hinder adoption across
the wider scientific community.

2 Cell imaging strategies

2.1 Imaging technologies

Several types of fluorescence microscopes can be used for
morphological profiling with confocal fluorescent microscopy
being one of the most utilised. Confocal microscopes are widely
available and possess the ability to produce detailed three-
dimensional (3D) Z-stacks of cells across multiple fluorescent
channels. The primary drawbacks of capturing Z-stacks involve
the slow acquisition times and phototoxicity effects when imaging
live cells (Ojha and Ojha, 2021; Douthwright and Sluder, 2017).
Live cell imaging allows for continuous observation of cell
morphologies as the bioprocesses occur, providing that temperature
andCO2 conditions aremaintained.However, limitations associated
with phototoxicity and stain incompatibility with live cells often
renders live cell imaging unfeasible (Purschke et al., 2010). Cell
fixation can instead be used to preserve cells in a life-like state,
allowing for a snapshot of cellular morphology to be acquired.
Fixation is advantageous for many antibody-based assays, as, when
combined with permeabilisation, allows for access to intracellular
structures (Fischer et al., 2008).

Widefield fluorescent microscopy allows for faster image
acquisition at the cost of reduced image detail from 2D images.
Profiling of large numbers of cells within a population is a
key requirement for many morphological analysis studies, such
as high content screening, therefore acquisition time is a key
concern when choosing a methodology. Spinning disc confocal
microscopy (SDCM) offers an alternative to conventional confocal
microscopy, due to its ability to overcome the time constraints of
Z-stack acquisition (McKayed and Simpson, 2013). The widespread
adoption of SDCM is evident by the increasing number of
publications and applications using this type of microscopy leading
to standardisation efforts in quality assessment in light microscopy

(Faklaris et al., 2022; Ahmadian et al., 2024; Poole and Mostaço-
guidolin 2021). Despite this, laser scanning confocal microscopes
currently remain more commonly used particularly throughout
the research community (Patil-Takbhate et al., 2024; McKayed and
Simpson, 2013).

The choice of imaging system is also dependent on the
analytical tool being used for image analysis. Complex analysis
tools that investigate the intricate networks formed by actin
cytoskeletons or mitochondria, often require 3D images with
finely sliced Z-stacks to accurately determine linkages in the
Z-axis (Harwig et al., 2018; Sahu et al., 2024). The minimum
magnification required to produce a sufficiently detailed image for
morphological cell analysis is dependent on the feature of interest,
staining quality, image gain, and background noise levels. The
processing of images post-acquisition also introduces downstream
morphological measurement uncertainties. Deconvolution, the
process of improving the contrast and resolution of images using
mathematical algorithms, is commonly used to remove out of
focus light present in fluorescent images due to point spread
function (PSF) effects (Wallace et al., 2025). Deconvolution tools
are often incorporated into microscopy acquisition software, as
intrinsic optical properties of the hardware, such as the numerical
aperture, refractive indices, and quality of optical components are
known. Several types of standalone, open-source deconvolution
tools are also available such as DeconvolutionLab2 and Deconwolf
(Wernersson et al., 2024; Sage et al., 2017). A range of algorithms can
be implemented to perform image deconvolution, and can broadly
be categorized into deblurring algorithms, which aim to remove
out of focus light from images, and restorative algorithms which
aim to reassign out of focus light in 3D images to the appropriate
in-focus location in the Z-axis (Wallace et al., 2025). This tool
is particularly useful for co-localisation studies where chromatic
aberrations from differing fluorophores can lead to misalignment
between acquisition channels (Mascalchi and Cordelieres, 2019).
From a metrological perspective, the impact of these operations on
the intensity and shape features determined from morphological
cell analysis is yet to be fully investigated. Overall, this range of cell
imaging strategies introduces a high degree of data variability, which
presents further challenges in the alignment of cell morphological
analysis methodologies.

Whilst some guidelines have been produced in ISO 21073:2019
that details standards on performance of microscopes for biological
imaging and address challenges in reproducibility, further work is
still required to address the additional challenges outside the scope
of the guideline (ISO, 2019). This is further compounded by the lack
of universally adopted microscope quality controls and instrument
characterisation, when compared to other instrumentation such
as flow cytometry, where reference standards and best practice
guidelines now exist (DeRose et al., 2008; Cossarizza et al., 2021).
Laser illumination power, field uniformity, axial resolution, and
chromatic aberration have all been identified as key factors which
must be characterised to facilitate the production of reproducible,
quantifiable fluorescent image data (Montero Llopis et al., 2021).
To address this need, the Quality Assessment and Reproducibility
for Instruments and Images in Light Microscopy (QUAREP-LiMi)
working group was formed and a set of ISO standards published
describing the best practices for acquiring these measurands
(Nelson et al., 2021; Hammer et al., 2021). It is recommended
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that a comprehensive set of image metadata should accompany
published images and associated data, using what is known as the
Open Microscopy Environment (OME) model (Hammer et al.,
2021; Goldberg et al., 2005). Community-developed guidelines have
also been published which aid authors in increasing the clarity and
reproducibility of image figures (Schmied et al., 2023). Whilst this
will undoubtedly improve the dependability and reproducibility of
image quantification, many labs and users, specifically in academia,
may be hesitant to adopt such exhaustive quality controls, due to
time constraints and the advanced training required.

2.2 Morphological features as CQAs

Morphological profiling refers to the critical analysis of cells
to identify quantifiable phenotypic metrics such as size, shape,
intensity distributions and subcellular components. These features
can be indicative of key bioprocesses such as apoptosis, proliferation,
senescence and quiescence, that underpin cell health and function.
Moreover, features such as blebbing, nuclear fragmentation and
cell shrinkage can be utilised to enumerate cells undergoing these
specific processes within a population (Ziegler and Groscurth,
2004; Yang et al., 2022). Identification of candidate CQAs is
paramount to accelerate the translation of cell therapies. Whilst
cell morphology demonstrates a potential candidate CQA, selecting
a specific morphological feature can be challenging due to the
measurement uncertainties associated with each cell characteristic.
Furthermore, variation in image capture settings and analysis, due to
several key methodology steps: cell type, staining method, imaging
strategy, analysis method and output parameters, can also present
further measurement challenges for biotechnology. A summary of
the commonly used stains and reagents used for the visualisation of
the nucleus, cell membrane, actin cytoskeleton, and mitochondria
is given in Table 1.

2.2.1 Nuclear morphology
The nucleus is one of the most commonly studied cellular

organelles, with the responsibility of compartmentalising the cell’s
genetic material and regulation of gene expression.The morphology
of the nucleus can vary between cell types and can change depending
on the overall health of the cell. The nuclear structure is made up
of the nuclear envelope (NE) and the nuclear matrix. The NE is a
double membrane, which regulates the transportation of molecules
from in and out of the nucleus (Fischer, 2020). The most common
aberrations of the nucleus include abnormal sizing, blebbing, and
NE invaginations which all indicate signs of poor cell health and
the development of disease (Fischer, 2020; Schoen et al., 2017a;
Gauthier andValentine, 2021; Janssen et al., 2022). Aswell as nuclear
morphology being symptomatic of disease, their morphology
can also be indicative of current cell cycle status. For instance,
cells undergoing mitosis lose their nuclear envelope and exhibit
nuclear fragmentation whereas, cells undergoing cell cycle arrest
present a flattened nucleus with increased surface area (Ziegler and
Groscurth, 2004; Smoyer and Jaspersen, 2014; Pathak et al., 2021).

As nuclear morphology can be indicative of cellular health
and specific biological processes, it is an ideal candidate for
cellular profiling and is a commonly considered organelle for cell
morphological analysis. A range of nuclear and DNA stains and

antibodies are available for visualisation of the nucleus such as
Hoechst 33342, DAPI, NucSpot, and Lamin A/C. Many stains are
cell impermeable, allowing for live/dead cell discrimination as only
cells with a compromised nuclear membrane show fluorescence.

2.2.2 Cell membrane
The structure of a cell membrane can provide a wealth

of information on the bioprocesses occurring within a cell
(Denz et al., 2017; Zhukov and Popov, 2023). The membrane
provides information on the overall size and surface area of the
cells and can be used to classify cells in various cellular processes.
For example, the area of the cell can be utilised to classify cells
undergoing proliferation due to an increase in size and apoptosis
due to cellular shrinkage (Zhang et al., 2018). The analysis of cell
membrane morphologies also allows for the characterisation of
subtle morphological changes visible using microscopy, which are
often unable to be identified when using analysis methods such
as flow cytometry and plate-based assays. The complete staining
of membranes also facilitates cell segmentation in confluent cell
monolayers as cell membrane staining is often more intense at the
periphery. This can be a valuable tool when aiming to separate
individual cell cytoskeletons or mitochondrial networks, which can
provide further information on the bioprocesses occurring.

Analysis of cell membrane morphologies can provide a range
of quantitative information depending on the method by which
membranes are stained. In addition to morphology, several
membrane impermeant stains, such as Propidium Iodide and 7-
AAD, which allow for the membrane integrity of the cell to be
probed. In general, these stains function by fluorescing only when
bound to DNA inside the cell, thus identifying non-viable cells
with compromised membranes. These staining strategies provide
quantifiable mean intensity readouts and, when combined with
morphological-focused stains, allow for complete morphological
profiles of cells to be established.

2.2.3 Actin cytoskeleton
The actin cytoskeleton provides internal structure to a cell

and participates in various cellular processes including mitosis,
migration, contraction and elongation, and adhesion (Povea-
Cabello et al., 2017; Gosak et al., 2022). The two forms of actin:
filamentous (f-) and globular (g-) actin, exist in a state of flux
that is regulated by actin binding proteins (Kumari et al., 2020).
The extent and structure of the actin filament polymerisation
within a cell is dependent on the bioprocesses occurring. During
cytokinesis, the final stage of mitosis, actin cytoskeletons from
a contractile ring, which contracts to cleave the cell in two.
During apoptosis, caspase activation can also induce cells to show
similar contractile ring structures as part of programmed cell death
(Ren et al., 2021). Actin plays a crucial role in each of these distinct
processes which result in comparable morphological change. This
highlights the potential of morphological cell profiling to identify
cell bioprocesses, however, a complete set of morphological data is
required to accurately do so (Zhang et al., 2023). Characterisation
of the cytoskeletal morphology can inform on cell status and
provide a useful tool for cell profiling (Leemreis et al., 2006). In
addition to morphological profiling, several alternative methods of
determining cytoskeletal function exist in the form of techniques
which look to probe cell stiffness using deformation. Optical
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TABLE 1 Summary table of common stains for each cell organelle/structure described throughout this review. Stain target/mechanism of action is
described alongside notable references employing the use of each stain.

Organelle/
Structure

Stain Target References

Nucleus

DAPI DNA-binding stain - Adenine-thymine rich
regions of DNA

Janssen, Breusegem, and Larrieu, 2022;
Faklaris et al., 2022; Bonte et al., 2023

Hoechst 33342 DNA binding stain - Minor groove of ds-DNA
with preference to AT rich regions

Janssen, Breisegem, and Larrieu, 2022;
Okkelman et al., 2020; Mcquin et al., 2018

NucSpot; Nuclear-ID DNA binding stain Oakley et al., 2021; Katiyar et al., 2022;
Bissenova et al., 2023

SYTOX Nuclei and chromosomes Thakur, Cattoni, and Nollmann, 2015;
Demuynck et al., 2020

Lamin A/C; Lamin B Binds to the proteins found in the nuclear
lamina

Gauthier and Valentine (2021)

Y-H2AX; RAD51 Binds to damaged DNA producing nuclear
foci

Nair et al., 2021; Liu et al., 2023; Hoppe et al.,
2021; Rothkamm et al., 2010

7-Aminoactinomycin D (7-AAD) Intercalates within G-C rich regions of DNA
in cells with compromised membranes

Shenkin, Baby, and Maiese, (2007)

Cell Membrane

Wheat Germ Agglutin Glycans - binds to N-acetylglucosamine and
N-acetylneuraminic acid (sialic acid) residues

Manning et al., 2017; Mcquin et al., 2018;
Bray et al., 2017; Schoen et al., 2017a

Concanavalin A Glycans - α-mannopyranosyl and
α-glucopyranosyl

Manning et al., 2017; Morgan et al., 2013

CellTracker™ Compound freely passes into cells where it
binds with amine and thiol groups in the cell
membrane

Correa de Sampaio et al. (2012)

CellBrite™ Based on lipophilic carbocyanine dyes Shannon et al., 2024; Zhang et al., 2018

PKH Lipid Biolayer – Incorporated aliphatic
reporter molecules into the cell membrane
lipid biolayer by selective partitioning

Shimomura et al., 2021; Takahashi et al., 2020

CellMask™ Areamphipathic molecules which are
lipophilic

Liu et al., 2024; Mcquin et al., 2018;
Tamima et al., 2023

Actin

Phalloidin Selectively labels F-actin within the cell Pospich, Merino, and Raunser, 2020; Ziegler
et al., 2021; Mazloom-Farsibaf et al., 2021;
Kumari et al., 2020; Mishra et al., 2019

LifeACT™ Selectively labels F-actin within the cell Mazloom-Farsibaf et al., 2021; Kumari et al.,
2020

SiR-Actin/XSiR-Actin Selectively labels F-actin within the cell Pospich, Merino, and Raunser, 2020;
Mishra et al., 2019; Nasufovic et al., 2025

Mitochondria

Mitotracker™ Rosamine-based or Carbocyanine stain.
Accumulates in active mitochondria

Samanta et al., 2019; Desai et al., 2024

TMRM Cationic dye that accumulates in healthy
mitochondria

Samanta et al., 2019; Desai et al., 2024;
Okkelman, Papkovsky, and Dmitriev, 2020

JC-1 Cationic carbocyanine dye that accumulates
in mitochondria

Okkelman, Papkovsky, and Dmitriev, 2020;
Sivandzade, Bhalerae, and Cucullo, 2019
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tweezers, atomic force microscopy, and microfluidic deformation
have all previously been used to probe cell membrane stiffness and
infer the functionality of the actin cytoskeleton (Jokhadar et al.,
2021; Daniel et al., 2023; Su et al., 2022). Whilst these techniques are
informative, many suffer from low throughput cell analysis and are
not easily multiplexed with additional analysis targets, such as other
cell organelles, and do not allow for direct observation of the actin
cytoskeleton morphology. Nevertheless, the quantifiable output
from these analysis methods can serve as a means of validating
actin morphology observations and aid in the identification of
morphological CQAs associated with actin functionality.

Actin and cell membrane profiling generate many overlapping
outputs related to cell status which can aid in the development
of multiparameter outputs for each of the cellular processes
mentioned above. Multiparameter outputs increase cell profiling
robustness and reduce the impact of staining artefacts on cell
characterisation. Analysis of mammalian cytoskeletons will be
the primary focus here; however, it should be noted that other
sophisticated analysis tools have been developed with the aim
of analysing plant actin cytoskeletons due to their complex
morphologies. For the visualisation of actin, Phalloidin is typically
regarded as the gold standard in actin staining. However, well
characterised compounds such as SiR-actin, Lifeact peptide and
recently developed SiR-XActin offer alternative fluorescent probes
that overcome the fixation limitations of phalloidin for live cell
imaging (Nasufovic et al., 2025; Takagi et al., 2021; Mazloom-
Farsibaf et al., 2021). This has facilitated the real-time imaging of
actin cytoskeleton and visualisation of confirmational changes using
live cell, time-lapse imaging.

2.2.4 Mitochondria
Mitochondria are maternally inherited membrane-bound

organelles conserved within all eukaryotic cells. Their main
function is to perform aerobic respiration and provide the cell
with chemical energy in the form of ATP. As such, mitochondria
are responsible for the homeostatic maintenance of many cellular
processes including programmed cell death, mitosis, reactive
oxygen species production and calcium signalling (Brand et al.,
2016). Due to their dynamic roles, the morphology and quantity
of mitochondria can vary within the cell based on the cell’s
viability, function, and energy requirements–presenting an ideal
target for cell profiling. Structurally, the mitochondria are defined
by their compartmentalised structure consisting of an inner
and outer membrane that shift from small, fragmented units to
larger, elongated, interconnected networks. The assembly and
disassembly of the intracellular networks are controlled and
regulated through two opposing processes, fission (disassembly),
and fusion (assembly). The morphology of the mitochondrial
networks is directly related to the energy demands within the cell,
and in turn, be used as an indicator of specific cellular processes.
(Herrera et al., 2018; Otera and Mihara, 2012).

Due to the importance of mitochondrial morphology in
characterising and studying cell health and biogenesis, high
quality imaging is required for successful phenotyping. Several
different mitochondrial stains can be utilised depending on the
morphological information required for the study. Quantification
of mitochondrial morphology has proven to be challenging,
and early efforts were based on unreliable and inconsistent

qualitative descriptors. For example, mitochondrial morphologies
are commonly classified as elongated, fragmented, or collapsed and
their heterogeneity within the cell were not taken into consideration.
This may lead to subjective results and inconsistencies with inter-
laboratory comparison studies. To coincide with the quantification
of mitochondrial morphology CQAs, mitochondrial functionality
in relation to cell health can be assessed through several plate-
based assays. These assays can measure; ATP, reactive oxygen
species (ROS), cell oxygen consumption, and Ca2+ content (Yin
and Shen, 2022). Whilst these assays allow for a determination
of mitochondrial activity, they are typically end-point assays
which are not easily multiplexed with additional measurements
such as morphology. Furthermore, on their own, they may not
reflect accurately with cell viability and proliferative status due to
mitochondrial hyperactivity (Rai et al., 2018).

3 Analytical tools for morphological
analysis

Numerous open-source image analysis software tools are
available for cell-based image analysis, with differing capabilities
and limits. Examples include Icy, CellProfiler, ILASTIK, and
ImageJ with a host of user-developed tools for the analysis of
specific cellular processes, such as mitochondrial fission/fusion
and actin cytoskeletal rearrangement (Wiesmann et al., 2015).
In addition to the variability introduced by numerous software
sources, morphology can be unique to a particular cell type which
creates further difficulties in analysis. Bray et al. aimed at addressing
these issues by developing a ‘Cell Painting’ assay (Bray, Singh, et al.,
2017); which outlined detailed methodologies for staining, imaging
and analysis of cell morphologies using CellProfiler (Singh et al.,
2014; Bray et al., 2017; Mcquin et al., 2018; Stirling et al.,
2021). This assay marked a step towards the standardisation of
cell morphological assessment, however challenges related to
image acquisition and microscope standardisation still remain.
Furthermore, whilst versatile, CellProfiler is limited in the
measurement and quantification of specific organelle morphologies.
This section will highlight analytical tools developed for the
measurement of specific organelles and evaluate their outputs in
relation to CQAs for each organelle. As it will be seen, the range
of applications and analysis tools available for morphological
cell profiling presents challenges in the determination of concise
morphological parameters, which are comparable and traceable to
a standard set of measurement values (Marklein et al., 2018).

3.1 Nuclei image analysis methodologies
and tools

A broad range of automated image analysis tools and methods
are available to researchers performing morphological cell analysis.
A key feature of any nucleic analysis tool, is the accurate detection
and segmentation of individual cell nuclei. Nuclei are frequently
used as initial seed points for the detection of associated cell
organelles in multi-parameter fluorescent images, meaning nuclei
segmentation inaccuracies can propagate significant uncertainties
throughout the analysis pipeline. Several factors such as cell
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type, confluency, stain homogeneity, and imaging methodology
all influence the complexity of effective nuclei segmentation and
present measurement challenges that need to be addressed. This
is further complicated in particular cell types that commonly
display polynucleation, such as HeLa cells, which has led to over-
segmentation of individual cells. Furthermore, in densely populated
cultures where cells often overlap, simplistic methods of analysis are
often insufficient in accurately identifying individual nuclei. Several
computational methodologies have been developed to address
this issue, which employ the use of graph-cut, convex-concave,
and contour analysis to segment overlapping or closely associated
nuclei. These methodologies have been found to produce results
which align more closely to manually identified nuclei counts
(Zhou et al., 2019; Yi et al., 2019; Qi, 2014). Recent advances of
incorporating deep learning algorithms into analytical tools have
further enabled the automation of image analysis (Hollandi et al.,
2022). This reduction in user input aids in the reduction of user
analysis bias and improves interlaboratory comparability. However,
the choice of input parameters and mathematical models used can
impact AI-driven analysis, and further work is needed before fully
unsupervised analysis can be fully relied upon.

Tools range in their complexity, from simplistic tools which
require significant user input and quality control, to sophisticated
tools which employ the use of machine-learning and training
datasets. CellProfiler, a commonly used tool, employs minimum
cross-entropy or OTSU thresholding methodologies combined with
local maxima declumping to segment nuclei. These methods are
effective for sparse cells with uniformly stained nuclei, however
the declumping algorithms are limited when nuclei become closely
associated in confluent cell samples. This inhibits the development
of standardised pipelines due to the requirement for user quality
assurance. Ilastik, an interactive machine-learning based tool,
bridges the gap between pure user defined, and pure AI-driven
analysis tools by allowing the user to define pixel classes and input
examples of each class (Berg et al., 2019). Ilastik then assigns each
pixel to a class using a Random Forest classifier. However, since
pixel classification is computed from a spherical neighbourhood
of pixels, object level shape characteristics are not considered,
preventing segmentation of closely associated nuclei. Users are able
to input segmentations obtained outside of Ilastik to overcome
this limitation. Cellpose 2.0 presents a tool in which users can
use either pre-trained or user-trained models to achieve cell and
nuclei segmentation (Berg et al., 2019). A neural network is used to
segment images based off as little as 100-200 user defined regions of
interest, a significant reduction in the number of features generally
required for the training of such complex models. The application
of pre-trained models presents a potential means of standardising
segmentation methodologies across multiple laboratories, provided
that prior staining and imaging parameters remain constant.
Ershov et al. have also developed an automated tracking software,
TrackMate 7, which incorporates popular segmentation and analysis
tools (MorphoLibJ, Weka, Ilastik, StarDist, and CellPose) into a
complete FIJI plugin.This allows users to use complex segmentation
and analysis approaches in a tool which is freely available and able to
be continuously developed by users (Arganda-Carreras et al., 2017;
Stevens et al., 2022; Legland et al., 2016; Jacquemet et al., 2020).

Typically, measurements outputs from nucleic analysis tools
include shape (area, diameter, perimeter, and eccentricity) and

intensity (mean, edge, integrated, and granularity). Measurements
of shape are generally traceable to the S.I unit of meter, aside from
circularity values, whereas intensity metrics are primarily expressed
in arbitrary units which require comparison with reference
material intensity values to produce standardised measurements.
Principle component analysis (PCA) can be used to determine
the relationship between each measurement to reduce the number
of necessary metrics to a minimum essential set. These metrics
are often sufficient for many purposes, such as the identification
of condensed DNA in mitotic cells and fragmented DNA in
apoptosis (Jevtić et al., 2014; Janssen et al., 2022). Simplistic shape
and intensity measurements can, however, often overlook subtle
variations in nucleic morphology which may allude to variations
in bioactivity. As a result, analysis, and quantification of NE
morphology has been of particular interest in morphological cell
profiling (Schoen et al., 2017a). Janssen et al. has reviewed in
further detail the current quantification methods for several nuclear
abnormalities (Janssen et al., 2022b).

To overcome challenges associated with variations in nucleic
morphology, Phillip et al. have developed the Visually Aided
Morpho-Phenotyping Image Recognition (VAMPIRE) software tool
for the quantification of cell nuclei and membrane morphologies
(Phillip et al., 2021). This tool uses unsupervised, machine-
learning based analysis and classification based on the fitting of
equidistant points along cell and nuclear contours. This program
demonstrated the potential of machine-learning to accurately
identify, quantify, and classify nuclear shape through the use
of contours. However, this quantification approach revealed that
metrics such as solidity, aspect ratio, and shape factor are often
insufficient in identifying morphological heterogeneity in cell
nuclei and membranes. Moreover, VAMPIRE is unable to segment
individual cells in an image, so it is reliant on additional analysis
tools to perform this pre-processing.The accuracy of the data output
from VAMPIRE is therefore heavily reliant on the effectiveness of
the segmentation tool used and presents additional measurement
uncertainty (Phillip et al., 2021). Driscoll et al. also developed a
customMATLAB code which analysed themean negative curvature
(MNC) of the nuclear shape using an active contour-based boundary
extraction algorithm. This tool allows identification of irregular
nuclei shapes caused by a disease which induced mutant Lamin A
scaffolding and exhibit and outlines of blebbed and normal nuclei
alongsidemeasurement outputs of mean negative curvature analysis
(Figure 1) (Driscoll et al., 2012). As with VAMPIRE, this approach
presented a further limitation on impact variations in pixel size
and smoothing have on the calculation of MNC. This presents
additional challenges when looking to perform an interlaboratory
comparison with multiple microscopes, highlighting the need for
the standardisation of imaging methodologies.

Automated image analysis tools have also been developed to
quantify the degree of DNA damage within a nucleus. McDonough
et al. developed a tool, which segments and classifies cell nuclei
based on DNA fluorescence imaging with DNA damage-stained
cells used as a training dataset (Mcdonough and Vadivazhagu,
2020). Outputs of this tool were separated into shape-based and
texture-based features to determine the accuracy of each set of these
features in the classification of cells with DNA damage. Haralick
features are textural measurements based on grey-level intensities
of pixels of an image, such as contrast, sum variance, difference
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FIGURE 1
Overview of Driscoll’s mean negative curvature analysis showing identification of nuclei curvature for a blebbed, HGPS nucleus and normal,
oval-shaped nucleus. Plots of boundary curvature are shown as heat maps with each vertical line corresponding to a single nuclear measurement.
Mean negative curvatures for each type of nucleus are shown in the bar chart (Driscoll et al., 2012). Figures have been adapted from publications with
permissions.

variance, correlation, and entropy were all found to score highly as
features which are capable of distinguishing between cellular classes
(Haralick et al., 1979; Candelero et al., 2020). These features present
metrics which may be considered as potential CQAs which could
accompany shape-based features such as nuclei area and curvature
measurements. This analysis technique, as a quantitative method
for characterisation of 3D dosimetric distributions derived from
clinical samples, demonstrates a potential application of texture-
based image analysis. Overall, it is apparent that nuclearmorphology
can be analysed and quantified using a range of differing analysis
tools which produce output metrics which vary in their complexity.
The standardisation of measurement methodologies and reported
values will be achieved through coordination between academic,
industrial, and metrological research sectors.

3.2 Cell membrane image analysis
methodologies and tools

In comparison with other cell structures, cell membrane
morphological analysis can largely be performed without the use
of specialised analysis tools. However, as with nuclei analysis,
segmentation of cell membrane boundaries is key to achieving
precise measurements of membrane morphology. Aforementioned
tools, such as Cellpose 2.0, may also be required to segment
cell membranes in densely populated images. Output metrics
from cell membrane analysis consist of properties such as area,
perimeter, and circularity, intensity, and edge intensity values
(Mcquin et al., 2018; Schindelin et al., 2009; Berg et al., 2019).
Laan et al. recently developed a CellProfiler-based pipeline for
the analysis of cell nuclei, membrane, and organelles, known as
OrganelleProfiler (Laan et al., 2023). Figure 2 depicts the image
analysis workflow which uses tiered identification to identify
primary (nuclei), secondary (cell), and tertiary (organelle) objects.
Analysis of endothelial colony forming cells (ECFCs) exposed to
cytoskeletal drugs demonstrated the pipelines’ ability to quantify

variations in cell morphology through the analysis of multiple cell
organelles. However, as described previously, CellProfiler is user-
dependent and often requires manual inspection of output images
to determine pipeline performance.

Specialised membrane morphological analysis tools such
as Automated Cell Morphology Extractor (ACME) and
MorphoGraphX have been developed for the reconstruction
of cell membrane images taken of larger tissue structures
(Mosaliganti et al., 2012; Reuille et al., 2015). ACME was shown
to accurately segment and reconstruct cell membrane shapes from
both 2D and 3D dense tissue images. The analysis algorithms used
in ACME were inspired by those used in MRI and CT imaging to
detect blood vessels, implementing Hessian-based filters to identify
eigenvectors associated with cell boundaries. Cell size and shape
metrics output from this tool demonstrated improved quantification
when compared to manual segmentation methods.

VAMPIRE, the previously discussed nucleic analysis tool,
is also capable of analysing cell membrane morphologies and
produces measurements of membrane curvature using the same
methodology. PCA analysis is used to determine a minimum
set of measurands which describe cell shape features. K-means
clustering is then used to classify cells into several shape modes,
resulting in the identification of distinctivemembranemorphologies
(Phillip et al., 2021). Chen et al. also explored the classification
of cell membrane morphologies using a machine learning-based
methodology to identify individual bone marrow stromal cell
(BMSC) phenotypes (Chen et al., 2016). Twenty-2 cell shape
metrics were evaluated across three categories were quantified and
correlation coefficients were calculated for each metric. Support
vector machine (SVM) classification was then used to find the
optimal classification boundary that separates data points in the
multidimensional shape metric space. This method allowed for
reduction in the number of shape metrics required to fully
ascertain differing cell phenotypes, effectively identifying key critical
quality attributes associated with cell membrane morphology.
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FIGURE 2
Depiction of the image analysis workflow for OrganelleProfiler. Individual organelle images are smoothed and thresholded, then primary (nuclei),
secondary (cells), and tertiary (organelle) objects are identified using the associated CellProfiler modules. Tertiary objects are then related to individual
cells as shown in image pane (V) (Laan et al., 2023). Images reproduced from publications with permissions.

Furthermore, the impact of single-cell morphological heterogeneity
was minimised by training the SVM classifier using averaged
shape metrics taken from a randomly selected subset of cells
known as ‘supercell’ averaging. Together, this analysis methodology
identifies phenotypic changes in BMSCs in response to a range of
microenvironmental cues. Despite this, VAMPIRE and SVM-based
classification tools lack the ability to segment individual cells in
densely populated cultures. These techniques present a potential
opportunity to combine analysis methodologies from ACME to
produce a more comprehensive tool for the in-depth analysis of cell
membrane morphologies.

In addition to standalone image analysis software, several
microscopes offer built-in software analysis tools capable of
analysing cell membrane morphologies such as Imaris (Oxford
Instruments), Incucyte software (Sartorius), and NIS-Elements
(Nikon) (Gautier and Ginsberg, 2021; Roddy et al., 2016;
Walton, Hofmeyr, and Van Der Horst, 2013). One advantage of
built-in software is the ability to automatically consider cell
imaging modalities and directly report image metadata alongside
morphological outputs. Imaris, in particular, offers sophisticated
analysis capabilities, such as the ability to segment closely associated

cellular membranes, track cell lineage, and visualise cell surfaces.
Whilst advantageous to Imaris users, a comparison study between
instrument and standalone analysis tools would be required to
determine the variability of output parameters. This evaluation
would elucidate limitations of each analytical technique for
complex cell analysis. Several studies have begun such efforts, with
commercially available tools such as Imaris have been compared
to manual tools such as ImageJ and independently developed
research tools (Nguyen and Thompson-Peer, 2021; Gautier and
Ginsberg, 2021; Rose et al., 2023).

Distillation of the necessary values for cell membrane
characterisation is dependent on the organelle stains being co-
stained alongside cell membranes. When combined with nuclei
and actin measurements, cell area and edge intensity are valuable
outputs when aiming to classify apoptotic or mitotic cells, due
to the confirmational membrane changes that occur during each
of those processes. Circularity, the measurement of how close
a cell is to a true circle, and eccentricity, the measurement of
membrane curvature deviations from circularity, are additional
key outputs that provide information regarding cell membrane
invaginations and extensions. These values reflect cellular response
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to external stimuli (López-Hernández, 2021; Lee et al., 2023).
Measurements of curvature (rads/m) are traceable to S.I units
and circularity, whilst dimensionless, can be measured with
respect to reference materials with a known circularity, such
as spherical beads of a similar size. It has also been shown by
Phillip et al., that nuclei curvature measurements combined with
cell classification offers a single concise measurement parameter
that encompasses the morphological information described by
circularity and eccentricity measurements, therefore distilling the
number of potential CQAs related to cell membrane morphology
(Phillip et al., 2021).

3.3 Actin image analysis methodologies
and tools

Effective identification of individual cell actin cytoskeletons
is typically reliant on first identifying cell nuclei which then act
as seed points for the identification and segmentation of actin
cytoskeletons. Propagation segmentationmethods simply propagate
out from the seed points and stop at intensity boundaries - this can
be acceptable for cells which are generally uniform and circular.
For cells which show irregular cytoskeletal morphologies, such as
fibroblasts or smooth muscle cells, it is more appropriate to use
Watershed or Laplacian of Gaussian (LoG) segmentation methods
which use edge detection methods to segment images. Watershed
algorithms determine cell boundaries using Sobel transformed
images which compute a gradient intensity image function that
seeks to emphasise edge detection. In contrast, LoG algorithms first
smooth an image with a Gaussian filter to reduce noise. A Laplacian
operator is then performed that computes the second spatial
derivative of an image to enhance edge detection. Several analysis
workflows have been developed that primarily aim to improve
cell segmentation using watershed-based methods (Kucharski and
Fabijańska, 2021; Wang, 2019).

Analysis of actin morphologies using CellProfiler is limited due
to the simplistic measurement output values. Metrics such as actin
area, edge and integrated intensity, eccentricity, and granularity
provide generalised measurements of actin morphologies, however,
more specificmeasurements of filament distribution, branching, and
bundling are unable to be acquired. Nevertheless, the use of primary
nuclei objects and option of further tertiary objects such as stained
cell membranes allow for the quantification of object relationships
which may produce information on cell bioactivity using known
relationships. For example, a cell undergoing mitosis which show
condensed, bright nuclei along with a rounded, contracted actin
cytoskeleton.

Several specialised analysis pipelines for the analysis of actin
cytoskeletons have been developed that are capable of producing
unique morphological indices. Alioscha-Perez et al. presented an
actin analysis framework which focuses on individual filament
morphological analysis (Alioscha-Perez et al., 2016). A three-step
method was used to extract filament data which decomposed
images into filament and texture components, then multi-scale line
detector algorithm is applied to detect overlapping fibre segments
from the basal and cap actin structures. Finally, filament segments
were merged by overlapping segments with the same orientation
connecting straight line segments according to their orientation

difference up to a curvature threshold. This framework provides
position, orientation, and length measurements of individual actin
filaments. Figure 3a displays example images of the identification
of individual, overlapping actin filaments using this analysis
methodology.

Liu et al. (2018) developed an image-recognition based actin
cytoskeleton quantification (IRAQ) methodology that uses edge,
line, and brightness detection algorithms (Liu et al., 2018). Canny
Edge and Sobel Edge detection algorithms are used to skeletonise
actin images resulting in the output of three morphological
parameters based on the orientation of the actin filaments:
partial actin-cytoskeletal deviation (PAD), total actin-cytoskeletal
deviation (TAD), and the average actin-cytoskeletal intensity (AAI).
Figure 3b demonstrates fluorescent images of cells (top exposed to
increasing concentrations of latrunculin B; a compound capable of
perturbing the cytoskeleton). Below, actin filaments identified using
IRAQ, demonstrates the ability of this tool to identify and quantify
actin filament disruption. Weichsel et al. developed a similar actin
analysis MATLAB-based code that quantifies stress fibres and the
cortex at cell boundaries using a value known as Coherency. This
value is defined through the structure tensor, which evaluates the
local orientation in a small region of an image. This analysis tool
particularly focuses on cell boundaries due to the limitations of
optical microscopy in the identification of single actin fibres across
an entire cell.This, in turn, allowed for high-throughput cell analysis
resulting in robust statistical data (Weichsel et al., 2010).

Furthermore, Li et al. (2023) have recently developed an
actin analysis algorithm employing the use of Implicit Laplacian
of Enhanced Edge (ILEE) thresholding (Li et al., 2023). This
sophisticated, unguided tool overcomes analysis limitations such
as information loss from dimensional reduction, sample bias from
manual user thresholding, and varying image performance from
image quality. This algorithm is based on native brightness, first-
order gradient derivative, and second-order Laplacian derivative
characteristics of each input image. ILEE pipeline aims to automate
the detection of cytoskeletons in an accurate unbiased manner.
Figure 3c shows the outline of the ILEE workflow in which the
raw image is binarised and used to compute a range of 2D and
3D cytoskeletal features. 12 cytoskeletal morphological indices are
computed from this algorithm and categorised into five classes:
density, bundling, connectivity, branching, and directionality.
Whilst the complexity and comprehensiveness of this analysis tool
is very effective at providing morphological information about
actin cytoskeletons, it would be beneficial to distil down the
number of output parameters and identify the CQAs required for
cytoskeleton characterisation. Higaki et al. analysed the coefficient
of variation of actin intensity as a means of describing the
bundling of actin filaments. This was found to be comparable to
skewness; the metric typically used to describe actin bundling.
This demonstrates the ability of single metrics to describe multiple
morphological features, reducing the number of indices required for
characterisation (Higaki et al., 2020).

Overall, it is expected that a set of CQAs for cell actin
morphology may consist of typical area and mean intensity data
combined with specific indices acquired from the analysis tools
described above. Filament length, density, and total number of
nodes offer potential CQA values and are traceable to SI units
of measurement (Daga et al., 2021). Values such as partial and
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FIGURE 3
(a) Images demonstrating the identification of individual, overlapping actin filaments in Osteoblast cells using the actin analysis framework developed
by Alioscha-Perez et al. Cells were grown under fluid shear stress to observe alignment of actin filaments (Alioscha-Perez et al., 2016) (b) Example
images cells analysed using IRAQ. The red lines highlight actin filament detection in cells exposed to increasing concentrations of latrunculin B (left to
right) (Liu, Mollaeian, and Ren, 2018). (c) Images demonstrating the analysis workflow of ILEE. The raw image is binarised, then a range of 3D and 3D
cytoskeletal features are computed (Li et al., 2023). Images reproduced with permissions from respective publications.

total actin cytoskeletal deviation (PAD, TAD) may also be traced
back to the SI unit of angular measurement, the radian, and can
describe the directional organisation of the actin cytoskeleton with a
single value. While Higaki et al. found that trend in bundling values
largely agree with the coefficient of variation of actin intensity, to
conclusively determine which actin output metrics are critical for
the description of cell health, analysis of sample images set of known
proliferative, apoptotic, and quiescent cells would be required
(Higaki et al., 2020).

3.4 Mitochondria image analysis
methodologies and tools

Improvements have been made in image processing algorithms
and machine learning with several analysis pipelines being
available for robust quantification of mitochondrial morphologies

(Harwig et al., 2018). Current mitochondrial morphology analysis
programmes have been developed as plugins for ImageJ and
CellProfiler or are their own entity like MitoGraph and MitoER
(Harwig et al., 2018). ImageJ has several different exclusive
plugins including MiNa, MitoLoc, Mitochondrial Analyser and the
MitochondrialMorphologyMacro (Valente et al., 2017; Hemel et al.,
2021; Vowinckel et al., 2015; Chaudhry et al., 2020). The outputs of
these plugins include number of fragments, mean area, and mean
mitochondrial volume and in some instances, metrics describing
mitochondrial branching. Branching is used as a method of
describing the extent of mitochondrial networking, quantifying
the amount of mitochondrial fission/fusion. Comparison of each
of these analysis tools found that all were able to produce accurate
outlines of the mitochondrial networks alongside measurement of
the number of mitochondria. However, while measuring cellular
mitochondrial clusters, MiNA, MitoLoc, and the Mitochondrial
Morphology Macro were unable to separate mitochondrial
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FIGURE 4
(a) Comparison of global and adaptive thresholding algorithms has on the effectiveness of mitochondrial network segregation within Mitochondrial
Analyzer, MitoLoc, and MiNAa. (b) Overview of the imaging process of HeLa cells on Mitochondrial Analyzer. Elongation is shown in DNM1L knockdown
cells and fragmentation is shown in OPA1 knockdown cells. (c) Statistical output of mitochondrial analyser showing mean area and volume of the
mitochondria in knockdown conditions compared to control HeLa (Hemel et al., 2021). Figures have been adapted from publications with permission.

structures. Due to integrated adaptive thresholding, Mitochondrial
Analyzer was able to overcome the obstacle of incorrect segregation,
recognising small structures within the mitochondrial network that
are lost during filtering out the background signal thus, making it
the most competent plug-in (Figure 4) (Hemel et al., 2021).

MitoGraphuses 3D images tomeasure individualmitochondrial
structures as well as the volume of mitochondrial networking.
Originally developed for quantifying mitochondrial volume in
budding yeast, MitoGraph has more recently been validated to
perform graph theory-based quantitative analysis of mitochondrial
networks (Viana et al., 2015). This tool provides information about
mitochondrial volume, total length, and degree of branching in the
form of a connectivity score (Harwig et al., 2018). Although this
software is validated against different cell lines, there are limitations
to its success. It has been found that it fails to align 7.2% of

nodes within the network and it struggles to segment the highly
interconnected, often saturated perinuclear mitochondria. Despite
its limitations, once optimised, it can batch analyse and can be a
useful tool for high-throughput image analysis.

Along with MitoGraph, MitER is a newly developed open-
source software which allows for the automated quantitative analysis
of 3D mitochondrial morphology. The main outputs of the software
include mitochondrial volume, surface area, and measurements
related to inter-organelle contact focusing on contact with the
mitochondria-endoplasmic reticulum (mito-ER). This software
firstly utilises MitoGraph to process confocal images into single-
cell 3D renderings. These renderings are processed in relation to
the cell surface and input into MitER, where it is able produce
quantifiable data on the mitochondria surface area, volume, spatial
dimensions and number of Mito-ER contacts. For validation,
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quantifiable outputs were compared toMitoGraph outputs and were
found to be agreeable with MitER benefiting from an automated
workflow. Although this software has been optimised and validated
for the measurement of mitochondrial morphology in yeast, the
workflow has been adapted to mammalian cells. Mammalian cells
pose the issue of irregular surfaces causing large rendering file sizes,
ultimately causing slower analysis. To overcome this, a simpler mesh
workflow is employed. With this modified workflow, the software
was able to process mammalian images faster providing accurate
morphological analysis (Kichuk et al., 2024).

Lastly, CellProfiler is an open-source software which allows
users to identify keymitochondrial morphologies. As with actin, cell
identification first requires nuclear staining, before segmentation
and analysis of mitochondrial morphology. From this, CellProfiler
can calculate the cytoplasmic area and determine mitochondrial
networking and fragmentation. This program allows users to
perform high-throughput analysis of mitochondrial images, but
it has been shown to be less effective for acquiring data on
extensivemitochondrial networking and is better suited in analysing
fragmented mitochondria.

Overall, CQAs for mitochondrial morphological analysis may
primarily includemean area,mean volume, anddegree of branching.
These outputs can provide data that is indicative of cell health and
bioactivity based on mitochondrial morphology. For instance, this
was shown when key genes related to mitochondrial morphology
(OPA1 and DMN1L) were knocked-down, and morphological
analysis tools were able to measure the impact of this knockdown.
Upon knockdown of OPA1, fragmentation was observed and
measured through the reduction in area and volume of the
mitochondria. Whereas knockdown of DMN1L, presented an
increase in area and volume, indicative of elongation demonstrated
in Figure 4 (Hemel et al., 2021). By utilising mean volume and area
of the mitochondria as a CQA, the measurement can be traced to
the SI unit of meter, providing the prospective of standardisation
measurement.This principlewill be beneficial for future applications
of mitochondrial morphological analysis, such as cancer detection
and therapeutics (Chu et al., 2022).

4 Discussion and future Directions

This review has summarised the most notable analysis tools to
characterise the nucleus, actin, mitochondria, and cell membrane
structures. Key output metrics from each tool have been highlighted
and assessed with reference to the identification of a concise set
of measurable, quantifiable CQAs. Table 2 displays summary of
each analysis tool, summarising their methodology, main output
indices, and traceability to SI units. The review of cell analysis
workflows revealed the initial challenge facing automated analysis
tools is the effective segmentation of individual cell features. The
extent of this challenge can be unique to each cell type and
culture configuration but remains a crucial step in the analysis
of individual cell profiles. Recent publications have shown that
deep learning and AI-driven analysis tools are being developed
to improve segmentation accuracy and reduce user analysis bias.
However, there are considerable variations in the choice of deep
learning algorithm and further alignment is required to encourage
widespread adoption.

The review of nucleic analysis methodologies has revealed that
a detailed profile of cell nuclei and DNA morphology can be
obtained through the combined used of DNA and Lamin A/C
labelling and subsequent analysis of nuclear size, intensity, and
nuclear membrane curvature (Driscoll et al., 2012; Phillip et al.,
2021). Similarly, quantification of cell membrane morphology can
be achieved using similar metrics due to variations in cell area and
cell membrane curvature. Curvature offers a traceable quantity of
measurement with units of m−1 due to its definition as the inverse
of the radius of curvature. Circular rainbow beads offer a means
of providing reference curvature and fluorescence measurements
which also serves to validate analysis methodologies. Furthermore,
the m−1 unit can be applied to measurements using the same
analysis methodologies as those used for nuclei. Tools capable of
analysing the morphology of multiple organelles using the same
methodologies increases the likelihood of widespread adoption and
offer an attractive option for users without specialised knowledge.

Actin cytoskeleton and mitochondrial network analysis
tools display the most sophisticated analysis methodologies due
to the morphological complexity these cell features display.
Significant conformational changes occur in both actin and
mitochondria in response to cell bioprocesses and external
stimuli, posing a morphological measurement challenge but
also the ability to determine well-defined values relating to
cell bioactivity. Outputs from ILEE and IRAQ actin analysis
tools indicate that filament length, density, and total number of
nodes are crucial to fully evaluating actin network morphology
(Liu et al., 2018; Li et al., 2023). Outputs from MitoGraph and
Mitochondrial Analyzer analysis tools indicate that mitochondrial
volume and degree of branching/connectivity are key parameters
which must be quantified to describe network morphology
(Harwig et al., 2018; Hemel et al., 2021). The primary challenge
with the quantification of these metrics is ensuring that the image
detail and quality is sufficient for analysis. The requirement for high
magnification and resolution of cell images presents time limitations
when aiming to morphologically profile a representative proportion
of a cell population–particularly if 3D Z-stacks are required. The
feasibility of using each of these tools, or analysis methodologies
derived from these workflows, could be tested by analysing a series
of images taken at a range of magnifications and resolutions to
determine the minimum image quality required.

It is evident that there are a range of analysis methodologies and
tools used to quantify the morphology of individual cell features.
Several analysis tools here have been developed to fit a broad
range of analysis requirements and can therefore be implemented to
multiple cell profiling assays (Laan et al., 2023; Phillip et al., 2021).
Conversely, multiple analysis tools have been developed for specific
purposes, often aiming to quantify the morphology of organelles
undergoing specific processes (Liu et al., 2018; Driscoll et al., 2012).
Whilst several metrics output from the tools discussed here overlap,
there is still a significant number of user-defined values unique
to each tool. This presents challenges in the identification of a
minimal set of critical quality attributes, to describe the state of
a population of cells through their morphologies. Furthermore,
machine learning and AI-driven analysis presents a promising
future for rapid and accurate morphological image and data
analysis, highlighted by the current development ISO standards
related to the use of AI in digital pathology (ISO/AWI 24051-2)
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TABLE 2 Summary of the main analysis tools discussed throughout this review. Target organelle, analysis methodology, and main output indices are
each described for each analysis tool.

Analysis Tool Target Analysis Methodology Output Indices/S.I
traceability

CellProfiler (Bray et al., 2014) Nuclei, Cell Membrane, Actin,
Mitochondria

Variable thresholding-based
segmentation. Primary and secondary
object identification enables multiple
organelle analysis

Area/length measurements traceable to
the meter. Intensity/circularity features
require reference measurements for
standardisation

Automated Mean Negative Curvature
Analysis (Driscoll et al. 2012)

Nuclei Automated extraction of nuclei
boundaries followed by quantification
of mean negative curvature using
contour analysis

Mean negative curvature traceable to
the meter and radian

Visually Aided Morpho-Phenotyping
Image Recognition (Phillip et al., 2021)

Nuclei, Cell Membrane Unsupervised classification of nuclei
and membrane shapes using contour
measurements to separate cells into
shape nodes

Shape modes with shape factor, inertia,
and aspect ratio. Shape measurements
traceable to the meter and radian

SVM Supercell Classification
(Chen et al. 2016)

Cell Membrane Support vector machine (SVM)
classification with supercell clustering
used to identify the number of metrics
required for cell classification

Minor axis length, solidity, and mean
negative curvature all traceable to the
meter and radian

Automated Cell Morphology Extractor
(ACME) (Mosaliganti et al. 2012)

Cell Membrane Cell boundary identification performed
using Hessian-based filters to identify
eigenvectors associated with
boundaries. Well-suited for 3D tissues

Generic shape and intensity features
traceable to the meter and radian

Robust Actin Filament Framework
(Alioscha-Perez et al. 2016)

Actin Three-step method using image
decomposition into filament and
texture components. Multi-scale line
detection used to determine filament
orientation and connectivity

Position, orientation, and length
measurements of individual actin
filaments. Orientation expressed in
radians, and length in meters

Image-Recognition based Actin
cytoskeleton Quantification (IRAQ)
(Liu et al. 2018)

Actin Canny and Sobel edge, line and
brightness detection algorithms used to
extract morphological information of
filament orientation

Partial actin-cytoskeletal deviation
(PAD) and total actin-cytoskeletal
deviation (TAD) – both traceable to the
radian. Average actin-cytoskeletal
intensity (AAI)

Implicit Laplacian of Enhanced Edge
(ILEE) algorithm (Li et al. 2023)

Actin Tool uses native brightness, first-order
gradient derivative, and second-order
Laplacian derivative characteristics of
input images to detect cytoskeletal
features

12 morphological indices separated into
5 classes: density, bundling,
connectivity, branching, and
directionality. Traceability issues due to
bespoke outputs

MitoGraph (Harwig et al. 2018) Mitochondria Automated image processing software
dedicated to quantifying the volume of
tubular mitochondrial networks

Mitochondrial total length, volume
(traceable to the meter), and degree of
branching (connectivity score)

MitoLoc (Vowinckel et al 2015) Mitochondria Automated 3D image processing to
calculate and classify mitochondrial
morphologies

Network morphology, fragmentation
quantification (fragmentation index).
Not directly traceable

MiNA (Valente et al. 2017) Mitochondria Analyses mitochondrial morphology
using fluorescence images in 2D and 3D
stacks. Estimates the volume and length
of the mitochondria form a binarized
copy of the image

Branch length, and mitochondrial
volume – traceable to the meter

Mitochondrial Analyzer
(Chaudhry et al. 2020)

Mitochondria Analyses 2D, 3D and 3D time-series
images of mitochondrial networks. It

Mitochondrial number, size, volume,
and degree of branching (number of
branches and length). Traceable to the
meter
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and the increase in publications employing the use of machine
learning for image analysis (Tourlomousis et al., 2019; Tang et al.,
2024). However, from a metrological perspective, there remains
uncertainties associated with the ‘black-box’ nature of many of
these analysis tools that need to be addressed to improve current
workstreams (Chandrasekaran et al., 2021; Piccinini et al., 2017;
Chen et al., 2016; Phillip et al., 2021).

Identification of superfluous or coinciding output metrics
could be performed by analysing reference image sets with each
analysis tool. Principal component and linear discriminant analysis
could then be used to identify linear combinations of variables
which describe similar morphological features. Applying analysis of
reference data sets to a range of cell types and treatment conditions
could establish a robust set of CQAs which are able to describe
a range of cellular bioprocesses while also potentially providing
routes to perform quality assessment once they become established.
This unmet requirement also presents a future opportunity for
interlaboratory comparison studies, such as those carried out by
CAWG (within CCQM). Such studies could look to compare
output metric values from identical images disseminated to
multiple laboratories, then progress to dissemination of biological
samples for morphological analysis and ultimately determine
how such CQAs can be included in measurement uncertainty
calculations to underpin metrological traceability. This work would
further previous CCQM pilot studies which have focused on
cell enumeration through analysis of nuclei morphology. Such
studies would inform the development of ISO guidelines which
would advise the wider scientific community on best practices for
developing and reporting on morphological cell analysis assays.
Ultimately, the aim of such studies would be the development of a
standard set of cell images which serve as a calibration tool to aid
morphological image analysis data traceability and reproducibility.
Researchers currently developing such assays should first aim to
follow appropriate QUAREP instrument standardisation guidelines
and further ensure that reported morphological data is traceable to
standardised units or appropriate material standards.

5 Conclusion

This review has highlighted several morphological analysis tools
used to quantify the morphology of key cell features commonly
considered in cell profiling studies. The range of image acquisition
modalities, image analysis algorithms, and output metrics has
highlighted the variation and lack of standardisation across
morphological profiling in academic and industrial sectors. It is
evident that further alignment of methodologies is required to
facilitate data robustness and reproducibility. Candidate CQAs for
each cell feature have been highlighted and evaluated with respect
to their prevalence, traceability, and practicality. Moving forwards,
it is suggested that the testing of each analysis tool with a candidate
reference image set would further investigate the efficacy of each
analysis tool and aid in the identification of a minimal set of
concise cell morphological measurement parameters. In general,
progress in this field will be led by metrological institutions in
close collaboration with both academic and industrial research
institutions to ensure the needs of both communities are met.
Reference methodologies and materials will aim to be developed

using international case studies to determine method robustness
and data comparability. The generation of a standard set of cell
images, such as those used throughout digital pathology, could
also serve as a calibration tool which would aid data traceability
and reproducibility and facilitate the widespread adoption of
morphological cell profiling.
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