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The objective of organoid research is to develop in vitro models that accurately
replicate the microenvironment of tissues and organs in vivo. Although
techniques for culturing retinal organoids (ROs) have advanced significantly,
they still fall short of incorporating all cell types necessary for maintaining
retinal homeostasis, particularly immune cells like microglia. Standardizing the
inclusion of immune cells in RO cultures would greatly enhance research into
the mechanisms underlying retinal diseases and the discovery of therapeutic
targets. This review examines recent advancements in co-culturing ROs with
immune cells tomimic the physiological and pathologicalmicroenvironments of
the retina, focusing on tissue structure and function. Furthermore, it emphasizes
the importance of cutting-edge organoid technologies, such as microfluidics
and organ-on-chip systems, in propelling research in this field. The goal is to
equip researchers with a more profound understanding of microglial ROs and
their potential applications in scientific investigations.
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1 Introduction

1.1 Generation of organoids

Current disease research heavily relies on animal models and human-derived cells.
However, the limited availability of human-derived cells means that our understanding
of retinal pathophysiology primarily stems from studies using animal models (Watson
and Lako, 2023). There are significant differences between animal and human cells, which
prevent animal models from fully replicating the onset and progression of human diseases.
For example, retinal resident immune cells, such as microglia, exhibit distinct mechanisms
in regulating neuroinflammation in humans compared to mice (Edler et al., 2021). When
induced by IFNγ, human microglia upregulate the expression of human leukocyte antigen,
a process that is not inhibited by TGFβ1 (Smith et al., 2013). In contrast, mouse microglia
increase the expression of major histocompatibility complex II (MHC II) proteins, a process
that is suppressed by TGFβ1 (O'Keefe et al., 1999). This underscores the advantages
of tissue models that mimic the human retinal microenvironment over animal models,
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which inherently possess physiological and functional differences.
Such considerations have spurred the development of organoids as
a superior research tool.

Organoids can be derived from either adult stem cells (aSCs) or
pluripotent stem cells (PSCs) (Hautefort et al., 2022; Cameron et al.,
2024), each with distinct preparation methods and characteristics.
Organoids derived from aSCs are generated from tissue samples
obtained from healthy individuals or patients, preserving the
genetic and epigenetic backgrounds of the donors to a significant
extent (Treveil et al., 2020). Conversely, PSC-derived organoids
are developed from embryonic pluripotent stem cells (ePSCs)
or induced pluripotent stem cells (iPSCs), and they tend to
exhibit less specific retention of donor characteristics (Jowett et al.,
2022). Unlike ex vivo organ cultures obtained through biopsies or
resections, which have limited lifespans due to the absence of blood
supply, organoids grown using 2D or 3D culture techniques can
self-renew, self-organize, and differentiate into various cell types
(Choi et al., 2023). These organoids form miniature organ-like
structures that partially recapitulate the cellular composition, spatial
organization, and functions of real organs, making them an ideal
model for studying pathophysiological changes in human tissues
and organs (Papp et al., 2024). Additionally, the development of
such in vitro alternatives significantly reduces the number of animals
used in preclinical research and offers potential applications in
drug screening, organ transplantation, and personalized therapies.
Existing studies have successfully developed organoid models for
various organs, including the brain (Smirnova and Hartung, 2024;
Andrews and Kriegstein, 2022), heart (Sahara, 2023; Richards et al.,
2020), lungs (Miller et al., 2019; Joo et al., 2024), liver (Fang et al.,
2024; Liu et al., 2023), kidneys (Yousef Yengej et al., 2020;
Grassi et al., 2019), pancreas (Casamitjana et al., 2022; Chen et al.,
2024), stomach (Chakrabarti et al., 2021; Cherne et al., 2021), and
intestines (Read et al., 2022; Serra et al., 2019). This article focuses
specifically on retinal organoids (ROs) for detailed discussion.

In 2011, Japanese scientist Eiraku successfully induced ePSCs
to generate 3D-ROs for the first time (Eiraku et al., 2011).
Following this groundbreaking study, the culture conditions and
differentiation efficiency of ROs have been continuously refined.
These advancements have led to the development of ROs containing
photoreceptor cells, thereby enhancing their functional complexity
(Pan et al., 2020). Furthermore, tissue structures that better simulate
the retinalmicroenvironment have been increasingly integrated into
these models in recent years (Zhang and Jin, 2021; Cowan et al.,
2020; Kim et al., 2019). The creation of organoids represents a
revolutionary platform for studying human retinal diseases and
development. ROs not only replicate the retinal developmental
process but also exhibit specific pathological features of diseases,
providing an experimental model that closely mimics the real
microenvironment in vivo (Usui-Ouchi et al., 2023).

1.2 Characteristics of ROs

The foundation of ROs typically originates from PSCs. By
applying specific signaling molecules to PSC “seeds”, these cells
can be induced to differentiate into neuroectodermal tissues and
self-organize into organoids. This process is driven by the adhesive
forces of retinal progenitor cells (RPCs) and actomyosin-mediated

mechanical forces, ultimately resulting in the formation of well-
structured organoids (Lowe et al., 2016).The differentiation of RPCs
within ROs is further regulated by specific genes and signaling
pathways. For instance, research by Cuevas et al. demonstrated
that editing the NRL gene can guide RPCs to differentiate into
S-cone-like cells while inhibiting their differentiation into rod
cells, thereby highlighting the critical role of genetic switches in
organoid differentiation (Cuevas et al., 2021). Additionally, Brooks
et al. showed that the inclusion of factors such as docosahexaenoic
acid and fibroblast growth factor 1 significantly enhances the
maturation of photoreceptors, including cone cells (Brooks et al.,
2019). Current RO culture methods can now effectively induce and
enrich specific retinal cell types (Bell et al., 2020; Chew et al., 2022),
such as photoreceptors, retinal ganglion cells (RGCs), bipolar cells,
horizontal cells, astrocytes, and Müller glia (Zhang and Jin, 2021;
Sun et al., 2023; Dorgau et al., 2022).

Photoreceptors, including rods and cones, are essential for
capturing photons and converting them into electrical signals.
Rod cells facilitate black-and-white vision in low-light conditions,
while cone cells enable color vision in bright light (Nazarenko
and Didenko, 2023). Successfully inducing photoreceptors is vital
for studying retinal phototransduction mechanisms and developing
treatments for degenerative retinal diseases (Hussey et al., 2022).
RGCs serve as the output neurons of the retina, with their axons
forming the optic nerve to transmit visual information to the
brain’s visual centers (Sanie-Jahromi et al., 2022). The successful
differentiation of RGCs is crucial for researching optic nerve
diseases, such as glaucoma, and can also provide a model for neural
regeneration studies (Subramani et al., 2023). Bipolar cells, the
intermediate neurons of the retina, connect photoreceptors and
RGCs, integrating signals from photoreceptors and relaying them
to RGCs (Ganzen et al., 2024). The presence of bipolar cells in
ROs is essential for understanding visual signal pathways and the
transmission of photoelectric signals (Ichinose and Habib, 2022).
Horizontal cells establish lateral connections among photoreceptors,
regulating retinal light adaptation and contrast sensitivity. Their
inclusion enhances the comprehensiveness of functional studies
on retinal neural networks (Castillo García and Urdapilleta, 2022).
Astrocytes andMüller cells, both types of retinal glial cells, play a role
in regulating neuronal metabolism within the retina, contributing
to a more systematic understanding of the mechanisms underlying
retinal diseases (Shinozaki et al., 2023; Chen et al., 2022).

To enrich the diversity of cell types and better simulate the
retinal environment, some research teams have developed co-
culture systems that combine ROs with retinal pigment epithelium
(RPE) cells (Akhtar et al., 2019; Su et al., 2022; Mathivanan et al.,
2015).Notably, the inclusion of RPE cells has been shown to promote
the enrichment and accelerate the maturation of photoreceptor
progenitor cells, underscoring the importance of cellular and
structural diversity in establishing successful in vitro models. In
addition to exogenous co-culture methods, ROs containing RPE
cells can also be generated through spontaneous differentiation. In
2012, Nakano’s team published a study demonstrating that ePSCs,
when cultured in a three-dimensional system, could spontaneously
form optic vesicle-like structures and further differentiate into
functional RPE cells (Nakano et al., 2012).

Currently, existing RO models cannot fully replicate the
complexity of the in vivo environment (Fathi et al., 2021). The
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potential for incorporating other missing cell types and structures
through similar co-culture techniques, as well as the possibility
of achieving functional restoration, remains an area for further
exploration (Martinelli et al., 2022).

1.3 Limitations of current RO culture

Due to the directed differentiation process, ROs are derived
from neuroectoderm and lack various cell types that originate
from different germ layers, such as mesoderm-derived vascular
endothelial cells and yolk sac-derived microglia (Ginhoux et al.,
2010; Kierdorf et al., 2013; Schulz et al., 2012; Hoeffel and
Ginhoux, 2018). Vascular endothelial cells are essential components
of retinal blood vessels, responsible for delivering oxygen and
nutrients to photoreceptors and other retinal neurons. The
absence of a vascular system in organoids can restrict the
diffusion of oxygen and nutrients, leading to reduced cellular
function or even cell death in deeper layers (Zhao et al., 2021a).
Moreover, vascular endothelial cells are crucial for forming
the blood-retinal barrier (BRB). Without these cells, ROs
cannot replicate the functional properties of the BRB, which
significantly limits the study of related diseases (O'Leary and
Campbell, 2023).

In addition to vascular endothelial cells, microglia play an
indispensable role in maintaining retinal homeostasis. As the
predominant immune cells in the retina, microglia monitor neural
tissue health, clear debris, and regulate inflammatory responses
under normal physiological conditions. The lack of microglia in
ROs complicates the replication of the immune environment and
responses observed in vivo. This deficiency not only impedes the
differentiation and maturation of other retinal cells (Taylor et al.,
2020; Noel et al., 2017) but may also contribute to the limited
long-term viability of inner RO layers (Sridhar et al., 2020). By
incorporating immune cells, organoids can more accurately mimic
the immune responses of the retina under both physiological and
pathological conditions, including neuroprotection, inflammation,
and tissue repair processes. Unlike traditional ROs, microglial
organoids can be utilized to model immune rejection in host-graft
interactions, screen immunomodulatory drugs, and assess the safety
of immunotherapies.

The retina is a unique immune-privileged site, characterized by
a specialized immune state that entails distinct immune response
mechanisms.The co-culture of immune cells, particularlymicroglia,
with traditional ROs, along with the methodological and functional
validation of this approach, has emerged as a significant focus of
current research.

2 Immune status of the retina

2.1 Mechanisms of “immune privilege” in
the retina

The eye exhibits a distinctive immune state referred to as
“immune privilege”, which enables it to evade robust immune
responses when exposed to antigens. This mechanism is
crucial for maintaining the transparency of the visual axis

and safeguarding vision (Nieto-Aristizábal et al., 2022). It is
underpinned by both structural and functional elements.

Structurally, the blood-ocular barrier acts as a protective
barrier, formed by the non-fenestrated endothelial cells of the
iris and ciliary body, along with the retinal vascular endothelium
and RPE. Together, the latter two components create the BRB,
which effectively restricts the infiltration of immune cells and
inflammatory agents. Furthermore, the absence of a direct lymphatic
system in the eye inhibits the systemic recognition of antigens.

Functionally, the eye synthesizes immunomodulatory factors
such as IL-10, TGF-β, and PD-L1, which suppress the activation
of antigen-presenting cells (APCs) and effector T cells, thereby
reducing inflammatory responses. Given the retina’s highly sensitive
neural tissue and complex photoreceptor network, it necessitates
special protection to avert immune-mediated damage, making it a
vital aspect of the eye’s immune privilege (Keino et al., 2018).

While these mechanisms shield the eye from inflammation due
to external pathogens, autoimmune reactions, and trauma, they
are also essential in corneal and RPE transplantation, as well as
in managing autoimmune uveitis (Niederkorn, 2019). However,
the immunosuppressive nature of this “barrier” can become a
double-edged sword in chronic infections, such as viral retinitis,
and in cases of tumor growth or invasion. In such scenarios,
pathogens and tumor cells may escape swift recognition and
elimination, adversely affecting disease prognosis. Additionally,
under pathological conditions, the immune privilege of the retina
may be compromised, leading to the infiltration of inflammatory
cells and factors, which can result in retinal tissue damage and
neurodegenerative changes (Qiao et al., 2009).

2.2 Resident immune cells in the
physiological state

The retina contains a variety of resident immune cells,
with microglia being the most prominent. Additionally, smaller
populations of dendritic cells, astrocytes, Müller cells, and
macrophages are present (Fan et al., 2022). As an extension of
the central nervous system (CNS), microglia function as resident
immune cells in both the CNS and the retina (Usui-Ouchi et al.,
2023). In the adult eye, microglial renewal primarily occurs
through self-proliferation; however, under certain conditions, bone
marrow-derived cells can cross the blood-brain barrier (BBB) or
blood-retinal barrier (BRB) into the CNS and differentiate into
microglia (Jin et al., 2017). In a healthy eye, microglia constitute
approximately 0.3%–1.0% of retinal cells, performing essential
functions such as immune surveillance, synaptic remodeling,
neurotrophic support, vascular development, and debris clearance
(Lukowski et al., 2019; Silverman and Wong, 2018). Despite their
relatively low abundance, microglia are increasingly recognized as
crucial players in the pathogenesis of ocular diseases.

Under steady-state conditions, retinal microglia are mainly
localized in the inner plexiform layer (IPL) and outer plexiform
layer (OPL) (Santos et al., 2008), exhibiting a highly branched
morphology and long-term motility that enables them to
dynamically monitor the ocular environment (Silverman and
Wong, 2018). In response to localized injury, infection, or hypoxia,
microglia become activated and migrate purposefully to the outer
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nuclear layer (ONL), RPE, and subretinal space (Usui-Ouchi et al.,
2020). This activation is associated with a decline in neurotrophic
functions, increased cytokine secretion, and heightened phagocytic
activity (Cherry et al., 2014; Brown and Neher, 2014). The cytokines
released can induce resident glial cells to release neurotoxins
and recruit immune cells from outside the eye. Furthermore,
cytokines mediate crosstalk between microglia and Müller glia,
playing a critical role in regulating the adaptive response to
retinal injury (Wang et al., 2011).

Dendritic cells primarily originate from bone marrow
progenitors and migrate to the retina via blood circulation during
embryonic development, where they differentiate into dendritic
cells in response to local environmental stimuli (Ohteki et al.,
2021). These cells are predominantly located in the nerve fiber
layer (Zhao and Yu, 2024) and are involved in antigen presentation
and initiating immune responses by expressing MHC II. Under
physiological conditions, their expression remains low to prevent
unnecessary inflammation and maintain the immune privilege
of the retina (Xu et al., 2007). Astrocytes, which originate from
neuroepithelial progenitor cells, migrate into the retina along optic
nerve axons during embryonic development, gradually populating
the nerve fiber layer and providing structural support for the
vascular network and neurons (Zheng et al., 2022). Müller cells,
derived from RPCs within the optic cup, are among the last cell
types to differentiate in the retina, functioning as a “neuronal
scaffold” (Gao et al., 2021). Both astrocytes and Müller cells help
regulate immune and inflammatory responses by secreting TGF-
β and other anti-inflammatory molecules to suppress excessive
activation of T cells and microglia, thereby protecting neurons from
damage (Mochizuki et al., 2013). They also play a crucial role in
maintaining the integrity of the BRB, limiting the entry of external
pathogens and inflammatory factors into retinal tissue (He et al.,
2024). Meanwhile, macrophages residing in the outer retinal and
choroidal layers act as “cleaners”, responsible for clearing cellular
debris and maintaining retinal homeostasis (McMenamin et al.,
2019). During embryonic development, macrophages originate
from primitive hematopoietic stem cells (HSCs) in the yolk sac and
migrate to the retina as primitive macrophages. After colonization,
they further differentiate into microglia and resident macrophages
(Wu and Hirschi, 2020). Postnatally, retinal macrophages can
also arise from monocytes derived from the bone marrow
(Fige et al., 2022).

2.3 External immune cells under
pathological conditions

Mechanical injuries, infections, immune-mediated
inflammation, ischemia, and tumors can disrupt the BRB and
compromise immune privilege, facilitating the infiltration of
external immune cells, including neutrophils, monocytes, T cells
and B cells, into the retina (He et al., 2024). This recruitment and
the process of crossing the barrier are regulated by various factors.
For instance, during retinal inflammation, macrophages located
near retinal blood vessels release chemokines that attract external
immune cells (Sterling et al., 2024). Furthermore, the upregulation
of adhesion molecules such as ICAM-1 and P-selectin on vascular
endothelial cells enhances the adhesion and migration of immune

cells (Xu et al., 2003). Pro-inflammatory cytokines like TNF-α and
IL-1β increase BRB permeability by modulating the expression of
tight junction proteins in vascular endothelial cells (Bamforth et al.,
1997). In certain instances, RPE may serve as a “gateway” for
immune cell entry, as studies indicate that RPE expresses adhesion
molecules like VCAM-1, allowing monocytes to adhere and migrate
into retinal tissue (Benhar et al., 2016).

The types of immune cells recruited differ across various
pathological conditions. Mechanical injuries, such as ocular trauma
or retinal reattachment surgery, predominantly attract neutrophils
and macrophages (Azzam et al., 2024). Inflammatory responses,
including infectious uveitis caused by bacteria, fungi, viruses,
or parasites (Zinkernagel et al., 2013), as well as autoimmune
uveitis (Okunuki et al., 2019), can lead to the infiltration of
T cells, B cells, macrophages, and neutrophils into the retina.
These infiltrating immune cells exacerbate inflammation and tissue
damage by releasing pro-inflammatory cytokines such as IFN-γ
and IL-1β. In systemic autoimmune diseases like systemic lupus
erythematosus or Sjögren’s syndrome, immune hyperactivation
can induce vasculitis and immune complex deposition, disrupting
the retinal vascular network and causing vascular leakage and
immune cell infiltration (McMenamin et al., 2019). In diabetic
retinopathy (DR), hyperglycemia triggers a low-grade chronic
inflammatory response that gradually damages the BRB, facilitating
the slow infiltration of monocytes and neutrophils into the retina.
This infiltration, coupled with the release of pro-inflammatory
factors like TNF-α and IL-6, exacerbates microvascular injury
and promotes neovascularization (Wang et al., 2023). These newly
formed blood vessels are often accompanied by further immune cell
infiltration (Karlstetter et al., 2015). Tumors can also compromise
the BRB, eliciting external immune responses (Zhu et al., 2023).
For instance, in retinoblastoma (RB), external immune cells such
as T cells, natural killer (NK) cells, and macrophages infiltrate
the retina to target tumor cells, thereby limiting tumor growth
and spread (Pascual-Pasto et al., 2024).

In retinal diseases, infiltrating immune cells and resident
immune cells collaborate, collectively driving the onset and
progression of the disease (Figure 1).

3 Related retinal diseases involving
immune cells

3.1 Related retinal diseases involving
microglia

In the retina, microglia serve as the primary resident
immune cells (Fan et al., 2022), continuously monitoring their
environment and interacting with other retinal cells to uphold
microenvironmental homeostasis. Under normal physiological
conditions, they offer immune protection to the posterior eye,
including the neural retina. When stimulated externally, microglia
are initially activated to induce inflammation. As the process
of retinal repair advances, they shift to a reparative, anti-
inflammatory state, skillfully balancing pro-inflammatory and
anti-inflammatory responses to promote tissue healing (Patel and
Lamba, 2023). However, in pathological conditions, microglia
may become depleted or excessively activated, leading to the
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FIGURE 1
Distribution of immune cells within retina and composition of BRB. The retina harbors a group of resident immune cells that work together to maintain
the stability of the internal environment. Additionally, the retinal vessels and their surrounding tissues form the inner BRB, while the RPE and choroid
create the outer BRB, both of which provide structural support for the eye’s “immune privilege” under physiological conditions. (RNFL: retinal nerve
fiber layer, RGCL: retinal ganglion cell layer, IPL: inner plexiform layer, INL: inner nuclear layer, OPL: outer plexiform layer, ONL: outer nuclear layer,
RPE: retinal pigment epithelium, BRB: blood-retinal barrier).
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production of pro-inflammatory neurotoxic cytokines or pro-
angiogenic factors. They may also phagocytose viable neural
cells, resulting in neurofunctional impairment (Ryan et al.,
2023). Microglia have been recognized as key players in the
onset and progression of various retinal diseases (Silverman
and Wong, 2018; Rathnasamy et al., 2019), such as age-related
macular degeneration (AMD) (Rashid et al., 2019; Fletcher, 2020),
retinitis pigmentosa (RP) (O'Koren et al., 2019; Gallenga et al.,
2021), uveitis (Rashid et al., 2019; Huang et al., 2024), DR
(Jin et al., 2017; Marcinkowska et al., 2022), retinal vein occlusion
(RVO) (Marcinkowska et al., 2022; Tang et al., 2022), and RB
(Xu et al., 2022; Barresi et al., 2024).

3.1.1 Degeneration-related diseases
AMD is a chronic degenerative retinal disease predominantly

found in individuals over 50 years old. It ranks as a leading cause
of vision loss among older adults and is marked by progressive
macular atrophy or choroidal neovascularization (CNV) in the
macular region, observable through fundoscopic examination.
Pathological findings indicate that degeneration primarily affects the
RPE, Bruch’s membrane, and the photoreceptor layer (Barresi et al.,
2024). Early research has demonstrated that microglia accumulate
in the subretinal space of AMD patients, particularly in regions
of retinal degeneration and CNV. These microglia exhibit
rhodopsin-positive cytoplasmic inclusions, suggesting they have
phagocytosed debris from rod photoreceptors (Zhang and Wong,
2021). However, instead of protecting the retina, this process may
worsen tissue damage by harming neighboring photoreceptors.
The debris can activate microglia directly, further escalating
retinal inflammation and advancing geographic atrophy in the
macula (Gupta et al., 2003). Beyond phagocytosis, microglia also
contribute to photoreceptor death by releasing pro-inflammatory
cytokines such as TNF-α and IL-1β, along with complement
component C3 (Zabel et al., 2016; Bravo-Gil et al., 2017).
Collectively, these findings underscore that microglial dysfunction
may play a pivotal role in exacerbating retinal degeneration
and inflammation.

RP is a hereditary retinal degenerative disease, most often
inherited in an autosomal recessive manner (Bravo-Gil et al.,
2017), with a global prevalence of approximately one in 4,000
individuals (Verbakel et al., 2018). Clinically, RP is characterized
by night blindness, progressive narrowing of the visual field, and
eventual loss of central vision. Its primary pathological features
include the degeneration of photoreceptor cells and RPE, along
with the distinctive “bone spicule” pigmentation (Beryozkin et al.,
2020). In RP, microglia express various chemokine receptors,
facilitating the mobilization and recruitment of monocytes through
chemokine-receptor interactions (Rutar et al., 2015). In Sennlaub’s
research, the CX3CR1/CX3CL1 signaling pathway is crucial for
neuron protection and immune homeostasis in the retina under
normal conditions. In aged CX3CR1-deficient mice, however,
microglia abnormally accumulate in the subretinal space, leading to
photoreceptor degeneration (Sennlaub et al., 2013). Studies have also
indicated that in mouse models of Stargardt disease and RP, retinal
microglia-produced CCL3 (MIP-1α) can worsen inflammation and
degeneration (Kohno et al., 2014). Research by Zhao and colleagues
revealed that in the rd10 model of RP, microglia accelerate retinal
degeneration by phagocytosing rod photoreceptors. This suggests

that inhibiting the phagocytic activity of microglia could slow
disease progression and offer neuroprotective benefits in certain
degenerative retinal diseases (Zhao et al., 2015). By transplanting
C-Kit+/SSEA4-RPCs into models of retinal degeneration, Zou’s
team discovered that microglial activation can be significantly
inhibited. This inhibition reduces gliosis and the production of
inflammatory mediators, fostering a healthier microenvironment
for transplanted cells and slowing the progression of retinal
degenerative diseases (Zou et al., 2019).

Alzheimer’s Disease (AD) is a neurodegenerative disorder
characterized by progressive cognitive decline. Beyond its effects on
the central nervous system, it can also lead to retinal degeneration,
resulting in a decrease in RGC numbers. Clinically, this is
evident through symptoms such as vision loss and visual field
defects. In some instances, retinal abnormalities may manifest
before the clinical symptoms of AD, positioning them as potential
early biomarkers for AD screening (Araya-Arriagada et al., 2021;
Liao et al., 2021). In our previous studies, we observed retinal
degeneration in the AD animal model APPswe/PS1ΔE9 double-
transgenicmice, primarily characterized by RGC loss andmicroglial
activation. The Nmethyl-D-aspartate (NMDA) receptor antagonist
memantine (MEM), a treatment for AD, has been shown to
exert neuroprotective effects on RGCs by inhibiting activated
microglia in the retina and modulating Müller cell responses
(Gao et al., 2015). (Figure 2)

Currently, most mechanistic studies on microglia are conducted
using animal models. However, certain genetic risk variants
associated with retinal degeneration, such as HTRA1, C2, and C3,
are exclusively expressed in human microglia (Gosselin et al., 2017).
Therefore, utilizing human-derived retinal organoids to simulate
the retinal environment is crucial for understanding the unique
characteristics and pathological responses of human microglia.

3.1.2 Autoimmune-related diseases
Abnormal activation of the immune system can disrupt immune

balance, leading to inflammation that targets the retina and choroid
(Wang et al., 2023). This process is typically mediated by immune
cells, with microglia from various origins potentially playing
opposing roles. Previous research has shown that resident microglia
tend to differentiate into the M1 phenotype, which exhibits pro-
inflammatory and neurotoxic characteristics. In contrast, bone
marrow-derived microglia are more likely to differentiate into the
M2 phenotype, providing protective effects on retinal neurons
(Jin et al., 2017; Jin et al., 2021).

Uveitis is a significant cause of blindness and can also
indicate systemic diseases. Retinal microglia play a crucial role
in the development of uveitis. Endotoxin-induced uveitis, a
well-established animal model of acute inflammatory uveitis,
demonstrates that following lipopolysaccharide (LPS) injection,
microglia are rapidly activated, infiltrate the photoreceptor layer,
and migrate to the retinal vasculature (Couturier et al., 2014).
Furthermore, in experimental autoimmune uveitis, the disease
appears to be primarily mediated by microglia, as leukocytes cannot
penetrate the BRB to infiltrate the retina (Okunuki et al., 2019).

Functional analysis of activated microglia reveals that their cell
membranes express various antigen markers, such as leukocyte and
macrophage antigens CD45 and CD68, indicating their potential
role in antigen presentation (Penfold et al., 1991; Lipski et al.,
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FIGURE 2
The role of microglia in retinal degeneration diseases. In physiological conditions, quiescent microglia in ramified shape regulate the immune
environment to prevent excessive inflammatory damage to the retina. However, in AMD, RP, and retinal degeneration caused by AD, activated microglia
transform into amoeboid shape and participate in the inflammatory response through various signaling pathways and molecular mechanisms. (AMD:
age-related macular degeneration, RP: retinitis pigmentosa, AD: Alzheimer’s Disease, SCF: stem cell facter, DAMPs: Damage-associated molecular
patterns, TLRs: Toll-like receptors, MEM: memantine, NMDA: Nmethyl-D-aspartate, TSPO: translocator protein).

2017). Additionally,microglia produce pro-inflammatory cytokines,
including TNF-α, IL-1β, IL-6, and CCL2, as well as the toxic
mediator nitric oxide (Sierra et al., 2014). Collectively, these
mediators contribute to the breakdown of the BRB, recruitment of
peripheral leukocytes, and permanent retinal damage (Colonna and
Butovsky, 2017; Kitaoka et al., 2006).

3.1.3 Ischemia-related diseases
The most prevalent ischemic retinal diseases include DR

and RVO(136, 137). DR is a significant complication of
diabetes, with its incidence rising over time. It is marked by
microvascular abnormalities, chronic inflammation, and retinal
neurodegeneration, making it a leading cause of vision impairment
and blindness (Zhan, 2023). RVO, the second most common retinal
vascular disease following DR, is categorized into central and
branch types. Clinically, RVO is characterized by venous occlusion,
retinal hemorrhage, and macular edema. Pathological changes
associated with RVO include blood flow obstruction, hypoxia, and
neovascularization (Yin et al., 2022).

In both animal models and human patients with DR, activation
and infiltration of microglia have been observed (Zeng et al.,
2008). Hyperglycemia directly stimulates microglia, enhancing
the expression of cytokines such as IL-1β, TNF-α, and vascular
endothelial growth factor (VEGF) (Kinuthia et al., 2020). The
accumulation of mediators like aldose reductase (Chang et al.,
2019), reactive dicarbonyls (Schlotterer et al., 2019), and advanced
glycation end-products (Schlotterer et al., 2019) further contributes
to microglial activation and intensifies inflammation. Additionally,
the proangiogenic factor angiotensin II can directly activate the
angiotensin type 1 receptor in microglia, playing a significant role
in retinal inflammation linked to DR (144).

In RVO, overactivated microglia not only secrete pro-
inflammatory cytokines but also release VEGF, which leads
to pathological neovascularization, exacerbating retinal edema
and vision loss (Checchin et al., 2006). During retinal
ischemia/reperfusion injury, activated microglia upregulate the
expression of C1q, contributing to retinal damage. Conversely, the
absence of C1q has been shown to suppress microglial activation
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and proliferation, thereby protecting RGCs and improving visual
function (Silverman et al., 2016). Furthermore, microglia are
believed to interact with peripheral macrophages to regulate retinal
hypoxia and maintain the integrity of the BRB(147). Through
the CX3CR1 signaling pathway, microglia can also interact with
vascular endothelial cells to regulate retinal vessel diameter and
local blood supply (Mills et al., 2021).

3.1.4 Tumor
RB is a malignant intraocular tumor predominantly affecting

children, resulting from genetic mutations in RPCs. It is
characterized by rapid tumor cell proliferation, aggressive invasion,
and significant impairment of visual function (Cruz-Gálvez et al.,
2022). Microglia play a pivotal role in both the initiation and
progression of RB by modulating the tumor microenvironment.
They contribute to local inflammation in tumor regions through
the secretion of pro-inflammatory cytokines and factors, which
in turn promote tumor growth and angiogenesis (Aires et al.,
2020). The activation of microglia is often stimulated by signals
such as exosomes and chemokines released by tumor cells,
creating a complex interplay between the two (Wang and Cepko,
2022). Conversely, microglia can also mitigate tumor spread
to some degree by phagocytosing necrotic tumor cells and
their debris (Zhao et al., 2021b).

Their involvement extends beyond RB, as microglia are also
crucial in other retinal tumors, including retinal melanoma
(Murenu et al., 2022) and retinal lymphoma (Guo et al., 2022). As
essential components of the tumor microenvironment, microglia
present potential therapeutic targets. Modulating their activity or
signaling pathways could lead to promising strategies for treating
retinal tumors.

The advent of 3D microfluidic vascularized tumor organoid
models has provided valuable tools for investigating the transport
of immune cells during cancer progression. These models create
endothelial-lined vascular networks within organoids, enabling
researchers to observe the movement of T cells through the vascular
network and their interactions with tumor spheroids in vitro. This
innovative system opens new avenues for exploring tumor-induced
immune response mechanisms and for the preclinical evaluation
of the efficacy of combined immunotherapy and chemotherapy
approaches (Zhao et al., 2024).

3.2 The role of other immune cells in
retinal diseases

Dendritic cells represent a crucial category of resident
immune cells within the retina. They are instrumental in immune
activation during inflammatory retinal diseases and facilitate T
cell infiltration into the retina, which can worsen inflammation
(Xu et al., 2007). Similarly, a limited number of macrophages
inhabit the retina and choroid. In conditions such as AMD and
DR, these macrophages exacerbate disease progression by releasing
inflammatory mediators like IL-6 and TNF-α(85). In cases of
retinal ischemia-reperfusion injury and other inflammatory retinal
diseases, Müller cells also play a significant role in immune
activation and the enhancement of inflammatory responses.
Furthermore, they work in conjunction with other retinal glial

cells to establish a complex immune network, which may ultimately
result in irreversible retinal damage (Mochizuki et al., 2013).

In conclusion, beyond microglia, various immune cells in
the retina—including dendritic cells, macrophages, and Müller
cells—are pivotal in the onset and advancement of retinal diseases.
These cells engage in a sophisticated immune regulatory network
that not only protects the retina but can also aggravate disease when
immune regulation fails. Gaining a deeper understanding of the
functions of these immune cells and targeting their activities may
pave the way for innovative therapeutic strategies in the treatment
of retinal diseases.

4 Attempts to construct microglial
ROs

There is an increasing acknowledgment of the necessity to
create in vitro systems that are more physiologically relevant and
incorporate an “immune component”. The specific mechanisms
through which microglia influence various retinal diseases remain
ambiguous. Consequently, it is crucial to develop co-culture
models that integrate immune cells, especially microglia, with ROs.
Presently, established human RO models do not contain resident
microglia within the retinal layers. By enhancing cell diversity in
ROs through the incorporation or generation of retinal microglia,
we can achieve a more comprehensive and accurate representation
of the native retina.This enhancementwould also facilitate improved
modeling of diseases where microglia are integral, thereby opening
avenues for the discovery of new therapeutic strategies.

4.1 The establishment of microglial ROs

4.1.1 Exogenous addition of immune cells
Xu et al. utilized human embryonic stem cells (hESCs) for

differentiation. After approximately 49 days of culture, microglial
precursor cells were harvested from the culture supernatant and
further cultivated in low-adhesion plates until day 56, resulting in
the generation of mature microglia. Concurrently, another portion
of hESCs was induced to form 3D-ROs through a transition
from adherent to suspension culture. During this transition,
the differentiated mature microglia were introduced into the
organoids for co-culture. Throughout the subsequent cultivation
period, microglia were observed to migrate into and integrate
within the organoids, successfully maintaining viability for at
least 60 days (Xu et al., 2024b).

Usui-Ouchi et al. developed an innovative 3D-RO model
containing microglia by co-culturing retinal organoids with
macrophage precursor cells (MPCs) derived from human induced
pluripotent stem cells (hiPSCs). Building on previous studies, the
team further optimized the parameters for the successful integration
of MPCs into the organoids. They found that the survival of
MPCs depended on macrophage colony-stimulating factor, while
the addition of other factors, such as Tgfb1 or CX3CL1, did not
enhance MPC integration into the organoids. Under optimized
co-culture conditions, CD45-positive and IBA1-positive cells were
detected within the retinal layers and lumen of the organoids after
just 2 weeks. The results indicated that in the presence of reactive
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oxygen species, MPCs migrated to the OPL, the corresponding
location of microglia in healthy retinal tissue, and developed
a mature morphology characterized by small cell bodies with
long branching processes—features typically observed only in
vivo. Once induced microglia (iMG) were stably localized in the
OPL, they transitioned from an initial pro-inflammatory state at
week two to a physiological state by week 6, as evidenced by the
downregulation of pro-inflammatory cytokines and upregulation
of anti-inflammatory cytokines. This progression underscores that
after an initial activation phase, the iMG entered a stable andmature
microglial stage (Usui-Ouchi et al., 2023).

Gao et al. derived iMG from human HSCs and noted that
the retinal organoid microenvironment significantly enhanced
the functionality and organelle maturation of iMG during
co-culture. Notably, compared to HMC3, a commonly used
immortalized human microglial cell line that retains most
primary microglial characteristics, iMG expressed higher levels
of typical microglial markers and exhibited an immune response
profile closely resembling that of primary human microglia.
This finding establishes iMG as a more reliable cellular model
for studying microglial biology and a promising cell source
for in vitro models and cell transplantation (Gao et al., 2024).
Furthermore, iMG can be generated with patient-specific
microglial phenotypes carrying genetic mutations, allowing for the
application of CRISPR gene-editing techniques tomodifymicroglial
phenotypes (Gao et al., 2024).

The co-culture models described above provide an optimized
platform for retinal disease modeling and drug screening. They
also facilitate deeper investigations into the mechanisms underlying
retinal and central nervous system-related diseases, as well as the
development of novel therapeutic strategies.

4.1.2 Spontaneous generation of immune cells
In a study conducted by Shiraki et al. on hiPSCs, the researchers

successfully expanded the cells into a self-formed ectodermal
autonomous multi-zone (SEAM), which partially simulates human
eye development. Unlike traditional microglial co-culture models
that introduce microglia at later stages, this study revealed that
microglia-like cells, exhibiting characteristics akin to yolk-sac
lineage, could naturally develop within 2D SEAM ocular organoids,
even without any vascular components (Shiraki et al., 2022).
Similar instances of spontaneous microglia formation have been
documented in brain organoid studies (Quadrato et al., 2017;
Ormel et al., 2018; Sabate-Soler et al., 2022), with some researchers
attributing this phenomenon to residual mesodermal progenitor
cells. The signaling interactions between neural progenitor cells and
mesodermal progenitor cells underscore the importance of localized
cell-cell communication, potentially offering critical biological
insights into microglial differentiation.

The spontaneous generation of microglia during organoid
culture appears to be closely linked to their origins and
developmental characteristics. Although SEAM ocular organoids
lack vascular components, their 2D culture environment can
still partially replicate embryonic developmental conditions,
such as localized hypoxic environments, specific biochemical
signaling molecules, and cell-cell interactions. Collectively, these
factors may contribute to the differentiation of microglia-like
cells. The formation of microglia is likely driven by intrinsic

biological processes, where progenitor cells possess specific genetic
and epigenetic regulatory mechanisms. Under organoid culture
conditions, these mechanisms may become activated, facilitating
the induction and differentiation of microglia.

These findings not only enhance our understanding of the
origins ofmicroglia but also provide valuable insights for developing
more complex organoid models in the future, aimed at studying the
interactions between microglia and neural cells.

4.2 Functional studies of immune cells in
organoid models

Developing RO models that incorporate functional microglia
has historically posed significant challenges in the field. Current
research not only investigates the integration of individually
cultured microglia into ROs but also emphasizes the importance of
transplanted immune cells exhibiting in vivo-like activity.

Usui-Ouchi and colleagues made significant strides in creating
RO models with mature and functional microglia. Their study
revealed that by the sixth week of microglial RO co-culture, MPCs
in the OPL displayed characteristics typical of mature microglia,
such as small cell bodies and long branching processes extending
along synapses. Further validation confirmed that these microglia
expressed specific gene markers and proteins associated with
mature microglia, indicating their functional maturation (Usui-
Ouchi et al., 2023).

Chichagova et al. integrated iMG-like cells derived from hiPSCs
into ROs, assessing their ability tomigrate into the retina and express
relevant functional markers. In their co-culture model, iMG cells
responded to endotoxins in both monoculture and co-culture with
ROs, as evidenced by a significant upregulation of pro-inflammatory
markers, including IL-12/IL-23p40, IL-15, IL-16, TNF-β, IL-1β, IL-
8, and TNF-α. Additionally, levels of the anti-inflammatory cytokine
IL-10 and the anti-tumor mediator IL-13 were also found to be
elevated (Chichagova et al., 2023). Previous studies (Laffer et al.,
2019) have demonstrated that IL-10 possesses neuroprotective
properties, mitigating inflammation-mediated neurodegeneration
and reducing retinal microglial responses to lipoproteins. IL-13,
an inflammatory regulator linked to uveitis (Roberge et al., 1998),
has been shown to alleviate ocular inflammation in response to
LPS(165). These findings underscore the capacity of microglia to
maintain retinal homeostasis and illustrate that iMG-like cells retain
essential functional properties (Chichagova et al., 2023).

Gao and colleagues discovered that co-culturing iMG with
ROs enhances the functional maturation of iMG. Compared to
iMG cultured alone, those in the co-culture model (CC-iMG)
with ROs exhibited increased inward and outward rectifying K+
currents, along with a significant rise in intracellular lysosomes
and mitochondria, indicating improved physiological functions
such as phagocytic activity. To further explore the response of
iMG to pro-inflammatory stimuli, the cells were exposed to
a low concentration of bacterial endotoxin LPS (1 ng/mL) to
simulate chronic inflammation. After 6 hours, iMG demonstrated
successful activation, with significantly increased expression of
CD68, MPO, and TNFα, sustained for 24 h. Additionally, to model
the response of iMG to viral infection, the organoids were exposed
to a high concentration of the TLR3 agonist dsRNA poly (I:C)

Frontiers in Cell and Developmental Biology 09 frontiersin.org

https://doi.org/10.3389/fcell.2025.1574283
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Liu et al. 10.3389/fcell.2025.1574283

(1 μg/mL).This exposure resulted in notablemorphological changes
in the microglia, with 1,458 genes downregulated and 465 genes
upregulated, indicating a decrease in cellular activity. Graphene
oxide analysis revealed enrichment in viral response and antiviral
defense pathways, suggesting that poly (I:C) treatment elicited
a robust pro-inflammatory response in iMG. These experiments
demonstrate that iMG in the co-culture RO model exhibit in
vivo-like functionality under both physiological and pathological
conditions (Gao et al., 2024).

While the functional characterization of co-cultured microglia
remains incomplete and lacks systematic evaluation criteria, it
is clear that current techniques have enabled the preliminary
reconstruction of a relatively mature retinal microglial niche. These
advancements have facilitated the induction of microglia with
morphology and functionality resembling their in vivo counterparts.
This progress has undoubtedly instilled confidence in researchers,
paving the way for future efforts to harness the unique functions
of microglia in vitro to model retinal diseases. Such advancements
will establish a foundation for exploring the specific roles of
the immune system in disease mechanisms and identifying new
therapeutic targets (Figure 3).

5 Discussion

5.1 Technical limitations of Co-culturing
ROs with immune cells

Although current ROs can replicate the structure and cellular
composition of the retina, they still display notable differences in
both structural and functional maturity when compared to adult
retinal tissue. A significant limitation is the inability of RGCs
to survive in substantial numbers during the later stages of RO
maturation, resulting in an almost complete absence of the IPL
(166). In contrast, the IPL and RGCs are essential components
of the microglial niche within the retina (Schmied et al., 2024).
Enhancing the survival of the inner retinal layers is crucial for
the effective integration of microglia. Furthermore, the process of
injecting differentiated microglia into organoids can inflict physical
damage on the existing cellular structure (Bhaduri et al., 2020;
Boisvert et al., 2019; Paşca et al., 2019). Minimizing this disruption
to the original culture presents a practical challenge that must be
addressed to improve co-culture models.

Another critical limitation is the relatively low number of
microglia integrated into ROs, which fails to achieve saturation of
microglial populations within the OPL (69). Given the inherently
low proliferation rate of microglia, extending the culture period
is unlikely to yield a larger population. Beyond sheer population
size, the diversity of microglia in current microglial RO models is
also restricted. In the actual in vivo environment of retinal diseases,
distinct microglial subpopulations may exist in various states, each
with specific functions. Animal models have demonstrated that
certain microglial subtypes are linked to conditions such as oxygen-
induced retinopathy or light-induced photoreceptor degeneration
(O'Koren et al., 2019; He et al., 2021). Increasing the diversity and
heterogeneity of immune cells could facilitate the identification
of therapeutic targets; however, achieving this level of complexity
presents a significant technical challenge.

In addition to the resident immune cells within the retina,
external immune cells, such as B cells and T cells, may also play a
role in the onset and progression of retinal diseases when immune
privilege is compromised (He et al., 2024). Nevertheless, most
current ROs lack a mature vascular system and dynamic fluid
conditions, complicating the modeling of the pathological processes
involved in recruiting immune cells from outside the retina during
inflammatory responses. This limitation somewhat diminishes the
clinical translational value of co-culture models.

Regarding cultivation strategies and experimental parameters,
research on co-culturing ROs with immune cells suffers from
a lack of standardized protocols. Experimental designs, co-
culture durations, immune cell ratios, and evaluation metrics vary
widely without uniform guidelines. Additionally, the functional
assessment of immune cells remains relatively simplistic, making it
challenging to ascertain whether the responses of in vitro models to
external stimuli can accurately replicate the mechanisms observed
in vivo (Table 1).

5.2 Challenges and prospects

Future research should prioritize the optimization of co-
culture conditions to enhance the long-term survival of iMG.
Potential strategies may include refining co-culture media,
integrating microfluidic platforms, and employing organ-on-chip
technologies.

Optimizing culture medium parameters entails adjusting
nutrient composition, the ratio of organoid to immune cells,
and incorporating essential cytokines that facilitate immune cell
migration and development. Furthermore, the integration of
microfluidic devices can significantly improve the distribution
of oxygen and nutrients, thereby enhancing the overall culture
environment (Gong et al., 2023).

Microfluidic systems typically provide compartmentalized
setups that support the co-culture of various cell types. These
compartments, separated by semi-permeable support membranes,
allow for the formation of monolayers of cultured cells. Over the
past decade, the integration of advanced microfluidic systems
with organoids has transformed and broadened their applications,
particularly in medical and pharmaceutical research (Ingber, 2022;
Low et al., 2021; Bhatia and Ingber, 2014). The use of microfluidics
has improved system output and increased the complexity of
cell assembly, enabling the simulation of one or multiple organs
and facilitating the study of intra- and inter-organ signaling.
As the number of compartments increases, microfluidic systems
can accommodate more cell types and physiological conditions,
further enhancing the system’s complexity (Bein et al., 2018;
Takebe et al., 2017; Wu et al., 2020).

While organoids have effectively replicated the local
microenvironment of the retina, integrating the retinal immune
system with the systemic immune system necessitates more
sophisticated technologies, such as “multi-organ-on-chip” systems.
Organ-on-chip technology, as described in numerous studies,
is currently available on a limited number of commercial
platforms (Achberger et al., 2019; Carvalho et al., 2023). This
technology involves culturing human cells, tissues, or organoids on
miniaturized platforms to mimic the physiological and pathological
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FIGURE 3
Current generation pathways of microglial ROs and the functional evaluation of iMG. Most existing studies generate microglial ROs through an additive
approach, where hiPSCs or hESCs are first differentiated into iMG and ROs (iMG can also be derived from hHSCs), and then co-cultured together. SEAM
is one case where microglia-like cells spontaneously form in ocular organoids. Functional evaluation of iMG in the co-culture model can be further
performed using techniques such as electrophysiological recordings, electron microscopy observation, and by simulating bacterial or viral infections
with LPS or poly (I:C). (hiPSC: human induced pluripotent stem cell, hESC: human embryonic stem cell, hHSC: human hematopoietic stem cell, SEAM:
self-formed ectodermal autonomous multi-zone, iMG: induced microglia, M-CSF: macrophage colony stimulating factor, imhRO: immunized human
retinal organoid, LPS: lipopolysaccharide).

Frontiers in Cell and Developmental Biology 11 frontiersin.org

https://doi.org/10.3389/fcell.2025.1574283
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Liu et al. 10.3389/fcell.2025.1574283

TABLE 1 Differences between traditional and microglial-integrated ROs.

Model Cell type Culture method Advantages Limitations

Traditional ROs Photoreceptors (rods and
cones), RGC, bipolar cells,
horizontal cells, astrocytes,
Müller glia, RPE

Induction of stem cell
differentiation

1. Well-established and highly
standardized procedure
2. Easy to replicate and scale
up for mass production
3. Fundamental research on
retinal development and
differentiation

1. Lack of the immune system,
leading to an incomplete
model of retinal diseases
2. Lack of the vascular system,
preventing long-term survival
of cells in deeper regions
3. Gaps in tissue structure and
cellular function compared to
in vivo retina

Microglial-integrated ROs All of the cell types contained
in traditional ROs + microglia

1. Ectopic addition of
microglia
2. Spontaneous differentiation
of microglia

1. Retinal disease modeling by
simulating immune responses
2. Simulation of
immunological rejection
between the host and the graft
3. Promotion of differentiation
and maturation of other retinal
cells
4. Immunomodulatory drug
screening and immunotherapy
safety evaluation

1. Limited methods for
inducing the spontaneous
differentiation of microglia
2. Lack of standardized
protocols and functional
identification
3. Limited number and
subtypes of microglia in
co-culture systems
4. Absence of an integrated
vascular system

characteristics of human organs. The combination of organ-
on-chip technology with microfluidics and organoid systems
presents significant advantages for studying cellular responses to
drugs, immune cells, or microbial compounds (Görgens et al.,
2021; Šuligoj et al., 2020). High-throughput screening techniques
(Naumovska et al., 2020; Beaurivage et al., 2019) can be employed to
investigate interactions between identical cell types and cells from
different tissues, signaling compounds, or drugs (Wevers et al., 2018;
Spijkers et al., 2021; Gijzen et al., 2020; Maisonneuve et al., 2021).
Conversely, these systems can also be utilized to assess the responses
of cells from various organoid systems or donors under identical
external stimuli, allowing for the detection of patient-specific
differences and advancing personalized medicine.

Previous studies have indicated that co-culturing iMG with
astrocytes or neurons can enhance iMG maturation (Abud et al.,
2017). Similarly, iPSC-derived microglia have been shown to
promote the maturation of cerebral organoids (COs) through
cholesterol transfer (Park et al., 2023). Therefore, exploring the
interactions between retinal neurons and microglia is essential
for understanding microglial biology. Research on co-culturing
microglia with COs predates similar studies with ROs, providing
valuable insights into organoid cultivation methods, immune cell
integration, and the construction of in vivo-likemicroenvironments.
As the resident immune cells of the brain, microglia constitute
approximately 5%–10% of the total cells in the CNS(191),
coordinating brain inflammatory responses (Salter and Beggs,
2014) and forming the immune microenvironment alongside
astrocytes (Ao et al., 2021). For instance, Sun et al. developed
COs with vascular networks and microglia capable of activation
under immune stimulation, even simulating functional BBB-like
structures. This model serves as a platform for studying interactions
between neuronal and non-neuronal components during brain
development (Sun et al., 2022). Park et al. created a co-culture
system of neurons, astrocytes, and microglia to investigate their

interactions in an AD model (Park et al., 2018). Lin et al. advanced
this approach by co-culturing iPSC-derived microglia carrying
AD-related APOE4 mutations with COs to study their uptake of
amyloid β-protein (Lin et al., 2018). To simulate inflammation,
Dos et al. transplanted infected microglia into COs for co-culture
(Dos Reis et al., 2020), while Narasipura’s team demonstrated
that hematopoietic progenitor cells could integrate into mature
COs, proliferate, and differentiate into microglia, achieving gradual
maturation. In this model, microglia accounted for approximately
7.3%of the total cells, compared to less than 1% inmost conventional
COs. Following HIV infection, the microglial CO model exhibited
enhanced neuroinflammatory characteristics (Narasipura et al.,
2024). Ao et al. introduced an innovative tubular CO model by
integrating 3D-printed hollow lattice scaffolds into porous plates,
enabling scalable, renewable, and reliable tubular organoids. This
tubular structure can deliver nutrients, oxygen, and immune cells,
facilitating non-invasive immune integration, improving organoid
culture, and simulating neuro-immune interactions (Ao et al., 2021).
The successful experience with microglial COs can serve as a
valuable guide for developing more advanced and comprehensive
microglial RO models. By replicating increasingly complex systems
and leveraging multi-system synergistic support, these models can
facilitate the co-development of immune cells and neural cells more
effectively.

Microglia are increasingly recognized as critical targets for
discovering new drugs or therapies. Strategies under exploration
include reprogramming microglia using homeostatic signals or
other small molecules, depleting microglia with chemical agents
or radiation, and inhibiting downstream microglial functions by
blocking cytokine activity or phagocytosis (Wang and Cepko, 2022).
Simultaneously, microglia can also play beneficial roles in ocular
diseases. Some animalmodel studies have unexpectedly revealed the
protective effects of microglia in retinal degeneration (Wang et al.,
2021). Similarly, research in neuroscience has demonstrated
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that microglia positively regulate the microenvironment in
injured brains and neurodegenerative diseases such as AD (200).
Consequently, microglial replacement therapy is emerging as a
promising therapeutic approach. Additionally, microglial genes
exhibit regional diversity, and future work could leverage genetic
and epigenetic tools to generate retina-specific iMG. For disease
modeling, iPSCs derived from specific patient populations or ROs
cultured under pathological conditions could be developed into
human retinal disease models, providing valuable platforms to
study diseasemechanisms and support future drug discovery efforts.
By continually advancing the development of microglial ROs that
better replicate the in vivo microenvironment, we can gain more
meaningful insights into the roles and functions of immune cells in
retinal pathology.

In developing more complex system models, microglia play a
unique role in vascular formation under both physiological and
pathological conditions in the retina (Simmons et al., 2016). Studies
have shown that LPS-activated microglia can promote angiogenesis,
migration, proliferation, and increased permeability of co-cultured
retinal microvascular endothelial cells (Ding et al., 2018). The
vascular system serves as a natural mechanism for immune
responses, as traditional immunotherapies heavily rely on vascular
transport. A functional vascular network allows immune cells
and signaling molecules to reach sites of injury or tumorigenesis,
facilitating effective immune responses. Thus, the development of
comprehensivemicroglial ROs largely depends on the incorporation
of a vascular system (Ehlers et al., 2023; Wu et al., 2021). This
not only enhances the recruitment of immune cells and improves
the efficiency of immune responses but also enables the simulation
of the most realistic physiological and pathological processes in
a multi-system environment closely resembling in vivo tissue
structures (Shin et al., 2021).

From a localized perspective to a broader view,
while 3D-RO models have been successfully developed
(Eiraku et al., 2011; Zhong et al., 2014), a complete eyeball 3D
organoid model—encompassing the cornea, conjunctiva, and lens
at the front to the retina and choroid at the back—has yet to be
successfully created. Developing 3D models of the human eyeball
would provide valuable insights into the origins and mechanisms of
the immune system’s functions. Such advancements in methods and
technologies will rely on the support of new infrastructures, such as
organoid biobanks. The future holds significant potential for further
exploration in this area.

6 Conclusion

To create in vitromodels that more accurately mimic the human
retinal microenvironment, it is crucial to continuously diversify the
range of cell types incorporated into ROs. This article emphasizes
the eye’s distinctive “immune privilege” mechanism, detailing the
composition of immune cells in both physiological and pathological
states, and their relationship with retinal diseases, highlighting the
immune system’s significance. By integrating immune cells into
organoids, researchers can achieve more precise disease modeling,
promote therapeutic research, and enhance the prospects for clinical
application.

Given the current limitations in stem cell induction
technologies, most co-culture ROmodels still depend on processing
“seed cells” through various pathways, followed by the integration
of independently induced ROs and microglia. Although some
studies have indicated that microglia can spontaneously develop in
ocular organoids, the underlying reasons for this occurrence remain
unclear. Future investigations should focus more on uncovering
the origins of microglia in ROs, as this could be a pivotal strategy
for overcoming the challenges associated with creating organoid
models that feature more intricate systems.

In conclusion, microglial ROs act as a vital link between
fundamental research and clinical application.Theynot only provide
researchers with fresh insights into retinal immune functions and
disease mechanisms but also present extensive opportunities for
drug development and personalized therapies. With continuous
technological advancements, microglial ROs are set to assume an
increasingly significant role in future ophthalmic research, paving
the way for new breakthroughs in the treatment of retinal diseases.
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Glossary

(RO) retinal organoid

(MHCII) major histocompatibility complex II

(aSC) adult stem cell

(PSC) pluripotent stem cell

(ePSC) embryonic pluripotent stem cell

(iPSC) induced pluripotent stem cell

(RPC) retinal progenitor cell

(RGC) retinal ganglion cell

(RPE) retinal pigment epithelium

(BRB) blood-retinal barrier

(APC) antigen-presenting cell

(CNS) central nervous system

(BBB) blood-brain barrier

(IPL) inner plexiform layer

(OPL) outer plexiform layer

(ONL) outer nuclear layer

(HSC) hematopoietic stem cell

(DR) diabetic retinopathy

(RB) retinoblastoma

(NK cell) natural killer cell

(AMD) age-related macular degeneration

(RP) retinitis pigmentosa

(RVO) retinal vein occlusion

(CNV) choroidal neovascularization

(AD) Alzheimer's Disease

(NMDA) Nmethyl-D-aspartate

(MEM) memantine

(LPS) lipopolysaccharide

(VEGF) vascular endothelial growth factor

(hESC) human embryonic stem cell

(MPC) macrophage precursor cell

(hiPSC) human induced pluripotent stem cell

(iMG) induced microglia

(hHSC) human hematopoietic stem cell

(SEAM) self-formed ectodermal autonomous multi-zone

(CO) cerebral organoid
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