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Hypoxia is a hallmark of the tumor microenvironment (TME), and it plays a
crucial role in the occurrence and progression in vascular tumors. Under hypoxic
conditions, hypoxia-inducible factor 1-alpha (HIF-1α) is stabilized, inducing
changes in the expression of various target genes involved in angiogenesis,
metabolism, and cell survival. This includes the upregulation of pro-angiogenic
factors like VEGF, which promotes the formation of dysfunctional blood
vessels, contributing to the worsening of the hypoxic microenvironment. At
the same time, hypoxia induces a metabolic shift toward glycolysis, even in
the presence of oxygen, supporting tumor cell survival and proliferation by
providing necessary energy and biosynthetic precursors. This review discusses
the molecular mechanisms by which hypoxia regulates angiogenesis and
metabolic reprogramming in vascular tumors, highlighting the intricate link
between these processes, and explores potential therapeutic strategies to target
these pathways in order to develop effective treatment strategies for patients.

KEYWORDS

vascular tumors, hypoxia, HIF-1α, angiogenesis, metabolic reprogramming, tumor
microenvironment

1 Introduction

Vascular tumors are neoplasms composed of endothelial cells (ECs), characterized
by abnormal proliferation and abnormal vessel formation (Folpe, 2024; Tortorelli et al.,
2024). These tumors are typically associated with excessive angiogenesis or abnormal
vessel dilation, and they can affect various tissues, including the skin, soft tissues,
and internal organs (Mansfield et al., 2020; Urban and Williams, 2024). Based on
histopathological features and clinical presentation, vascular tumors are classified into
benign, locally aggressive or borderline, andmalignant categories.The International Society
for the Study of Vascular Anomalies (ISSVA) classification provides a comprehensive
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TABLE 1 ISSVA classification of vascular tumors.

Classification of vascular tumors

Benign Locally aggressive or borderline Malignant

Infantile hemangioma
Congenital hemangioma
Tufted angioma
Spindle-cell hemangioma
Epithelioid hemangioma
Pyogenic granuloma
Others

Kaposiform hemangioendothelioma
Retiform hemangioendothelioma
Papillary intralymphatic angioendothelioma (PILA),
Dabska tumor
Composite hemangioendothelioma
Pseudomyogenic hemangioendothelioma
Polymorphous hemangioendothelioma
Hemangioendothelioma not otherwise specified
Kaposi sarcoma
Others

Angiosarcoma
Epithelioid hemangioendothelioma
Others

stratification of these tumors, as summarized in Table 1
(Kunimoto et al., 2022). Vascular tumors exhibit significant
heterogeneity, with the most common type being infantile
hemangiomas (IH), which have an incidence rate of approximately
5%–10% (Chen et al., 2019; Nguyen et al., 2020; Eisenstein,
2023), whereas malignant forms such as angiosarcoma (AS) are
relatively rare (Dufresne et al., 2023; An et al., 2024). Regardless
of whether they are benign or malignant, vascular tumors
can have severe impacts on the health of the host, leading to
disfigurement, deformities, functional impairments, and even life-
threatening conditions. Although existing therapeutic approaches
can alleviate some symptoms, the treatment outcomes for most
types remain limited, and complete cure is often difficult to
achieve, for example, in kaposiform hemangioendothelioma
(Ji et al., 2020; Qiu et al., 2025).

In recent years, the role of hypoxia in tumorigenesis has gained
increasing attention. Hypoxia, a prevalent characteristic of tumors,
exerts a pivotal influence on tumor progression by modulating
a variety of cellular processes, including angiogenesis, metabolic
reprogramming, and immune evasion (Wicks and Semenza,
2022; Chen et al., 2023). The hypoxic tumor microenvironment
triggers the activation of critical transcriptional regulators,
particularly hypoxia-inducible factors (HIFs), which orchestrate
the expression of genes involved in cellular adaptation to oxygen
deprivation (Luo et al., 2022). In the context of vascular tumors,
numerous studies have highlighted the crucial role of hypoxia
in driving angiogenesis and metabolic reprogramming, a process
essential for tumor growth and progression. This review will focus
on the pathogenic mechanisms of hypoxia in vascular tumors, with
particular emphasis on hypoxia-driven angiogenesis and metabolic
reprogramming. It aims to provide valuable insights and references
for researchers and clinicians in the field, with the goal of advancing
the development of targeted therapies for vascular tumors.

2 Vascular tumors

2.1 Infantile hemangioma

IH, the most common benign vascular tumor in infants, is more
frequently observed in Caucasians, females, and preterm infants
(Ding et al., 2020; Rodríguez Bandera et al., 2021). It typically

presents as red or purple masses on the skin or subcutaneous tissue,
varying in size, shape, and number, with some cases showing raised
vascular lesions. Based on morphological characteristics, IH can be
classified into superficial, deep, or mixed types (Forbess Smith et al.,
2017). IH generally begins to grow rapidly during infancy,
exhibiting a growth pattern characterized by alternating phases
of proliferation and regression (Sebaratnam et al., 2021). During
the proliferative phase, ECs proliferate significantly within a short
period, followed by the regression phase, during which proliferating
ECs are gradually replaced by fibrofatty tissue (Greenberger and
Bischoff, 2011). Most IH enters a natural regression phase around
1 year of age, with complete regression typically occurring by
3.5 years (Bauland et al., 2011; Couto et al., 2012). In contrast
to superficial lesions, deeper IH is often diagnosed later and
has a longer growth cycle (Krowchuk et al., 2019). While most
IH does not require aggressive treatment, a small proportion
may lead to complications during the proliferative phase, such
as ulceration, bleeding, and pain (Mitra et al., 2024). In some
cases, disfigurement, functional impairment, organ involvement,
and even life-threatening complications may arise (Baselga et al.,
2016; Krowchuk et al., 2019). IH has been associated with PHACE
syndrome, which encompasses a range of clinical manifestations,
including posterior fossa brain malformations, arterial anomalies,
cardiovascular defects, ocular abnormalities, and cutaneous
hemangiomas (Forde et al., 2017). Additionally, IH is linked to
LUMBAR syndrome, characterized by lower body IH, cutaneous
defects, urogenital malformations, ulceration, myelopathy, bony
deformities, anorectal anomalies, arterial anomalies, and renal
abnormalities (Yu et al., 2017b). These syndromic associations
can significantly impact the quality of life in affected children.
Treatment methods for IH include pharmacological therapy (such
as propranolol treatment), laser therapy, and surgical excision,
aimed at preventing permanent disfigurement due to incomplete
regression and associated complications (Krowchuk et al., 2019;
Sebaratnam et al., 2021).

2.2 Kaposiform hemangioendothelioma

KHE is a rare, locally invasive vascular tumor primarily seen
in infants and children, with an incidence of approximately 0.7
per 1,000,000 newborns (Fernández et al., 2009; Croteau et al.,
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2013). Its name is derived from the “pseudopalisade” structure
observed in ECs under the microscope, resembling Kaposi Sarcoma
(KS) (Lyons et al., 2004). In 1993, Zukerberg et al. first classified
KHE as a distinct entity from IH(Zukerberg et al., 1993). KHE
presents with a variety of clinical manifestations. Cutaneous
lesions often appear purple and typically grow through invasive
infiltration, commonly affecting superficial or deep soft tissues
of the limbs and torso (Ji et al., 2020). Another hallmark
feature is the Kasabach-Merritt phenomenon (KMP), which is
characterized by thrombocytopenia and coagulation abnormalities,
often leading to bleeding tendencies such as skin purpura and
internal hemorrhage (Kasabach and Merritt, 1940; Croteau et al.,
2013; Ji et al., 2018). Unlike KS, KHE is not associated with
viral infections. Current studies indicate that KHE is closely
related to somatic mutations in the GNA14 gene (c.614A > T,
p.Gln205Leu) (Lim et al., 2016). Treatment options include surgical
excision, interventional embolization, and systemic therapies such
as rapamycin and vincristine. For cases complicated by KMP,
anticoagulant therapy and blood product transfusions are typically
used (Drolet et al., 2013; Liu et al., 2016). However, the rarity of KHE
and the heterogeneity of its treatment regimens present significant
challenges in management.

2.3 Kaposi sarcoma

Kaposi sarcoma (KS) is a vascular-originating, locally invasive
or borderline tumor, first described by the Italian physician Moritz
Kaposi in 1872 (Kaposi, 1872). It arises from the abnormal
proliferation of ECs and presents as purple plaques, nodules, or
masses, typically involving the skin, lymph nodes, and internal
organs, such as the gastrointestinal tract and lungs (Cesarman et al.,
2019). KS is classified into four main types: 1) Classic; 2) Endemic;
3) HIV/AIDS-associated; and 4) Iatrogenic (Curtiss et al., 2016).
The classic type is commonly seen in elderly men of Mediterranean
or Jewish descent, progresses slowly, and is predominantly located
on the skin of the lower limbs and face (Curtiss et al., 2016).
The endemic type is more common among young men and
children in sub-SaharanAfrica, progressesmore rapidly, and is often
associatedwith lymphadenopathy (Stefan, 2015; El-Mallawany et al.,
2016). HIV/AIDS-associated KS is closely related to HIV infection
and is commonly observed in men who have sex with men
(Gottlieb et al., 1981). It typically presents with skin, lymph node,
and visceral involvement, may progress rapidly, and is associated
with immune suppression. Iatrogenic KS primarily occurs in organ
transplant recipients but can also result from chemotherapy or other
immunosuppressive treatments, typically affecting the skin with
some visceral involvement (Siegel et al., 1969; Grulich and Vajdic,
2015). In 1994, Kaposi’s sarcoma-associated herpesvirus (KSHV),
also known as human herpesvirus 8 (HHV-8), was identified
as the causative agent of KS(Chang et al., 1994). The interplay
between KSHV infection and host immune impairment contributes
to the pathogenesis of KS. The treatment for KS depends on the
type, rate of progression, and the immune status of the patient
(Cesarman et al., 2019). Therapeutic approaches include antiviral
therapy, local treatments (such as laser therapy or cryotherapy),
chemotherapy, and immunotherapy (Schneider and Dittmer, 2017).

2.4 Angiosarcoma

AS is a rare and highly aggressive malignant tumor originating
from the ECs of blood vessels or lymphatic vessels, accounting for
1%–2% of all soft tissue sarcomas (Young et al., 2010; Cao et al.,
2019). It commonly occurs in elderly individuals, with an average
age of onset at 73 years, and there is no significant gender
bias (Albores-Saavedra et al., 2011; An et al., 2024). Although
the exact mechanisms underlying AS are not fully understood,
several well-established risk factors include chronic lymphedema
(Stewart-Treves syndrome), a history of radiation therapy, and
exposure to environmental chemicals such as vinyl chloride,
thorium dioxide, and arsenic (Virtanen et al., 2007; Young et al.,
2010; Chaudhary et al., 2015; Pereira et al., 2015; Disharoon et al.,
2017). AS can develop in almost any soft tissue or visceral
organ, with clinical presentations varying depending on the tumor
location. The tumor can be classified into types such as cutaneous
AS, lymphedema-associated AS, radiation-induced AS, primary
breast AS, and soft tissue AS, with cutaneous AS being the most
common type, typically affecting the head, neck, and particularly
the scalp (Young et al., 2010; Bi et al., 2022). The diagnosis of
AS primarily relies on pathological examination, which reveals
abnormal, pleomorphic ECs proliferation (Young et al., 2010).
In well-differentiated regions, atypical ECs form anastomosing
vascular channels resembling normal blood vessels. With tumor
progression, the architecture becomes increasingly disorganized,
characterized by poorly defined vascular spaces and frequent
intraluminal red blood cell accumulation (Ronchi et al., 2020). In
poorly differentiated areas, the ECs form sheet-like arrangements,
usually exhibiting an epithelial-like morphology, and are often
associated with bleeding and necrosis (Marušić and Billings,
2017). AS typically expresses endothelial cell-specific markers,
including factorVIII-related antigen (Factor-VIIIRA),CD31,CD34,
and vascular endothelial growth factor (VEGF) (Ohsawa et al.,
1995). AS is highly malignant, with an overall 5-year survival
rate of approximately 35% (Mark et al., 1996; Fury et al., 2005;
Fayette et al., 2007). Current treatment options include surgical
resection, radiation therapy, chemotherapy, immunotherapy, and
targeted therapy (Young et al., 2010; Cao et al., 2019). However, due
to the high recurrence and metastatic potential of AS, preventing
recurrence and metastasis after treatment remains a significant
clinical challenge.

3 HIFs-mediated signal transduction

3.1 Overview of HIFs

Oxygen homeostasis is vital for eukaryotic survival. Sensing
and regulating hypoxia is crucial for this process. HIFs are
transcription factors that enable cells to adapt to changes in
oxygen levels. Significant progress has been made in the study
of the HIF pathway over the past three decades (Figure 1).
In 1991, Semenza et al. (1991) found that hypoxia-inducible
nuclear factors bind to an enhancer element of the erythropoietin
(EPO) gene, providing the first molecular insight into oxygen-
dependent gene regulation. Subsequently, in 1995, the same group
successfully purified and characterized HIF-1 as a heterodimeric
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FIGURE 1
Milestones in the history of HIF signaling. This timeline illustrates key discoveries in the HIFs pathway, from the identification of hypoxia-inducible
nuclear factors (1991), to the cloning of HIF-1 (1995), the elucidation of von Hippel-Lindau (VHL)-mediated degradation (1997), the identification of
prolyl hydroxylases (PHD) enzymes (2001), the initiation of clinical trials (2010s), and the awarding of the 2019 Nobel Prize in Physiology or Medicine.

transcription factor composed of two subunits: HIF-1α and HIF-
1β (Wang and Semenza, 1995; Wang et al., 1995). In the following
years, the precise regulatory mechanisms of HIF signaling were
progressively elucidated. In 1996, HIF-1α was found to undergo
oxygen-dependent degradationmediated by the vonHippel–Lindau
(VHL) tumor suppressor protein under normoxic conditions
(Iliopoulos et al., 1996). Loss of VHL functionwas shown to stabilize
HIF-1α, thereby promoting its accumulation and transcriptional
activity (Maxwell et al., 1999). In 2001, prolyl hydroxylase (PHD)
enzymes were identified as the key oxygen sensors responsible
for hydroxylating specific proline residues on HIF-1α, enabling
its recognition and subsequent degradation via the VHL pathway
(Jaakkola et al., 2001). More recently, research has shown that
the molecular mechanisms of HIFs are closely associated with
diseases such as cancer (Semenza, 2003), anemia (Haase, 2013),
inflammation (McGettrick and O’Neill, 2020), and cardiovascular
diseases (Liu et al., 2020). In the 2010s, clinical trials targeting
the HIF signaling pathway were initiated, with a primary focus
on therapeutic applications in anemia and cancer (Semenza, 2019;
Liu et al., 2024). William Kaelin, Peter Ratcliffe, and Gregg Semenza
were awarded the 2019 Nobel Prize in Physiology or Medicine for
their groundbreaking contributions to the discovery of how cells
sense and adapt to changes in oxygen availability (Ledford and
Callaway, 2019).

The HIFs transcription factor family currently includes HIF-1,
HIF-2, andHIF-3 (Korbecki et al., 2021). HIF-1 andHIF-2 primarily
mediate the transcription of hypoxia-inducible genes, whereas HIF-
3 not only activates gene expression but also inhibits the activity

of HIF-1 and HIF-2 (Tanaka et al., 2009; Zhang et al., 2014). The
structure of HIFs is complex, consisting of two subunits: HIF-α and
HIF-β (Wang et al., 1995). HIF-β is a stable subunit, ubiquitously
expressed in various cells, and is insensitive to changes in oxygen
levels. The HIF-β subunit, also known as the aryl hydrocarbon
receptor nuclear translocator (ARNT), is encoded by the ARNT1,
ARNT2, and ARNT3 genes (Wang et al., 1995; Dengler et al., 2014).
In contrast, the HIF-α subunit is primarily regulated by oxygen
levels. Three isoforms of the HIF-α subunit have been identified in
humans and mammals: HIF-1α, HIF-2α, and HIF-3α (Zhao et al.,
2024). Among these, HIF-1α is the most widely studied and is
expressed inmost human cells, while HIF-2α is expressed in specific
tissues and cell types, such as the lungs, kidneys, and liver. HIF-
3α is predominantly expressed in cardiac, renal, and pulmonary
epithelial cells (Yang et al., 2015).

3.2 Regulation of HIFs

HIFs are critical transcription factors that govern cellular
responses to oxygen levels. The activity of HIFs, particularly
HIF-1α, is tightly regulated by oxygen availability to ensure that
the hypoxic response is activated only when required. Under
normoxic conditions, HIF-1α is rapidly degraded to prevent the
activation of hypoxia-responsive genes. In normal cells, HIF-
1α is predominantly degraded through the ubiquitin-proteasome
pathway (Figure 2A) (Lee et al., 2004). The oxygen-dependent
degradation domain (ODDD)ofHIF-1α undergoes hydroxylation at

Frontiers in Cell and Developmental Biology 04 frontiersin.org

https://doi.org/10.3389/fcell.2025.1572909
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Liu et al. 10.3389/fcell.2025.1572909

FIGURE 2
Regulation of HIFs. (A) Under normoxic conditions, HIF-1α is hydroxylated by prolyl hydroxylases (PHDs), promoting its recognition by the von
Hippel-Lindau (VHL) E3 ubiquitin ligase complex and subsequent degradation via the proteasome. In contrast, under hypoxic conditions, limited
oxygen availability inhibits PHD and FIH activity, leading to HIF-1α stabilization and activation of hypoxia-related transcriptional programs. (B)
Regulatory network of signaling pathways controlling HIF activity.

proline residues (such as Pro-402 and Pro-564) by PHDs, including
PHD1, PHD2, and PHD3, which are iron- and α-ketoglutarate-
dependent enzymes (Salceda and Caro, 1997; Ivan et al., 2001;
Jaakkola et al., 2001). Subsequently, Factor Inhibiting HIF (FIH)
hydroxylates Asn803 of HIF-1α, preventing its interaction with
coactivators like p300/CBP (Mahon et al., 2001; Lando et al.,
2002). This modification promotes recognition by the VHL E3
ubiquitin ligase complex, leading to the ubiquitination of the HIF-
1α subunit, which is then degraded by the 26S proteasome (Salceda
and Caro, 1997; Hon et al., 2002). Under hypoxic conditions, due to
limited oxygen supply, the activity of PHDs and FIH is significantly
reduced (Freedman et al., 2002; Majmundar et al., 2010). As a
result, proline and asparagine residues in HIF-1α cannot undergo
hydroxylation, leading to the accumulation of HIF-1α in the
cytoplasm. It then translocates to the nucleus. In the nucleus, stable
HIF-1α dimerizes with HIF-1β (ARNT) and, through interaction
with coactivators like p300/CREB-binding protein (CBP), regulates
gene expression by binding to hypoxia-responsive elements (HREs)
(Wu et al., 2015; Bao et al., 2021). This forms a transcriptionally
active complex that induces the robust expression of downstream
target genes (Figure 2A).

What’s more, HIFs are regulated by multiple signaling pathways
(Figure 2B). HIF-1α is a downstream target of the mechanistic
target of rapamycin (mTOR) signaling pathway and is tightly
regulated by the phosphoinositide 3-kinase (PI3K)/protein kinase
B (Akt)/mTOR axis (Shimobayashi and Hall, 2014). In tumors,
loss-of-function mutations in the tumor suppressor gene PTEN
impair its negative regulatory effects on PI3K signaling, leading

to decreased PI3K degradation and sustained phosphorylation-
driven activation of Akt and mTOR (Steelman et al., 2004;
Chen et al., 2018). This dysregulated signaling cascade ultimately
facilitates the transcriptional upregulation of HIF-1α mRNA. The
mitogen-activated protein kinase/extracellular signal-regulated
kinase (MAPK/ERK) pathway represents another critical signaling
cascade regulating HIF-1α (Wan and Wu, 2016). Studies have
demonstrated that MAPK signaling can activate the HIF-1α
pathway by modulating the p300/CBP coactivator complex,
thereby enhancing its transcriptional activity (Sang et al., 2003).
Additionally, ERK directly regulates HIF-1α transcriptional activity,
further amplifying its function (Sang et al., 2003). The Janus
kinase/signal transducer and activator of transcription (JAK/STAT)
signaling pathway plays a pivotal role in regulating HIF-1α
expression and stability through multiple mechanisms. Specifically,
the JAK/STAT3 axis directly promotes HIF-1α gene transcription,
increasing its mRNA levels (Xu et al., 2005; Zhao and Qin, 2019;
Zhao et al., 2019). Moreover, STAT3 directly interacts with HIF-
1α, competitively interfering with pVHL-mediated ubiquitination,
thereby attenuating its proteasomal degradation and enhancing its
stability (Jung et al., 2008). Interestingly, a bidirectional regulatory
mechanism exists between the Wnt (Wingless/Integrated)/β-
catenin signaling pathway and HIF-1α (Liu et al., 2015; 2021).
Wnt/β-catenin can indirectly modulate HIF-1α expression through
the PI3K/Akt and ERK/MAPK pathways (Lau et al., 2011). In
addition to the aforementioned signaling pathways, the Notch
and nuclear factor-kappa B (NF-κB) pathways also contribute
to the regulation of HIFs, integrating hypoxia signaling with
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essential cellular processes such as differentiation, proliferation,
and metabolism (Malekan et al., 2021).

3.3 Physiological functions of HIFs

HIFs regulate a variety of biological processes that help cells
and tissues adapt to hypoxic environments. These processes include
angiogenesis,metabolic reprogramming, cell survival and apoptosis,
erythropoiesis, immune response regulation, and tissue repair and
regeneration (Luo et al., 2022). Both HIF-1α and HIF-2α play
critical roles in oxygen homeostasis but differ in their tissue-
specific expression and target genes. HIF-1α is widely expressed
across most cell types and primarily regulates immediate hypoxic
responses, controlling the expression of over 100 downstream genes
(Yang et al., 2015; Choi, 2017). Key target genes regulated by HIF-
1α include VEGF for angiogenesis, GLUT-1 (glucose transporter 1)
for enhanced glucose uptake, and LDHA (lactate dehydrogenase A)
for promoting anaerobic glycolysis (Firth et al., 1994). Additionally,
HIF-1α regulates genes involved in cell survival, such as BCL-
2, and apoptosis, such as BCL2 Interacting Protein 3 (BNIP3)
(Manalo et al., 2005). In the immune response, HIF-1α modulates
the expression of various cytokines and chemokines, which recruit
immune cells to sites of infection or injury (Eltzschig and Carmeliet,
2011; Palsson-McDermott et al., 2015; Codo et al., 2020). Moreover,
HIF-1α plays a critical role in tissue repair and regeneration by
promoting angiogenesis, metabolic adaptation, and the repair of
damaged tissues (Konieczny et al., 2022; Wang et al., 2023). In
contrast, HIF-2α is expressed in specific tissues, such as the lungs,
kidneys, and liver, and plays a key role in regulating erythropoiesis
and cell differentiation (Wiesener et al., 2003).

4 Hypoxic signaling in vascular tumors

4.1 Hypoxia as a common feature of
tumors

Hypoxic regions are commonly observed in a wide range of
human tumors. As early as the 1990s, Höckel et al. employed a
computerized pO2 histography system to assess oxygen levels in
cervical and breast cancers, identifying marked reductions in pO2
(Höckel et al., 1991; Vaupel et al., 1991). Vaupel et al. also assessed
the partial oxygen pressure (pO2) in several cancer types and
reported that the median pO2 in breast, cervical, and head/neck
cancers was 10 mmHg (approximately 1.4% O2) (Vaupel et al.,
2007). Notably, approximately 25% of themeasurements were below
2.5 mmHg, with some approaching zero, indicating the presence
of a severely hypoxic microenvironment within these tumors.
Furthermore, in experimental animal models, whether syngeneic
or xenograft tumor transplants are used, a consistent reduction
in tumor tissue pO2 has been observed (Günther et al., 1972;
Vaupel et al., 1987). Höckel et al. further discovered that tumor
hypoxia (reduced pO2) is associated with poor prognosis in primary
cervical cancer (Höckel et al., 1993; Höckel et al., 1996).

Tumor hypoxia is a key regulator of HIF-1α and HIF-2α
expression, driving their upregulation in response to oxygen
deprivation. Elevated levels of one or both proteins have been widely

documented in various human tumors. Notably, in clear cell renal
cell carcinoma (ccRCC), deletions or mutations of the VHL gene
impair the proteasomal degradation of HIF-1α and HIF-2α, leading
to their aberrant accumulation even under normoxic conditions
(Schödel et al., 2016; Hsieh et al., 2017). Similarly, in breast
cancer, HIF-1α expression is significantly upregulated and exhibits
a heterogeneous distribution, primarily localized to viable cancer
cells surrounding necrotic regions (Gruber et al., 2004; Jin et al.,
2016). Additionally, HIF-1α expression has been detected in certain
stromal cells, ECs, and tumor-associated macrophages (TAMs)
(Bos et al., 2003; Dales et al., 2005). Furthermore, some studies have
also reported increased expression of HIF-2α, suggesting a potential
role in breast cancer progression (Leek et al., 2002; Helczynska et al.,
2008). Pseudopalisades, a characteristic pathological feature of
glioblastoma (GBM), are driven by HIF-1α upregulation in hypoxic
tumor cells, which promotes their migration away from regions
of vascular occlusion and necrosis (Rong et al., 2006; Ji et al.,
2013). Beyond these, HIF-1α and HIF-2α upregulation has also
been reported in multiple other solid tumors, including bladder
cancer, hepatocellular carcinoma, colorectal cancer, and sarcoma
(Nordsmark et al., 2001; Theodoropoulos et al., 2004; 2005;
Morine et al., 2011; Tang et al., 2018). Interestingly, increased
expression of HIFs has been observed in hematologic malignancies,
such as leukemia, lymphoma, and multiple myeloma (Evens et al.,
2010; Deeb et al., 2011; Frolova et al., 2012; Borsi et al., 2015).
Taken together, Hypoxia-induced HIFs upregulation represents
a fundamental mechanism in tumor pathophysiology, broadly
contributing to the adaptive and pathological processes.

4.2 Causes of hypoxia in tumors

Hypoxia is a hallmark of the tumors, resulting from a
combination of structural and metabolic factors that limit oxygen
availability. Firstly, the uncontrolled proliferation and rapid growth
of tumor cells require large amounts of oxygen and nutrients. When
oxygen demand exceeds supply, hypoxic regions develop within
the tumor (Vander Heiden et al., 2009). Although the expression
of erythropoietin (EPO) and angiogenic factors is induced under
hypoxic conditions, the newly formed blood vessels are often
disorganized and irregular, leading to dysfunctional vessels that fail
to provide adequate perfusion, which in turn exacerbates blood
flow stasis and worsens oxygen deficiency (Baluk et al., 2005;
Nagy et al., 2010). Secondly, the diffusion distance of oxygen is
limited, and hypoxia is commonly observed in tissue areas more
than 100–200 µm from functional blood vessels (Dachs et al.,
1997). What’s more, the elevated interstitial pressure within the
tumor, caused by tumor cell proliferation and extracellular matrix
alterations, compresses blood vessels, further restricting blood flow.
This mechanical obstruction makes it even more difficult for blood
to reach the core regions of the tumor, leading to widespread
hypoxia (Padera et al., 2004). Aside from the factors mentioned
above, several additional mechanisms also contribute to tumor
hypoxia. Tumor cells typically exhibit metabolic reprogramming
(the Warburg effect), wherein they preferentially rely on anaerobic
glycolysis for energy production, even under normoxic conditions
(Warburg, 1925). This metabolic pathway not only leads to the
accumulation of large amounts of lactate but also causes a local
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decrease in pH within the tumor region, further exacerbating the
hypoxic condition (Jaworska et al., 2023). Additionally, a reduction
in the number of red blood cells or a decrease in the oxygen-carrying
capacity of hemoglobinmay also result in a reduced supply of oxygen
to the tumor tissue, thus intensifying the hypoxia (Vaupel et al.,
2003). In conclusion, tumor hypoxia results from a combination
of structural and metabolic factors, including rapid tumor growth,
dysfunctional blood vessels, limited oxygen diffusion, andmetabolic
reprogramming, all of which contribute to the establishment of
hypoxic regions within tumors.

4.3 Hypoxic signaling in infantile
hemangioma

IH is closely associated with hypoxia. Clinical studies have
shown that IH is related to several known risk factors, including
prematurity, low birth weight, and placental insufficiency (such as
preeclampsia and placental hypoxia) (de Jong et al., 2016). Studies
indicate that approximately 30% of extremely low birth weight
infants (weighing <1000 g) develop IH (Amir et al., 1986). Research
by Colonna et al. (2010) and López Gutiérrez et al. (2007) has
demonstrated that infants with IH have a significantly higher
incidence of placental hypoxia compared to controls. Furthermore,
infants born after pregnancies complicated by preeclampsia or
placental abnormalities also show a higher incidence of IH
(Haggstrom et al., 2007). Prior to the development of IH lesions,
infants often present with early skin changes, such as pallor,
blanching, ecchymosis, or capillary dilation (Drolet and Frieden,
2010). These early skin manifestations are likely caused by vascular
constriction leading to tissue ischemia, resulting in “anemic spots”
or “low blood flow areas” (Herbert et al., 2011). In summary, the
clinical evidence suggests that the development of IH is closely
linked to hypoxia.

Both Xia et al. (2017) and Kleinman et al. (2007) have
found that HIF-1α is significantly upregulated in proliferating
infantile hemangioma (IH) tissue sections. In these proliferative
tumor sections, HIF-1α is predominantly expressed in the
nuclei of endothelial and stromal cells. In contrast, HIF-1α
expression is not observed in tissues during the involution
phase. The upregulation of HIF-1α plays a key role in the
progression of IH, promoting the proliferation and migration
of hemangioma endothelial cells (HemECs) (Xiang et al., 2024).
Additionally, HIF-1α induces the expression of target genes,
such as VEGF, GLUT-1, Matrix Metalloproteinase 9 (MMP-
9), Stromal Cell-Derived Factor 1 alpha (SDF-1α), and BNIP3,
further driving tumor angiogenesis, metabolic reprogramming,
and anti-apoptotic processes (North et al., 2000; Kleinman et al.,
2007; Janmohamed et al., 2015; van Vugt et al., 2017; Wu et al.,
2021). However, an integrated microarray analysis revealed that
the hypoxic environment in IH is primarily regulated by HIF-
2α, rather than HIF-1 (Gomez-Acevedo et al., 2020). Drolet
and Frieden (2010) suggest that the formation of IH is a
response to a hypoxic environment, representing a homeostatic
attempt to normalize hypoxic tissue, a process induced by
HIFs. Overall, hypoxia and HIFs play a crucial role in the
progression of IH.

4.4 Hypoxic signaling in kaposiform
hemangioendothelioma

KHE is a rare orphan disease, and consequently, research
on its pathophysiology, molecular mechanisms, and therapeutic
strategies remains limited, with much of the existing literature
based on case reports. However, evidence suggests the presence of
hypoxic signaling in KHE. Elevated expression of HIF-1α has been
observed in the lesions of KHE patients (Ji et al., 2020; Li et al.,
2024). In a study by Li et al., a 3D spheroid model of KHE was
established using the EOMA, utilizing a rotary cell culture system
(RCCS) to replicate the tumor microenvironment. The results
showed that HIF-1α expression was significantly upregulated both
in the EOMA spheroids and in the EOMA xenograft mouse model
(Li et al., 2024). This upregulation is likely due to the activation
of the PI3K/Akt/mTOR signaling pathway in KHE ECs, leading
to the phosphorylation and overactivation of Akt1, mTORC1 and
mTORC2, which in turn enhances the translation of downstream
HIF-1α (Ji et al., 2020; Wang et al., 2020; Qiu et al., 2025).
Furthermore, in KHE, HIF-1α induces the expression of pro-
angiogenic genes, including Vascular Endothelial Growth Factor
C (VEGFC) and Vascular Endothelial Growth Factor Receptor 3
(VEGFR3) (Saito et al., 2009; Cohen et al., 2022). In contrast
to IH, GLUT-1 immunostaining was negative in all KHE cases
(van Vugt et al., 2017; Johnson et al., 2018).

4.5 Hypoxic signaling in kaposi sarcoma

There is substantial evidence indicating that hypoxia and HIFs
play a central role in the pathogenesis of KS and KSHV infection.
Interestingly, Kaposi himself noted in his initial description that
KS predominantly affects the feet and lower extremities, areas that
are typically under low oxygen conditions (Kaposi, 1872). A study
by Long et al. on tissue samples from 245 HIV-positive patients
revealed that HIF-1α expression was present in KS biopsies at
various stages, with its levels continuously increasing throughout
tumor progression (Long et al., 2009). Research by Catrina et al.
further demonstrated that both HIF-1α and HIF-2α were expressed
in KS biopsies, with expression detected across all stages of the
tumor, peaking in the late-stage nodular phase (Catrina et al., 2006).
The activation of HIFs also leads to the upregulation of downstream
target genes, such as VEGF, Bcl-2, and Mcl-1, further contributing
to the KS progression (Catrina et al., 2006; Long et al., 2009).

In the context of KSHV infection, hypoxia also plays a crucial
role in the virus’s lytic replication, further facilitating viral spread
and disease progression. As a γ-herpesvirus, KSHV’s genome
contains several HREs, which, through various mechanisms,
promote the upregulation of HIFs (Aneja and Yuan, 2017;
Davis et al., 2023). Known HREs include those in ORF34-ORF37
and RTA, with the RTA promoter primarily responding to HIF-2α,
while the ORF34 promoter responds to both HIF-1α and HIF-2α,
leading to the activation of KSHV lytic replication (Cai Q. et al.,
2006; Haque et al., 2006; Aneja and Yuan, 2017). Additionally, the
ORF37 gene of KSHV encodes a shutoff ribonuclease (SOX) that
degrades mRNA and suppresses the expression of most host genes,
though it does not affect the mRNA levels of HIF-1α (Glaunsinger
and Ganem, 2004). The latent nuclear antigen (LANA) encoded by
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ORF73, which is expressed during the latent phase of infection,
forms a complex with HIF-1α and recruits chromatin remodeling
enzyme KAP1 to the RTA promoter region, further regulating the
initiation of lytic replication (Cai Q. et al., 2006; Cai et al., 2013).
These mechanisms collectively highlight the critical role of hypoxia
in KSHV infection and its potential involvement in the regulation of
viral latency and reactivation.

4.6 Hypoxic signaling in angiosarcoma

In AS, the presence of hypoxic signaling has been confirmed
by several studies. Due to the rarity of AS, most relevant
research is concentrated in case reports. Research by Maeda-
Otsuka et al. (2019) found that HIF-1α expression in AS tissues
was significantly upregulated and exhibited heterogeneity, with
stronger expression of HIF-1α in tumor cells distant from blood
vessels and weaker expression in cells closer to the vasculature.
Additionally, Al-Salam et al. (2012) observed high expression of
HIF-1α in tissue sections of breast AS. Studies have also indicated
upregulation of HIF-1α and HIF-2α expression in retroperitoneal
AS, accompanied by the induction of hypoxia-responsive genes
(Rathmell et al., 2004). In sporadic cutaneous AS, 3 out of 18 cases
demonstrated high HIF-1α expression (Abedalthagafi et al., 2010).
Further investigations revealed that downstream genes of HIF-
1α, including VEGF, Vascular Endothelial Growth Factor Receptor
2 (VEGFR2), and GLUT-1, were highly expressed in both AS
tissue sections and cell lines (Al-Salam et al., 2012; Hoshina et al.,
2013; van Vugt et al., 2017). Notably, elevated GLUT-1 expression
was significantly associated with high histological grading and
was considered an independent prognostic factor (Smeland et al.,
2012). Furthermore, AS patients with strong HIF-1α positivity were
typically younger and had a higher incidence of lymph node and
organ metastasis, emphasizing the clinical significance of hypoxic
signaling in AS (Maeda-Otsuka et al., 2019).

5 Hypoxia-driven angiogenesis in
vascular tumors

The tumor microenvironment (TME) refers to the complex
milieu surrounding the tumor, comprising various cell types,
blood vessels, immune cells, extracellular matrix components,
and other molecular factors (Elhanani et al., 2023; Yang et al.,
2023). The TME is composed of a diverse range of cellular
components, including tumor cells, fibroblasts, immune cells, ECs,
and extracellular matrix constituents (Xiao and Yu, 2021). However,
within tumors, due to rapid tumor cell proliferation and incomplete
vascular formation, a hypoxic microenvironment (HME) often
arises, thereby triggering the activation of HIFs. The activated
HIFs regulate the transcription of downstream RNA, which
participate in key aspects of cancer progression, including tumor
angiogenesis, metabolic reprogramming, tumor cell proliferation,
immune evasion, and resistance to therapies (Wicks and Semenza,
2022; Zhao et al., 2024; Zhou et al., 2024) (Figure 3). As a result, the
tumor is able to survive and continue to progress in hypoxic and
other unfavorable conditions.

5.1 Hypoxia-driven angiogenesis in tumors

In tumors, the activation of HIF-1α plays a critical role in
angiogenesis. It achieves this by upregulating the expression of
various pro-angiogenic growth factors, including VEGF, platelet-
derived growth factor (PDGF), and epidermal growth factor (EGF)
(Jiang et al., 2020). These growth factors bind to their respective
receptors on ECs, activating several signaling pathways that promote
ECs proliferation,migration, and the formation of new blood vessels
(Figure 4). Specifically, VEGF-A binds to VEGFR2, activating
tyrosine kinase, which further stimulates ECs proliferation via
the PI3K, MAPK, and ERK1/2 pathways, and increases vascular
permeability through the endothelial nitric oxide synthase (eNOS)
pathway (Xin et al., 2016; Watari et al., 2020; Wu et al., 2022).
Elevated expression of HIF-1α and VEGF is associated with poor
prognosis and reduced therapeutic responsiveness (Vageli et al.,
2024). Studies have shown that inhibiting VEGF expression
can effectively prevent tumor angiogenesis, promote vascular
normalization, and suppress tumor growth (Hosaka et al., 2020).
The platelet-derived growth factor (PDGF)/platelet-derived growth
factor receptor (PDGFR) signaling axis also plays a crucial role in
angiogenesis (Li et al., 2022). Phosphorylated PDGFR promotes
ECs proliferation primarily via the PI3K-Akt signaling pathway.
In animal models, blocking PDGFR-β has been shown to reduce
cancer cell growth and migration (Crawford et al., 2009; Wang J.-
C. et al., 2019). Additionally, EGF and its receptor epidermal growth
factor receptor (EGFR) are pivotal in ECs proliferation, survival,
differentiation, and migration (Rajakumar and Pugalendhi, 2023).
EGFR and VEGFR often share downstream signaling pathways, and
EGFR activation leads to increased VEGFR levels, thus enhancing
angiogenesis (Yu et al., 2017a). Human epidermal growth factor
receptor 2 (HER2), a member of the EGFR family, is frequently
observed in breast cancer and is a well-established therapeutic target
(Swain et al., 2023). Besides these factors, other growth factors
such as fibroblast growth factor (FGF), hepatocyte growth factor
(HGF), insulin-like growth factor (IGF), and transforming growth
factor-beta (TGF-β) also play key roles in hypoxia-induced tumor
angiogenesis, driving tumor growth and metastasis (Jiang et al.,
2020; Magar et al., 2024; Mou et al., 2024). Targeting these
signaling pathways holds promise for effectively inhibiting tumor
angiogenesis and providing new therapeutic strategies for cancer
treatment.

5.2 Angiogenesis in vascular tumors

In IH, hypoxia promotes angiogenesis through multiple
mechanisms. Zhang et al. demonstrated that under hypoxic
conditions, the activation of HIF-1α activates the downstream
VEGF/VEGFR2 signaling pathway, promoting blood vessel
formation (Zhang et al., 2023). Overexpression of HIF-1α
significantly enhanced the angiogenic capacity of HemECs, whereas
silencing HIF-1α inhibited the growth of IH xenografts in nude
mice. Wu et al. found that Cyr61/CCN1 (cysteine-rich angiogenic
inducer 61) is significantly upregulated in the proliferative phase
of IH (Wu et al., 2021). As an important extracellular matrix
protein, Cyr61/CCN1 promotes angiogenesis under hypoxic
conditions. The study revealed that hypoxia significantly increases
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FIGURE 3
Consequences of HIFs activation in Tumors. Within tumors, due to rapid tumor cell proliferation and incomplete vascular formation, a hypoxic
microenvironment (HME) often arises, thereby triggering the activation of HIFs. The activated HIFs regulate the transcription of downstream RNA,
which participate in key aspects of cancer progression, including tumor angiogenesis, metabolic reprogramming, tumor cell proliferation, immune
evasion, and resistance to therapies. As a result, the tumor is able to survive and continue to progress in hypoxic and other unfavorable conditions.

the production of Cyr61/CCN1 in HemECs in a time-dependent
manner, and this upregulation further enhances angiogenesis by
inducing VEGFA in HemSCs (hemangioma-derived stem cells).
Additionally, Ritter et al. observed the presence of multiple myeloid
cells in proliferative IH, which have the ability to differentiate into
macrophages, mast cells, and lymphocytes (Ritter et al., 2006).
Under hypoxic conditions, these myeloid cells secrete angiogenic
factors such as VEGF and IGF-2, further promoting angiogenesis
(Ritter et al., 2006; Tan et al., 2015).

In KS, substantial evidence indicates that the stabilization of
HIFs promotes the elevation of paracrine angiogenic factors, thereby
driving abnormal angiogenesis (Catrina et al., 2006; Shin et al.,
2008; Jham et al., 2011). Following KSHV infection of ECs, the
transcriptional activity of HIF-1α and HIF-2α is enhanced, even
under normoxic conditions. Additionally, both latent and lytic
KSHV proteins—such as Latency-Associated Nuclear Antigen 1
(LANA1), viral Interferon Regulatory Factor 3 (vIRF3), and viral G
Protein-Coupled Receptor (vGPCR)—upregulate the expression of
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FIGURE 4
Hypoxia-Driven Angiogenesis in Tumors. Under hypoxic conditions, HIF-1α is upregulated and activates target genes such as VEGF, PDGF, EGF, and
FGF/HGF/IGF. These target genes initiate angiogenesis through various signaling pathways.

HIFwithin the cells.This, in turn, further increases the levels ofHIF-
related angiogenic factors and cytokines, including VEGF, PDGF,
Transforming Growth Factor α (TGFα), Transforming Growth
Factor β (TGFβ), Angiopoietin 2 (ANGPT2), and Angiopoietin-
Like Protein 4 (ANGPTL4) (Cai Q.-L. et al., 2006; Sodhi et al.,
2006; Shin et al., 2008; Jham et al., 2011). These factors bind to
their respective receptors on adjacent endothelial cells, activating
the mTOR signaling pathway, thereby promoting the upregulation
of HIF expression and enhancing HIF-1α signaling, which in turn
facilitates the growth of KS tumors (Ma et al., 2010; Jham et al.,
2011). Jham et al. found that inhibiting paracrine activation of
mTOR was sufficient to suppress the upregulation of HIF within
these cells and eliminate their ability to promote tumor formation
in vivo (Jham et al., 2011).

Due to the rarity of AS, the availability of tumor samples is
extremely limited, and thus, molecular studies on angiosarcoma
are relatively scarce. Existing research primarily relies on
human tumor cell lines, such as ASM and ISO-HAS, which are
derived from samples of advanced scalp cutaneous angiosarcoma
patients. A study by Yang et al. found that both of these tumor
cell lines exhibited significant increases in molecules such as
angiogenin, coagulation factor III, FGF1, FGF2, HGF, urokinase-
type plasminogen activator (uPA), and VEGF (Young et al.,
2014). Furthermore, Azzariti et al. extracted primary cell lines
from radiation-induced breast angiosarcoma and, after 48 h of
culture, detected the expression of VEGFR2 and VEGFR1 in AS
cells, with a higher expression level of VEGFR2 (Azzariti et al.,

2014). After treatment with Bevacizumab (anti-VEGF antibody),
VEGF levels remained low for 3 days post-treatment, showing a
better response than tyrosine kinase inhibitors (TKI). Therefore,
anti-angiogenic therapy shows promising clinical potential in the
treatment of AS.

6 Metabolic reprogramming in
vascular tumors

6.1 Metabolic reprogramming in tumors

Under normal physiological conditions, the body’s energy
supply primarily relies on oxidative phosphorylation (OXPHOS).
Glucose is broken down into pyruvate through glycolysis, and
then pyruvate is converted into acetyl-CoA, which enters the
tricarboxylic acid cycle (TCA) to produce the electron donor
NADH. These electrons are transferred through the mitochondrial
respiratory chain and ultimately passed to oxygen (O2), generating
adenosine triphosphate (ATP) through OXPHOS, providing energy
to support cell growth and proliferation (Figure 5A). However, in
tumors, due to the presence of a HME, hypoxia-inducible factor
HIF-1α is activated, leading to significantmetabolic reprogramming
(Tu et al., 2021). HIF-1α supports tumor cell adaptation to
hypoxic conditions by regulating several key enzymes in glucose
metabolism (Figure 5B). First, HIF-1α upregulates the expression
of SLC2A1 and SLC2A3, which encode glucose transporters
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FIGURE 5
Metabolic Reprogramming in Tumors. (A) Under normxia, glucose is broken down into pyruvate through glycolysis. The pyruvate is then converted into
acetyl-CoA, which enters the tricarboxylic acid cycle (TCA) to produce the electron donor NADH. These electrons are transferred through the
mitochondrial respiratory chain and ultimately passed to oxygen (O2), generating adenosine triphosphate (ATP) through oxidative phosphorylation. (B)
Under hypoxia, HIF-1α is activated, regulating downstream target genes and leading to an increase in glycolysis and/or a decrease in oxidative
phosphorylation. Genes or pathways highlighted in red: upregulated by HIF-1α. Genes or pathways highlighted in blue: downregulated by HIF-1α.

GLUT1 and GLUT3, enhancing glucose uptake to meet the high
demand for glucose due to the rapid proliferation of tumor cells
(Sebestyén et al., 2021). Second, HIF-1α increases the expression
of pyruvate dehydrogenase kinase 1 (PDK1), which inhibits the
activity of pyruvate dehydrogenase (PDH), thereby preventing
pyruvate from being converted into acetyl-CoA and reducing the
accumulation of reactive oxygen species (ROS) in themitochondria,
thus protecting cells from hypoxia-induced apoptosis (Korotchkina
and Patel, 1995; Korotchkina and Patel, 2001). Additionally, HIF-
1α upregulates the expression of lactate dehydrogenase A (LDHA),
promoting the conversion of pyruvate to lactate (Semenza et al.,
1996; Le et al., 2010; Ma et al., 2014). This conversion shifts
tumor cell metabolism fromoxidative phosphorylation to glycolysis,
generating more energy and intermediate metabolites to support
cell proliferation. During glycolysis, 3-phosphoglycerate (3PG)
enters the serine synthesis pathway (SSP) to produce serine
(Bao and Wong, 2021). Serine then enters the folate cycle,
providing nicotinamide adenine dinucleotide phosphate (NADPH)
to further neutralize ROS and protect the cells from oxidative
stress. These metabolic changes result in tumor cells exhibiting an
aerobic glycolysis phenotype (Warburg effect), even under aerobic
conditions (Parks et al., 2017). In other words, tumor cells primarily
rely on glycolysis to generate energy, supporting their rapid growth,
proliferation, and survival. Therefore, HIF-1α plays a key role in
the metabolic reprogramming of tumor cells, helping them adapt
to the harsh hypoxic environment and sustain their proliferative
capacity.

6.2 Metabolic shifts in vascular tumors

Therole ofmetabolic reprogramming in IHhas gradually gained
attention, particularly the alterations in the glycolytic pathway. Chen
et al. found that glycolysis-associated molecules, such as GLUT1,
hexokinase 2 (HK2), phosphofructokinase 2/6-phosphofructo-2-
kinase (PFKFB3), pyruvate kinase M2 (PKM2), and LDHA, were
significantly more highly expressed at both the mRNA and protein
levels in HemECs compared to human umbilical vein endothelial
cells (HUVECs) (Chen et al., 2020). Moreover, HemECs consumed
glucose at higher rates. Inhibition of these glycolysis-associated
molecules significantly reduced the proliferation, migration, and
tube formation abilities of HemECs. Mei et al. found that lncRNA
MCM3AP-AS1 promoted the progression of IH by upregulating
glycolysis-related genes (such as GLUT1, LDHA, and HK2) through
the miR-138-5p/HIF-1α axis (Mei et al., 2021). Yang et al. reported
that PFKFB3was expressed at higher levels in the proliferative phase
of IH than in the regressive phase, and its inhibition significantly
reduced tumor growth and angiogenesis in IH, highlighting
PFKFB3 as a potential new therapeutic target for IH (Yang et al.,
2023). Li et al. demonstrated that OTUB1 promoted glycolysis
and angiogenesis in HemECs by deubiquitinating TGFBI in a
catalytic-independent manner, further emphasizing the role of
glycolysis in angiogenesis in IH (Li et al., 2023). Glycolysis plays
a central role in the metabolic reprogramming of IH, involving
multiplemolecules and signaling pathways, and targeting glycolysis-
associated molecules provides new potential strategies for the
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treatment of IH. At the same time, some studies also suggest
that lipid metabolism plays an important role in the hypoxia-
regulated process in IH. Jiang et al. showed that apolipoprotein
A-I binding protein (AIBP) regulates cholesterol metabolism and
inhibits hypoxia-induced activation of HIF-1α, thereby reducing
angiogenesis in IH, suggesting AIBP as a potential therapeutic
target for IH (Jiang et al., 2024).

After KSHV infection, the metabolic activity of infected
cells is reprogrammed to favor their persistence, reactivation,
and the development of KS (Singh et al., 2022). Singh et al.
demonstrated that this metabolic reprogramming includes an
increased dependence on glucose, enhanced glucose uptake,
and elevated lactate production (Singh et al., 2022; Davis et al.,
2023). These changes are partly mediated through HIF-1α,
which, when upregulated, leads to the altered expression of
key metabolic enzymes, particularly the glucose transporter
GLUT1 (Shrestha et al., 2017). Further studies by Ma et al.
showed that the metabolic effector of HIF-1, pyruvate kinase
M2 (PKM2), one of the isoforms of the kinase involved in the
final step reaction of glycolysis, is upregulated in ECs infected
with KSHV, thereby mimicking the Warburg effect commonly
seen in tumors (Li et al., 2014; Ma et al., 2015). Additionally,
PKM2 regulates the KS angiogenic phenotype by acting as a
coactivator of HIF-1 and increasing the expression of HIF-1-
induced angiogenic factors, such as VEGF (Luo and Semenza,
2012). Inhibition of PKM2 expression not only downregulates
the Warburg effect but also significantly suppresses KS-associated
angiogenesis, positioning PKM2 as a potential therapeutic
target for KS.

7 Therapeutic targets in vascular
tumors

Based on the mechanisms outlined above, several drugs
related to hypoxia-induced pathways have already entered
clinical trials (Table 2).

7.1 β-Blockers

Propranolol is a non-selective β1 and β2 adrenergic receptor
(ADRB1-2) antagonist initially used for the treatment of
cardiovascular diseases. In 2008, Léauté-Labrèze et al. discovered
that propranolol could induce apoptosis in capillary ECs,
demonstrating its potential as an anti-angiogenic agent (Léauté-
Labrèze et al., 2008). Based on this finding, they conducted
clinical trials in 11 patients with IH. Following this, a larger
randomized controlled trial (NCT01056341, n = 460) demonstrated
that administering propranolol at a dosage of 3 mg/kg/day led
to complete or near-complete regression in 60% of patients with
IH. When started early during the proliferative phase, IH typically
regressed within 6 months. After discontinuing the treatment, the
recurrence rate was around 10% (Léauté-Labrèze et al., 2015).
In addition, propranolol has also shown promising efficacy in
the treatment of KHE. A study by Li et al. demonstrated that a
dosage of 2 mg/kg/day of propranolol was effective in treating
cutaneous KHE, with no severe adverse effects observed and a high

level of safety during long-term treatment (Wei et al., 2022). Case
reports have also suggested that oral propranolol, when combined
with external therapies, can provide adjunctive benefits for KHE
management, further supporting its therapeutic potential in this
vascular tumor (Dang and Ren, 2024). Due to the exceedingly low
incidence of KHE, clinical trials assessing the efficacy of propranolol
in this context have not yet been undertaken. Fortunately, clinical
investigations exploring the use of propranolol in the treatment of
KS andAngiosarcomaAS have been initiated (Heinhuis et al., 2020).
At the time of writing this review, these trials remain ongoing.

Currently, the precise mechanisms underlying the use
of propranolol in the treatment of vascular tumors remain
incompletely elucidated. Potential mechanisms related to hypoxia
induction include a significant reduction in VEGFA levels in
the blood of IH patients treated with propranolol, which may
occur through the downregulation of HIFs(Lorusso et al., 2022;
Makkeyah et al., 2022). Additionally, propranolol may exert its
effects through the regulation ofmetabolic reprogramming. Existing
studies have shown that propranolol reduces the production
of pyruvate and lactate during glycolysis by downregulating
HK2 activity, lowering glucose-6-phosphate levels, without
affecting fructose-1,6-bisphosphate concentration, thus altering
the energy supply in tumor lesions (Xiang et al., 2024;
Leonard, 1972; Kang et al., 2014). In summary, propranolol, by
modulating hypoxic responses and metabolic reprogramming, may
play a significant role in the treatment of vascular tumors.

In addition to propranolol, β-blockers currently undergoing
clinical trials include Timolol, Nadolol, Atenolol, and Acebutolol.
In a clinical trial involving 76 children (NCT02913612), the topical
application of 0.5% Timolol showed significant efficacy, but it was
only effective for small, thin IH (Drolet et al., 2020). As the thickness
of the IH increased, the treatment effect became less pronounced. Ji
et al. conducted a comparison of propranolol and Atenolol for the
treatment of IH (NCT02342275) (Ji et al., 2021).The efficacy of both
treatments was similar, but adverse reactions were less common in
the Atenolol group. These novel β-blockers may become a first-line
treatment for IH in the future, but their mechanisms of action have
not been thoroughly investigated.

7.2 Sirolimus

HIF-1α is a downstream target of the mTOR signaling pathway,
wheremTOR signaling can stabilize and enhance the transcriptional
activity of HIF-1α (Wang et al., 2024). Sirolimus can target mTOR
to inhibit HIF-1α and its downstream molecules, such as VEGF. In
vascular tumors, sirolimus is widely used in the treatment of KHE
(Qiu et al., 2025). Retrospective studies have shown that, regardless
of the presence or absence of KMP, sirolimus achieves an overall
efficacy rate of over 90% in patients with KHE (Wang Z. et al., 2019;
Borst et al., 2024). Multiple prospective studies and randomized
controlled trials (RCTs) have also confirmed this (Adams et al.,
2016; Freixo et al., 2020; Ji et al., 2022). However, it remains
uncertain whether sirolimus exerts its therapeutic effect through
the HIFs pathway. Moreover, several clinical trials have started
exploring the use of sirolimus for the treatment of Infantile Hepatic
Hemangioendothelioma (IHHE) and KS.
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TABLE 2 Therapeutic targets in vascular tumors: Clinical trials related to hypoxia-induced pathways.

Molecular
target

Trial ID Drug Applicable
type

Status Phase Start Date Refs

β-receptors

NCT06798363 Propranolol Ulcerated IH Not yet recruiting I/II 2025 /

NCT04684667 Propranolol IH Unknown status II 2020 /

2014-005555-80 Propranolol IH Completed III 2015 /

NCT01512173 Propranolol IH Completed II 2012 /

2010-023488-16 Propranolol IH Completed III 2011 /

2011-003144-50 Propranolol IH Completed II 2011 /

NCT01056341 Propranolol IH Completed II/III 2010 Léauté-
Labrèze et al.

(2015)

NCT04651049 Propranolol IH Completed / 2010 /

NCT01072045 Propranolol IH Completed II 2010 /

NCT00967226 Propranolol IH Completed II 2009 /

2009-013262-84 Propranolol IH Completed II/III 2009 /

NCT01211080 Propranolol IH Completed / 2008 /

NCT06677853 Timolol IH Completed II/III 2020 /

NCT04288700 Timolol IH Unknown status IV 2019 /

NCT02913612 Timolol IH Completed II 2017 Drolet et al.
(2020)

NCT02145884 Timolol IH Completed II 2014 /

NCT02731287 Timolol IH Completed II 2014 /

2013-005199-17 Timolol IH Completed III 2014 /

NCT01434849 Timolol IH Completed I 2012 /

NCT01685398 Timolol IH Completed III 2012 /

NCT01408056 Timolol Ulcerated IH Withdrawn II 2011 /

NCT01147601 Timolol IH Completed I 2010 /

NCT02505971 Nadolol IH Completed III 2015 /

NCT01010308 Nadolol IH Completed II 2009 /

NCT03237637 Atenolol IH Unknown status III 2017 /

NCT02342275 Atenolol IH Completed III 2013 Ji et al. (2021)

2011-004145-41 Acebutolol IH Ongoing II 2013 /

NCT01743885 Acebutolol IH Terminated III 2012 /

NCT06445166 Propranolol KS Not yet recruiting II 2024 /

NCT05797662 Propranolol KS Not yet recruiting II 2025 /

(Continued on the following page)
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TABLE 2 (Continued) Therapeutic targets in vascular tumors: Clinical trials related to hypoxia-induced pathways.

Molecular
target

Trial ID Drug Applicable
type

Status Phase Start Date Refs

NCT05961761 Propranolol AS Recruiting / 2023 /

2021-003788-82 Propranolol AS Trial now
transitioned

II 2021 /

NCT04518124 Propranolol AS Completed II 2020 Heinhuis et al.
(2020)

2019-002947-41 Propranolol AS Completed II 2019 Heinhuis et al.
(2020)

NCT02732678 Propranolol AS Unknown I/II 2016 /

mTOR

NCT05324384 Sirolimus KHE Recruiting II 2022 /

NCT04775173 Sirolimus KHE Completed II 2021 /

NCT04448873 Sirolimus KHE Completed IV 2020 /

NCT04077515 Sirolimus KHE Completed IV 2019 /

NCT03188068 Sirolimus KHE Completed II 2017 /

NCT04406870 Sirolimus IHHE Not yet recruiting IV 2020 /

NCT01412515 Everolimus KS Terminated II 2008 /

VEGF

NCT01296815 Bevacizumab KS Completed II 2010 /

NCT00923936 Bevacizumab KS Completed II 2009 /

NCT00055237 Bevacizumab KS Completed II 2003 /

NCT01303497 Bevacizumab AS Completed II 2011 Lebellec et al.
(2018)

NCT01055028 Bevacizumab AS Terminated II 2010 /

NCT00887809 Bevacizumab AS Completed II 2009 /

NCT00288015 Bevacizumab AS Completed II 2006 /

2004-004546-41 Bevacizumab AS Ongoing II 2005 /

Compilation of the interventional clinical trials registered at the U.S. National Library of Medicine (https://clinicaltrials.gov, accessed on 8 February 2025) and in the EU Clinical Trials Register
(https://www.clinicaltrialsregister.eu, accessed on 8 February 2025). Abbreviation: IH, infantile hemangioma; KHE, kaposiform hemangioendothelioma; IHHE, infantile hepatic
hemangioendothelioma; KS, kaposi sarcoma; AS, angiosarcoma.

7.3 Bevacizumab

Bevacizumab (Avastin® , F. Hoffmann-La Roche AG,
Switzerland) is a humanmonoclonal antibody targetingVEGFA and
represents the first approved anti-angiogenic agent (Garcia et al.,
2020). Bevacizumab exerts its therapeutic effect by binding to
VEGFA, thereby preventing its interaction with the VEGFR2
receptor. This mechanism inhibits the activation of the VEGF
signaling pathway, blocks the formation of new tumor blood vessels,
reduces the tumor’s blood supply, and consequently suppresses
tumor growth and metastasis. Currently, Bevacizumab has been
approved for the treatment of various solid tumors, including

colorectal cancer, non-small cell lung cancer, ovarian cancer, and
renal cell carcinoma (Des Guetz et al., 2006; Seto et al., 2006;
Paley et al., 1997; Gao and McDermott, 2018).

In addition to its widespread application in common solid
tumors, Bevacizumab has also been investigated in clinical trials
for the treatment of vascular tumors, particularly KS and AS. For
example, in a trial (NCT00923936) evaluating the combination
of liposomal doxorubicin and Bevacizumab for the treatment of
advanced KS in adult patients, although no cases of complete
remission were observed, relatively favorable outcomes were
achieved in HIV-associated KS patients. Further research, such as
the trial in NCT00055237, assessed the efficacy of Bevacizumab
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in both HIV-positive and HIV-negative KS patients. In HIV-
positive patients, 31% (range: 11%–58.7%) of patients showed
either complete or partial remission. However, in clinical trials
evaluating the treatment of AS, Bevacizumab has not demonstrated
significant efficacy. A study by Lebellec et al. (NCT01303497)
assessed the combination of Bevacizumab and paclitaxel for the
treatment of AS (Lebellec et al., 2018). The results indicated that
although Bevacizumab was able to significantly reduce tumor
burden in the short term, it did not lead to a significant improvement
in progression-free survival (PFS). This suggests that the long-term
efficacy of Bevacizumab in angiosarcoma remains limited.

8 Summary

In recent decades, considerable advancements have been made
in elucidating the signaling pathways mediated by hypoxia. This has
also been the case in the study of vascular tumors, where hypoxia
represents a pivotal characteristic of the tumor microenvironment.
Hypoxia induces the stabilization of HIF-1α, which subsequently
activates key pro-angiogenic pathways, including the upregulation
of VEGF. This leads to the formation of aberrant and dysfunctional
blood vessels, which further exacerbate the hypoxic conditions
within the tumor. In parallel, hypoxia triggers a metabolic shift
toward enhanced glycolysis, even in the presence of oxygen, a
hallmark of the Warburg effect. This metabolic adaptation not only
supports tumor cell survival and proliferation but also contributes
to the invasive potential of tumors. Targeting the hypoxia-driven
processes of angiogenesis and metabolic reprogramming holds
significant promise for the treatment of vascular tumors. However,
these strategies remain primarily in the preclinical stage, and
further research is required to assess their clinical feasibility and
therapeutic efficacy.
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