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The primary cilium is a microtubule-based sensory cell organelle templated by
a modified parent centriole that mediates mechanotransduction and response
to biochemical cues such as morphogens to regulate organismal development
and homeostasis. Given that the cilium is a specializedmicrodomain devoid of its
translation machinery, it relies on the endomembrane pathway for the delivery
of proteins and other biomolecules to it. This review provides a comprehensive
insight into how membrane trafficking modulators such as Rab and Rab-like
proteins, and the exocyst complex control transport to the primary cilia, in turn
regulating various aspects of their assembly and function. We integrate findings
from in vitro and animal models and draw on human diseases associated with
the dysfunction of Rabs or exocyst that exhibit phenotypes overlapping with
those of ciliopathies, which further support their relevance to cilia biogenesis
and maintenance.
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1 Introduction

Cilia are conserved microtubular cell organelles indispensable for organismal
development and tissue homeostasis. They were present in the last eukaryotic common
ancestor (LECA) and have evolved a variety of structural specializations congruent with
their functional adaptations throughout metazoa (Carvalho-Santos et al., 2011; Cavalier-
Smith, 2022; Leung et al., 2025). Despite their architectural diversity, they retain universal
features, such as an axonemal backbone with nine-fold microtubular symmetry that is
templated by the mature parent centriole or basal body and is encased within the ciliary
membrane that is contiguous with the plasma membrane. Cilia can be categorized into two
broad groups: motile and primary cilia.

Motile cilia contain an axoneme with a central pair of microtubules in addition to
the nine outer microtubule doublets (9 + 2) and are involved in cell functions such as
fluid propulsion or cell motility. In more complex metazoans, they are present in the
brain, middle ear, lungs, male and female reproductive tracts, and sperm, modulating
functions such as the flow of cerebrospinal fluid, hearing, left-right patterning, mucus
clearance, and mobility of the ova and sperm. Primary cilia are present in many postmitotic
eukaryotic cells. They are non-motile due to the absence of the central pair of microtubules
in their axonemes (9 + 0), except those at the left-right organizer in vertebrate embryos
(Amack, 2022). Defects in ciliary structure or function cause disorders termed ciliopathies,
which often manifest as congenital multisystemic abnormalities with phenotypes such
as kidney cysts, retinal degeneration, and skeletal defects (Reiter and Leroux, 2017).
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Cilia are largely devoid of translation machinery, except for
mouse ependymal cells (Hao et al., 2021). During their assembly,
membrane expansion is coordinated with axonemal extension;
consequently, they rely on importing building blocks, such as
tubulin (Craft et al., 2015), with the help of the intraflagellar
transport (IFT) machinery (Lacey and Pigino, 2024). Proteins
destined for the cilium contain ciliary targeting sequences (CTSs)
and are transported to the cilium or periciliary membrane at
its base by polarized vesicle trafficking (Nachury et al., 2010;
Hsiao et al., 2012). This involves the biogenesis, trafficking,
tethering, and fusion of vesicles that are orchestrated by a battery
of factors, such as coat proteins, Ras-related protein in brain
(Rab) guanosine triphosphatases (GTPases), multisubunit tethering
complexes (MTCs), soluble N-ethyl-maleimide-sensitive factor
(NSF) attachment protein receptors (SNAREs), motor proteins, and
adaptors. The delivery of proteins into the ciliary compartment
involves CTS recognition by specific mechanisms. Apart from some
CTSs, for example, the Ax(S/A)xQ sequence recognized by the
BBSome during the ciliary trafficking of somatostatin receptor
3 (Sstr3) (Jin et al., 2010), CTSs and corresponding trafficking
module for most cilia proteins remain to be elucidated.

While membrane and soluble proteins (<40 kDa) can be
passively translocated across the ciliary diffusion barrier, their
delivery into the ciliary compartment is selectivelymodulated by the
IFT-BBSome machinery, for example IFT-B regulates the transport
of radial spokes in Chlamydomonas flagella (Lechtreck et al.,
2022). Alternatively, importins can function as ciliary trafficking
receptors for example, importin-β1 serves as the receptor for
the transport of a Crumbs3 isoform to the primary cilium
(Fan et al., 2007). Mechanisms of ciliary protein targeting have been
extensively reviewed elsewhere (Jensen and Leroux, 2017; Lu and
Madugula, 2018).

Here we review the Rabs, Rab-like proteins, and the exocyst
complex, which is an MTC involved in vesicle tethering and
exocytosis primarily at the plasma membrane, on how they
regulate trafficking to the cilium, thereby controlling its biogenesis,
maintenance, and function. Mutations in genes encoding these
proteins or their regulatory factors may lead to disorders with
abnormal cilia, underscoring their significance in cilia assembly and
related pathologies (Table 1).

2 Cilia structure and compositional
uniqueness

The ciliary compartment is a specialized domain, enriched
with biomolecules required for its assembly and functions. It is
subdivided into distinct functional subdomains: ciliary pocket,
a periciliary membrane invagination separating the membranes
of some cilia from the adjoining plasma membrane (Molla-
Herman et al., 2010); basal body anchoring it to the cell body
through distal appendages (DAs) (Tanos et al., 2013; Ye et al., 2014)
and subdistal appendages (sDAs) (Mazo et al., 2016; Chong et al.,
2020); transition zone (TZ), the axonemal region most proximal
to the basal body containing Y-shaped linkers that connect it to
the ciliary membrane at sites known as ciliary necklace (Park
and Leroux, 2022). The TZ consists of at least 15 proteins and
is organized into the Meckle Syndrome (MKS), Nephronophthisis

(NPHP), and Core-scaffolding modules (Park and Leroux, 2022).
In metazoans, the subdomain proximal to it is termed the Inversin
(INV) compartment; it has a distinct composition; it is devoid of
Y-links and interacts with the TZ physically (Otto et al., 2003)
and functionally (Warburton-Pitt et al., 2012). The distal appendage
proteins (DAPs) form a cone-shaped gate in the transition fibers
(TFs) that are modified DAs at the cilium base (Reiter et al., 2012),
wherein CEP83, CEP89, CEP164, and SCLT1 form pinwheel spokes
and FBF1 is embedded in the matrix (Yang et al., 2018). The ciliary
tip is the distalmost end of the ciliumwhere components of signaling
pathways, such as, Glioma (Gli) and Sufu from the Hedgehog (Hh)
pathway, aggregate in a signal-dependent manner (Haycraft et al.,
2005; Chen et al., 2011) and retrograde cargo is loaded (Ye et al.,
2018b). When G-protein-coupled-receptors (GPCRs) fail to be
retrieved back to the cell via the BBSome (Ye et al., 2018a), they
accumulate at the cilia tip before being removed by extracellular
vesicles (Nager et al., 2017; Phua et al., 2017).

The cilium houses receptors and components of many signaling
pathways, including Hh, GPCR, receptor tyrosine kinase, calcium,
and transforming growth factor pathways, that enable it to
integrate and transduce a plethora of extracellular signals, including
developmental morphogens and mechanical cues (Mill et al.,
2023; Hilgendorf et al., 2024). The spatiotemporal modulation of
ciliary composition is integral to its dynamic signaling output
and is regulated by the gating properties of the TZ and TFs
(Chih et al., 2011; Jensen et al., 2015; Yang et al., 2018). In addition,
protein distribution in the ciliary membrane (Hu et al., 2010)
and along the axoneme (Ghossoub et al., 2013) is modulated by
macromolecular scaffolds formed by the Septin proteins.

Investigation of primary cilia from various types of human and
rodent cells (Ostrowski et al., 2002; Liu et al., 2007; Mayer et al.,
2009; Ishikawa et al., 2012; Narita et al., 2012), motile cilia from
multiciliated vertebrates (Sim et al., 2020) and unicellular species
(Smith et al., 2005; Subota et al., 2014; McCafferty et al., 2024)
shed light on their unique proteomes. These studies demonstrate
that different ciliary subdomains also vary in their membrane
lipid composition, which in turn is distinct from that of the
plasma membrane. While the ciliary membrane has high levels
of phosphatidylinositol-4 phosphate (PI4P) (Chávez et al., 2015;
Garcia-Gonzalo et al., 2015), the TZ (Conduit et al., 2024)
and plasma membrane (Kanemaru et al., 2022) are enriched
with phosphatidylinositol 3, 4, 5 triphosphate (PI(3,4,5)P3) and
phosphatidylinositol 4,5 bisphosphate (PI(4,5)P2), respectively. This
unique lipid profile of the ciliary membrane subdomains is
achieved by the opposing actions of phosphatases, for example,
inositol polyphosphate 5 phosphatase E (INPP5E) (Bielas et al.,
2009; Jacoby et al., 2009) and kinases, for example, type Iγ
phosphatidylinositol 4-phosphate 5-kinase (PIPKIγ) (Xu et al.,
2016). INPP5E localizes at the axoneme and its activity leads
to the hydrolysis of 5-phosphate in PI(4,5)P2, leading to PI4P
enrichment in the ciliary membrane; PI(4,5)P2 accumulates at
the TZ owing to PIPKIγ localization at the basal body (Conduit
and Vanhaesebroeck, 2020). The selective compartmentalization
of phosphoinositides plays a pivotal role in modulating ciliary
signaling. Tulp3, a PI(4,5)P2-interacting protein binds IFT-A
complex to promote trafficking of a subset of ciliary GPCRs,
such as Sstr3, Mchr1 (Mukhopadhyay et al., 2010) and Gpr161
(Chávez et al., 2015; Garcia-Gonzalo et al., 2015). Subsequently,
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TABLE 1 Genetic disorders linked to cilia-associated Rabs and the exocyst complex.

Gene Disease Inheritance OMIM # References

Rabs

RAB23 Carpenter syndrome; CRPT1 AR 201000 Taravath and Tonsgard (1993), Kadakia et al. (2014)

RAB28 Cone-rod dystrophy 18; CORD18 AR 615374 Roosing et al. (2013), Riveiro-Álvarez et al. (2015)

RAB34 Orofaciodigital syndrome XX; OFD20 AR 620718 Bruel et al. (2023), Batkovskyte et al. (2024)

RAB35 Developmental delay, hydrocephalus, Dandy-walker
malformation, axial hypotonia, peripheral hypertonia,
vision and hearing deficiencies

AR - Aguila et al. (2024)

IFT27/RABL4
Bardet-Biedl syndrome 19; BBS19 AR 615996 Aldahmesh et al. (2014)

Lethal Fetal Ciliopathy AR - Quélin et al. (2018), Haïm et al. (2025)

Exocyst complex

EXOC2 Neurodevelopmental disorder with dysmorphic facies
and cerebellar hypoplasia; NEDFACH

AR 619306 Van Bergen et al. (2020)

EXOC4 Nephrotic syndrome AD - Nihalani et al. (2019)

EXOC6B Spondyloepimetaphyseal dysplasia with joint laxity, type
3; SEMDJL3

AR 618395 Girisha et al. (2016), Campos-Xavier et al. (2018),
Simsek-Kiper et al. (2022)

EXOC7 Neurodevelopmental disorder with seizures and brain
atrophy; NEDSEBA

AR 619072

Coulter et al. (2020)
EXOC8 Neurodevelopmental disorder with microcephaly,

seizures, and brain atrophy; NEDMISB
AR 619076

AD: autosomal dominant; AR: autosomal recessive.

Tulp3 has been shown to regulate a generalizedmultistep process for
the ciliary uptake for integral membrane proteins (Badgandi et al.,
2017). The spatial organization of phosphoinositides in the cilium
also helps in regulating its morphology, for example, ribosome
profiling of cilia regeneration in Chlamydomonas revealed serine
palmitoyltransferase as an essential modulator of cilia morphology
and biogenesis, as ceramides produced by it bind with IFT particles
and motor proteins to mediate axoneme and ciliary membrane
interaction (Wu et al., 2022).

3 Rabs in cilia trafficking

Rab proteins belong to the Ras superfamily of small GTPases,
with 11 and 70 members identified in budding yeast and humans,
respectively. They regulate various steps of intracellular trafficking,
such as vesicle budding, transport, tethering, and membrane
fusion. Functionally, they cycle between active GTP-bound and
inactive GDP-bound forms (Müller and Goody, 2018). In their
active state, they are engaged at the membrane via C-terminal
prenylation and interact with specific effector proteins. The guanine
nucleotide exchange factors (GEFs), promote the exchange of GDP
for GTP, conversely, GTPase-activating proteins (GAPs) catalyze
GTP hydrolysis, returning Rabs to their inactive cytosolic state.
Structurally Rabs contain a canonical GTP-binding domain that

consists of five conserved guanine moiety binding motifs (G1-
G5), Rab family specific motif (RabF), Rab subfamily special motif,
geranylgeranylation motif, a hypervariable C-terminal domain, a
C-terminal interacting motif, switch regions, and complementary
determining regions (Pereira-Leal and Seabra, 2000; Pereira-Leal
and Seabra, 2001; Pereira-Leal et al., 2003; Stein et al., 2012; Li et al.,
2014). Rabs control the directed traffic of post-Golgi or endocytic
vesicles modulating ciliary vesicle formation, centriolar uncapping,
basal body maturation, cilia membrane extension, IFT and cargo
trafficking to the cilium.

3.1 Rab8-Rab11

3.1.1 Cilia assembly
Rab8modulates the long-distance transport of trans-Golgi cargo

(Wandinger-Ness and Zerial, 2014) and together with Rabin8,
its GEF, and XM_037557 or TBC1D30, its GAP it modulates
cilia biogenesis (Nachury et al., 2007; Yoshimura et al., 2007).
Initiation of cilia assembly involves the transport particle protein
complex II (TRAPPII) MTC and active Rab11GTP, a regulator of
recycling endocytic vesicles to deliver Rabin8 to the preciliary
vesicles (PCVs), which in turn recruits Rab8 (Knödler et al., 2010;
Westlake et al., 2011). Interaction of TRAPPC14, a subunit of
TRAPPII with Rabin8, Fbf1, and Cep83 promotes the engagement
of the PCVs at the parent centriole (Cuenca et al., 2019). This is
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further augmented by Rab8 interaction with the distal centriolar
proteins Cep164 (Schmidt et al., 2012), Ahi1 (Hsiao et al., 2009),
and Talpid3 (Kobayashi et al., 2014). Fip3, a Rab11 effector binds
Rabin8 to promote PCV trafficking, as well as stabilizes the Rab11-
Rabin8 complex (Vetter et al., 2015; Walia et al., 2019). Recent
imaging studies highlight the dynamicmembrane conversion events
in the Rab11-Rabin8-Rab8 cascade, wherein Rab11 and Rabin8 are
depleted upon Rab8 loading (Saha et al., 2024). Moreover, Rab11
localization in the mature cilium was found to occur in a Rab8-
dependent manner (Saha et al., 2024). Localization of Rab8 to the
basal body is also facilitated by Chibby (Cby) which is recruited
through its interaction with Cep164 (Burke et al., 2014) and Efa6a,
a GEF for Arf6 GTPase (Partisani et al., 2021).

Ehd1, an Eps15 homology domain (Ehd) protein is amembrane-
shaping factor that is recruited to PCVs and modulates their fusion
into the ciliary vesicle (CV), which then encapsulates the distal
surface of the parent centriole (Lu et al., 2015). This promotes
localization of TZ proteins, Rpgrip1l, Tmem67 and Cep290 to the
CV (Lu et al., 2015). Cep290 recruits Daz interacting zinc finger
protein 1 (Dzip1), which in turn binds Rab8 and Cby to promote TZ
assembly followed by CV extension (Zhang et al., 2015; Wu et al.,
2020). Some studies suggest that Rab8 might be dispensable for the
initial docking of ciliary vesicles, functioning only in subsequent
stages of cilia membrane extension (Lu et al., 2015). Supporting this
Rab8 was found to be non-essential for cilia formation in zebrafish
and mammals (Sato et al., 2014; Aljiboury et al., 2023).

3.1.2 Ciliary trafficking
Rab8 is implicated in the trafficking of polycystin-1 (PC1)

(Ward et al., 2011), polycystin-2 (PC2) (Hoffmeister et al., 2011), the
C-terminal fragment of fibrocystin (Follit et al., 2010), Smoothened
(Smo), a transmembrane Hh receptor, Kim1, an apical membrane
protein to the ciliary membrane (Figure 1). It assists in the transport
of Dishevelled, a core planar cell polarity (PCP) component to
the basal body (Zilber et al., 2013) and that of EB1, a cytosolic
microtubule-binding protein into the cilium (Boehlke et al., 2010).
The enrichment of Ift20 at the basal body also depends on Rab8
(Maharjan et al., 2020). The Golgi to cilia transport of rhodopsin,
a GPCR occurs through directed rhodopsin transport carriers to the
rodouter segmentof vertebratephotoreceptors and involves theaction
of the Rab11–Fip3–Rabin8 dual effector complex and the interaction
of Arf4 with Asap1, its GAP (Deretic et al., 1995; Mazelova et al.,
2009; Bachmann-Gagescu et al., 2011; Wang et al., 2012; Vetter et al.,
2015; Wang and Deretic, 2015). The transport of Kif17, a soluble
kinesin-2 motor protein, Crumbs3 and retinitis pigmentosa 2 to the
cilia membrane utilizes Importin-β2 and transportin 1 (TNPO1)
that are conserved receptors in the nucleocytoplasmic trafficking
machinery (Fan et al., 2007; Dishinger et al., 2010; Hurd et al.,
2011; Kee et al., 2012) Based on studies with the known CTSs
of fibrocystin, photoreceptor retinol dehydrogenase, rhodopsin and
retinitis pigmentosa 2, a dynamic ternary complex of TNPO1-Rab8-
CTS was deduced that can modulate the selective entry and retention
of ciliary membrane proteins (Madugula and Lu, 2016). Once inside
the cilium, GTP hydrolysis converts Rab8 to its inactive GDP-bound
state leading to the release of its cargo. The Rab8GDP is ubiquitinated
and pre-emptively degraded by the protein quality control machinery
(Takahashi et al., 2019) to prevent its accumulation which could exert
harmful effects (Nachury et al., 2007; Yoshimura et al., 2007).

Abnormal rab-8 expression in C. elegans compromises cilia
structure and membrane transport (Kaplan et al., 2010). Dominant
negative (T22N) form of rab8 in Xenopus laevis rod photoreceptors
results in retinal degeneration and accumulation of tubulovesicular
structures at the cilium base in surviving outer rod segments
(Moritz et al., 2001). Interestingly, rab8 was dispensable while
rab11 and rab35 were required for centrosome positioning and cilia
formation during the development of the Kupffer’s vesicle (left-right
organizer) in zebrafish (Aljiboury et al., 2023). In mammals, Rab8
occurs as Rab8a and Rab8b, which are isoforms encoded by different
genes (Armstrong et al., 1996).Rab8bnullmice arenormal;Rab8a and
Rab8b double knockout (KO) mice are also viable and largely normal
except for themis-localizationof apicalmarkers in selected tissues and
do not show any ciliary abnormalities (Sato et al., 2014).This suggests
that theirciliary functionsmayberedundantwithotherRabsandlikely
explainstheabsenceofhumandiseasesassociatedwiththem.However,
pathogenic variants in genes encoding Rab8 interacting proteins
have been implicated in human disorders. Abnormal hexanucleotide
repeat expansions in C9orf72 that together with SMCR8 function as
Rab8-GAP are implicated in approximately half the genetic cases of
amyotrophic lateral sclerosis and frontotemporal dementia via the
suppression of ciliogenesis and Hh signaling (Tang et al., 2024).
Mutations inOCRL1 that encodes for inositol-5-phosphatase, another
Rab8effector cause theX-linkedoculocerebrorenal syndromeofLowe
(OCRL) or Lowe syndrome which manifests with abnormal primary
cilia (Hou et al., 2011; Coon et al., 2012).

Mutations in Leucine rich repeat kinase 2 (LRRK2) that is
a major regulator of both idiopathic (Nalls et al., 2014) and
genetic forms of Parkinson’s Disease (PD) (Zimprich et al., 2004)
cause hyperactivation of its kinase activity and are implicated in
phosphorylation of Rab8a, Rab10 and Rab12 in cultured human
and mouse cells, and mice (Ito et al., 2016; Steger et al., 2016;
Thirstrup et al., 2017). Activating mutations in LRRK2 cause
aberrant accumulation of phosphorylated Rab8a at the centrosome
leading to abnormal centrosomal cohesion and positioning, and
defective cell polarity and migration (Madero-Pérez et al., 2018).

3.2 Rab10

Rab10 belongs to the same subfamily as Rab8 and is implicated
in intracellular transport activities ranging from polarized
exocytosis to endo-phagocytic processes (Chua and Tang, 2018). It
localizes at the trans-Golgi, endoplasmic reticulum (ER), and at the
base of primary cilia in renal epithelia. It colocalizes with Exoc3 and
Exoc4, which are exocyst complex subunits, and directly interacts
with Exoc4 at the basal body (Babbey et al., 2010) (Figure 2). Earlier
studies suggest that Rab10 may be required for cilia biogenesis,
as its depletion impaired ciliation more strongly compared to the
combined inhibition of Rab8a and Rab8b, and the cumulative
silencing of all three had the strongest effect (Sato et al., 2014).
In contrast, RAB8A/B and RAB10 KO in hTERT-RPE cells had no
effect on ciliogenesis (Oguchi et al., 2020). Another study suggested
that Rab10 antagonizes primary ciliogenesis (Dhekne et al., 2018).
Dennd2b, a Rab10 GEF that localizes at the basal body was
found to suppress ciliogenesis by modulating Rab10-dependent
recruitment of CP110, whereas it controlled cilia length by RhoA
activation (Kumar et al., 2022).
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FIGURE 1
Overview of the transport functions of Rab8 related to primary cilia. Shown is Rab8 dependent transport of Smo, Dishevelled (Dvl), Tim1, and IFT20 into
the primary cilium. In ciliated cells Fuzzy (Fuz) mediates the recruitment of Rab8 and Dvl to the primary cilium via the polarized trafficking route. Ciliary
localization of fibrocystin involves the formation of a ternary complex with Rab8-TNPO1 at its ciliary targeting signal (CTS). TF, transition fibers; sDA,
subdistal appendages.

Genetic disorders with Rab10 involvement include PD, wherein
hyperactivated LRRK2 increases Rab10 phosphorylation, which
in turn promotes its association with Rab interacting lysosomal
protein-like 1 (RILPL1), a known suppressor of ciliogenesis
(Dhekne et al., 2018) and accentuates the removal of ciliary
membrane proteins (Schaub and Stearns, 2013). Disruption of
DENND2B in a patient with subtelomeric de novo balanced
translocation was associated with severe intellectual disability,
muscular hypotonia, seizures, bilateral sensorineural hearing loss,
submucous cleft palate, unilateral cystic kidney dysplasia, and other
anomalies (Göhring et al., 2010).

3.3 Rab12

Rab12 isakeysubstrateofLRRK2in themousebrain that regulates
the balance of ciliogenesis by controlling the centrosome/centriole
homeostasis and inhibiting primary ciliogenesis. This depends on
its interaction with LRRK2 and the phosphorylation of Rab10
(Dhekne et al., 2023). While Rab12 KO mice are viable with no
obvious developmental anomalies, examination of their brain slices
revealed an increased frequency of ciliated cells and longer cilia in the
striatum, even though the mean cilia volume remained unchanged;
similar results were obtained from Rab12 KO-derived primary

astrocyte cultures in vitro (Li et al., 2024). This study showed that the
overexpressionofwild-typeRab12ledtocentrosomeamplificationand
aberrant cilia that resemble short “spikes” consisting of an enlarged
lumen surrounding a defective axoneme. The overexpressed Rab12
promoted the colocalization of phosphorylated Rab10 and RILPL1
with endogenous LRRK2 at the amplified centrosomes (Dhekne et al.,
2023). Similar results were obtained following Rab12 overexpression
in RPE cells. Accordingly, when LRRK2 was inhibited in astrocytes
where a hyperactivating form of Rab12 was expressed, it abolished
Rab10 phosphorylation and prevented the Rab12 overactivation-
dependent deregulation of primary ciliation (Li et al., 2024). This
study also showed that in primary cultures of astrocytes derived
from mice carrying LRRK2-G2019S, a common PD mutation, the
disruption of Rab12 restored primary ciliation and centrosome
homeostasis. Therefore, targeting the Rab12-LRRK2 complex could
offer an attractive strategy for the amelioration of PD.

3.4 Other Rabs and primary cilia in the
pathogenesis of PD

Other Rabs that are substrates of LRRK2 include Rab3, Rab35,
and Rab43 (Steger et al., 2017). The pathology of PD involves
the loss of dopaminergic neurons in the substantia nigra pars
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FIGURE 2
Overview of ciliary localization and functions of Rab10, Rab23, Rab34 and Rab35. Localization of GTP bound Rab10 and Rab34 at the basal body is
shown. Active Rab10GTP directly interacts with the exocyst component Exoc4. In the cytosol Rab23GTP interacts with Kif17 and promotes its binding to
importin-β2 to form a tripartite complex that then enters the cilia owing to the RanGTP-RanGDP gradient between the primary cilium and the cytosol. In
the cilium RanGTP binds importin-β2 leading to the release of Kif17 from Rab23 and the anterograde transport of Kif17 to the primary cilia tip. Rab23 also
promotes recycling of ciliary Smo. Rab35GTP controls the ciliary membrane composition by (a) inhibiting the import of Arl13b into the cilium (b)
promoting the export of Arl13b out of the cilium (c) modulation of endocytic processes targeting Arl13b for degradation or recycling to non-ciliary
destinations near the ciliary pocket.

compacta region of the brain that projects into the dorsal striatum
(Surmeier et al., 2014). Studies have shown that hyperactivating
LRRK2 mutations induce loss of cilia and Hh signaling in the
cholinergic and parvalbumin interneurons and astrocytes in the
mouse dorsal striatum, leading to the decreased expression of
glia-derived neurotrophic factors, namely GDNF (Khan et al.,
2021; Khan et al., 2024) and Neurturin (Lin et al., 2025) that
are neuroprotective and essential for the survival of dopamine-
synthesizing neurons.

3.5 Rab28

Rab28 carries a C-terminal CAAX motif instead of the
common geranylgeranylation motif present in other Rab family
members (Brauers et al., 1996) that gets prenylated and is
required for its membrane retention at specific subcellular

locations. It was identified as a ciliary protein in rat retina
where it localized at the basal body and ciliary rootlet of
photoreceptors (Roosing et al., 2013). In C. elegans its active GTP-
bound form localizes at the periciliary membrane and requires
the prenyl-binding protein Pde6d, a molecular chaperone, the
BBSome and Arl-3 for import into the cilium and bidirectional
IFT (Jensen et al., 2016; Akella et al., 2020). Ciliary Rab28
and the BBSome negatively regulate extracellular vesicles in
a cilia-dependent manner in the sensory organs of C. elegans
(Akella et al., 2020).

Biallelic RAB28 null and hypomorphic alleles cause the rare
cone-rod dystrophy (CRD; OMIM #615374) (Roosing et al., 2013;
Riveiro-Álvarez et al., 2015). CRD is characterized primarily by the
loss of cone photoreceptors or sometimes the loss of both cone and
rod photoreceptors. It manifests with decreased visual acuity, color
vision abnormalities, photo aversion, decreased sensitivity in the
central visual field, progressive loss of peripheral vision, and night
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blindness (Hamel, 2007). Rab28 KO mice exhibit progressive retina
degeneration phenocopying the clinical features of CRD (Ying et al.,
2018). These mice showed that Rab28 is required for shedding and
phagocytosis of cone outer segment discs (Ying et al., 2018). In
zebrafish rab28 is required for both dawn and dusk outer segment
phagocytosis peaks but not its basal levels (Carter et al., 2020;
Moran et al., 2022).

A study with a homozygous missense single nucleotide variants
(SNVs) in RAB28 in a pair of siblings from a consanguineous family
reported significant retinal degeneration and postaxial polydactyly
(PAP) wherein the transcript levels of Rab28 were unperturbed
but its ciliary localization was abrogated (Jespersgaard et al., 2020).
How Rab28 dysfunction causes PAP remains uncertain; however,
this finding suggests that it may have a broader role in ciliopathies
beyond CRD.

3.6 Rab34

Rab34 was first discovered in the Golgi apparatus (Wang
and Hong, 2002). A CRISPR-based in vitro screen identified it
as a positive regulator of primary ciliogenesis and Hh signaling
(Pusapati et al., 2018). It was later identified as a ciliary protein
using Ift27 proximity biotinylation in MEFs (Stuck et al., 2021).
It modulates early cilia biogenesis by facilitating the fusion of
PCVs into CVs (Xu et al., 2018). An extensive screen suggested
that it was essential for serum starvation-dependent ciliogenesis in
various cell lines e.g., hTERT-RPE1, NIH/3T3 cells, and MCF10A
but unlike other Rabs its N-terminal and not the switch II region
was required for ciliogenesis (Oguchi et al., 2020; Oguchi et al.,
2022). Rab34 localizes at the basal body, and its GTP-bound
form enters and resides in the cilium (Xu et al., 2018) (Figure 2).
It localizes on the ciliary sheath in a specialized subdomain of
assembling intracellular cilia and is pivotal for orchestrating initial
steps in cilia membrane formation specifically in the intracellular
but not the extracellular cilia biogenesis pathway (Ganga et al., 2021;
Stuck et al., 2021).

Rab34−/− mice die perinatally, exhibiting polydactyly and
craniofacial malformations (Dickinson et al., 2016; Xu et al.,
2018). Rab34 plays both cilia dependent and independent roles
in osteogenesis; its silencing in MC3T3-E1 murine preosteoblast
cells strongly attenuated ciliation and Hh signaling that impaired
cell proliferation, and osteoblast differentiation, in addition to the
cilia-independent attenuation of type I collagen trafficking from
the ER to Golgi apparatus (Yamaguchi et al., 2024). Recently,
biallelic pathogenic nonsynonymous SNVs in RAB34 have been
linked with orofacial digital syndrome XX (OFDXX; OMIM
#620718), wherein the patients manifest with features such as
polydactyly/syndactyly, shortening of long bones, cleft lip andpalate,
micrognathia, cerebral, cardiac and anorectal anomalies (Bruel et al.,
2023; Batkovskyte et al., 2024). Despite the RAB34 pathogenic
mutations being discerned as strong loss of function alleles that
suppressed its expression and impaired primary ciliogenesis, the
localization of the mutant RAB34 proteins at the basal body
remained unperturbed (Bruel et al., 2023). Thus, a complete
understanding of the molecular pathogenesis underlying OFDXX is
still awaited.

3.7 Rab23

Rab23 was first identified in vertebrate embryogenesis for its
function in dorsalization as an antagonist of Sonic hedgehog (Shh)
that facilitates ventral cell fate specification (Chiang et al., 1996;
Spörle et al., 1996). It localizes at the plasma membrane and
endocytic vesicles, functioning downstream of Patched (Ptch) and
Smo, which are Hh receptors but upstream of Gli transcription
factors (Evans et al., 2003; Eggenschwiler et al., 2006). Rab23
activation requires Inturned and Fuzzy, which are GEFs and PCP
pathway components functioning downstream of CV formation,
and potentially parallel to Rab8 during primary cilia assembly
(Gerondopoulos et al., 2019). Rab23 is required for cilia biogenesis
(Yoshimura et al., 2007), where it controls the recycling of ciliary
Smo (Boehlke et al., 2010) (Figure 2). Beyond the Shh pathway,
it is also required for the ciliary trafficking of Kif17, a kinesin-2
motor protein by forming a complex with it and its nuclear transport
adaptor Importin-β2 (Lim and Tang, 2015). It also promotes the
IFT-B anterograde trafficking and Kif17-dependent targeting of
D1-type dopaminergic receptors to the primary cilium (Leaf and
Von Zastrow, 2015). It is also implicated in the ciliary targeting of
other cargo, for example, subunits of olfactory cyclic nucleotide-
gated channels (Jenkins et al., 2006). It indirectly controls the
velocity of anterograde IFT as the latter depends on the number
of active Kif17 motors and its dynamic equilibrium with Kif3ab
motors when loaded on microtubules (Milic et al., 2017). Outside
the cilium active Rab23 facilitates Kif17 migration to spindle poles;
Rab23-Kif17-cargo complex modulates spindle organization via
tubulin acetylation and drives actin cytoskeleton-mediated spindle
migration during oocyte meiosis (Wang H. H. et al., 2019).

Pathogenic SNVs in RAB23 are associated with Carpenter
Syndrome (CS) a rare genetic disorder characterized by
craniosynostosis of the face and skull, polydactyly, brachydactyly,
heart and eye defects, structural and functional central nervous
system (CNS) abnormalities (OMIM #201000) (Taravath
and Tonsgard, 1993; Kadakia et al., 2014). Despite its well-
established role in ciliogenesis, whether RAB23 pathogenic
variants cause abnormal ciliation in CS patients remains to
be elucidated. Interestingly Rab23 null mice (open brain)
succumb mid-gestation due to Hh hyperactivation in the
neural tube (Eggenschwiler et al., 2001).

3.8 Rab35

Rab35 is a conserved plasma membrane and endosomal protein
with many essential cellular functions, for example, in the final steps
of cytokinesis, endocytic cargo recycling, cytoskeleton modulation,
and cell polarity (Kouranti et al., 2006; Klinkert et al., 2016).
Its localization at the ciliary membrane in its active GTP-bound
state is controlled by Dennd1b, its GEF, and Tbc1d10a, its GAP
(Kuhns et al., 2019). This study also showed that Rab35 directly
interacts with Arl13b,modulating ciliarymembrane composition by
augmenting the ciliary transport of Smo, PI(4,5)P2 and antagonizing
the targeting of Arl13b and in turn that of INPP5E (Figure 2).

Rab35 was indispensable for ciliation in the left-right organizer
in zebrafish, acting upstream of Rab11 for the apical membrane
targeting of CFTR receptor in this context (Aljiboury et al., 2023).

Frontiers in Cell and Developmental Biology 07 frontiersin.org

https://doi.org/10.3389/fcell.2025.1574638
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Upadhyai et al. 10.3389/fcell.2025.1574638

Recent studies identified MiniBAR, a dual Rab35 and Rac1 effector,
which co-localizes with them at the vesicles destined for the primary
cilia, controlling the ciliary targeting of proteins, such as Ift88
and Arl13b and regulating ciliogenesis through modulation of the
actin cytoskeleton (Serres et al., 2023). This study also showed
that MiniBAR depletion causes left-right asymmetry defects and
ciliopathy-like features in zebrafish.

A recent study reported a single patient with a
neurodevelopmental disorder harboring a missense mutation in
RAB35 which likely locks it in an inactive conformation, delaying
cytokinesis, activating Arf6, and antagonizing primary ciliogenesis
(Aguila et al., 2024). Consistent with its cellular roles, Rab35 KO
mice are embryonic lethal with cardiac edema; its conditional
depletion in the kidney and ureter causes hydronephrosis and
manifests with reduced primary cilia length, actin cytoskeleton
disruption, abnormal cell polarization with loss of tight junctions,
reduced adherens junctions, defective Arf6 epithelial polarity, cell
death, and compromised differentiation (Clearman et al., 2024).

3.9 Rab19

In polarized MDCK cells, Rab19 localizes at vesicles
accumulating at the apical cell surface and subsequently peripheral
to the site of cortical actin clearing during ciliation (Jewett et al.,
2021). This study showed that its depletion abrogated actin clearing
above the centrosome blocking primary cilia assembly. Rab19-
mediated orchestration of ciliary membrane growth occurred
both in extracellular and intracellular pathways of ciliogenesis
(Jewett et al., 2021). In its absence, cilia assembly stopped at the
CV stage, even though the localization of Ift88, Ift140, and Rpgrip1l
were unperturbed (Jewett et al., 2021). This study also showed
that Rab19 interacts with Tbc1d4, a Rab-GAP as well as with
every subunit of the homotypic fusion and vacuole protein sorting
(HOPS) complex, a MTC that mediates vesicle and membrane
fusion in late endosomes and lysosomes (van der Beek et al., 2019;
Jewett et al., 2021). Subsequent work revealed that ablation of
HOPS blocked basal body linked cortical actin clearing indirectly
by retaining Rab19 on enlarged endosomes-lysosomes away from
the basal body (Hoffman and Prekeris, 2023). Nevertheless, the
direct involvement of HOPS and Rab19 interaction in primary cilia
biogenesis remains inconclusive.

3.10 Rab5

Rab5 is a principal regulator of early endocytosis that is
involved in early endosome biogenesis and fusion, multivesicular
body formation, and endosomal trafficking (Gorvel et al., 1991;
Bucci et al., 1992; Zeigerer et al., 2012). It was linked to primary cilia
by studies in C. elegans that discerned it at the endocytic vesicles
targeted to the periciliary membrane compartment at the ciliary
base and a minor population of it was also noted in some axonemes
(Kaplan et al., 2010; van der Vaart et al., 2015). It colocalized with
Ocrl1 on internalized cilia-derived endosomes (Coon et al., 2012).
Nevertheless, whether it is directly involved in primary ciliogenesis
is uncertain as dominant negative Rab5 attenuated the expression
of Kim1 at the apical cell surface with no effect on the transport of

ciliary proteins, such as Smo and EB1, and Kim1 silencing also did
not affect cilia biogenesis (Boehlke et al., 2010).

4 Rab-like GTPases

4.1 Rabl2

Rabl2 is an atypical Rab-like GTPase devoid of the C-terminal
isoprenylation motif present in canonical Rabs (Homma et al.,
2021). It is recruited to the basal body through interactions with
Cep19 (Nishijima et al., 2017; Zhou et al., 2022), Cep164 and
Cep83 (Dateyama et al., 2019) (Figure 3). It binds GTP by GEF-
independent high-turnover nucleotide exchange cycle, and in this
state interacts with the IFT-B1 core subcomplex (Taschner et al.,
2016) via the Ift74/Ift81 heterodimer to recruit the IFT-B holo-
complex from a pool of pre-docked IFT-B complexes, into the cilium
(Kanie et al., 2017).Thus, the Cep19-Rabl2-IFT-B complexmediates
the ciliary uptake of IFT moieties. The stable KO of Cep19 or Rabl2
decreased the frequency of IFT trains in motion but had no effect
on IFT velocities (Kanie et al., 2017). The Ift74/Ift81 heterodimer
serves as a Rabl2-specific GAP (Boegholm et al., 2023). Rabl2 has
been suggested to promote the ciliary targeting of GPCRs such as
Gpr161 and Htr6 (Dateyama et al., 2019). One model proposed
that it indirectly regulates the BBSome-mediated export across the
TZ by binding IFT-B particles (Duan et al., 2021). The authors
in this study suggested that this is required for fine-tuning of
signals; Rabl2−/− MEFs are unable to activate the Hh signaling in
response to stimulation (Duan et al., 2021). Subsequent studies
showed that Ift25/Ift27 and Rabl2 bind the Ift74/Ift81 heterodimer
in a mutually exclusive manner (Zhou et al., 2022). In this work the
authors suggested that Rabl2GTP-Cep19 at the basal body promotes
the recruitment of IFT-B particles lacking Ift25/Ift27; following
the hydrolysis of the bound GTP a majority of the Rabl2 is
replaced by Ift25/Ift27, and any remaining Rabl2GTP enters the
ciliumundergoing ciliary transportationwhile remaining associated
with IFT-B machinery (Figure 3). Parallelly GPCRs are imported by
Tulp3-IFT-A machinery (Zhou et al., 2022). Further they suggested
that GPCRs are exported across the TZ by the BBSome which is
connected to IFT-B particles via Lztfl1 binding it as well as the
Ift25/Ift27 heterodimer (Figure 3) (Zhou et al., 2022).

Rabl2 mutant Chlamydomonas lack flagella (Nishijima et al.,
2017). Initially identified as an essential regulator of male fertility
through a mutagenesis screen in mice, Rabl2 interacts with several
IFT subunits, for example, Ift27, Ift81, and Ift172 for cargo delivery
into the sperm tail (Lo et al., 2012). Consistent with this Rabl2
mutant mice (mot) carrying the missense mutation (D73G) showed
compromised sperm motility and were infertile (Yi Lo et al., 2016).
The Rabl2mot mice exhibited ciliopathy features such as adult-
onset obesity and fatty livers owing to defective glucose and lipid
metabolism. Similar features, such as infertility, obesity, retinal
degeneration, and polydactyly are also exhibited by Rabl2 null mice
despite overtly normal ciliation (Kanie et al., 2017;Duan et al., 2021).

Human patients with mutations in RABL2 are not known
likely due to the functional redundancy between RABL2A and
RABL2B (Kanie et al., 2017). However, a deletion in RABL2A has
been identified as a risk factor for infertility among Australian
men (Jamsai et al., 2014). Analysis of rare and potentially
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FIGURE 3
Overview of Rabl2 mediated ciliary transport. Rabl2GTP is engaged at the basal body via interaction with Cep19 and Ift74/Ift81 heterodimer. The
Cep19-Rabl2-Ift74/Ift81 complex facilitates the ciliary uptake of IFT particles lacking Ift25/Ift27. Following this majority of Rabl2 undergoes hydrolysis of
bound GTP resulting in its replacement by Ift25/Ift27. However, some Rabl2GTP may remain associated with the IFT-B trains and enter the cilium.
Simultaneously, import of GPCRs is mediated by Tulp3 bound to IFT-A complex. Following anterograde transport the IFT trains are remodelled and
motor proteins are exchanged at the ciliary tip (not shown). The export of GPCRs across the transition zone (TZ) is driven by BBSome bound to the
IFT-B complex via Lztfl1 binding to Ift25/Ift27.

deleterious SNVs in RABL2 using mice has underscored its
important role in cilia-mediated regulation of growth, left-
right patterning, neural tube formation, limb development, and
sperm motility (Ding et al., 2020). However, this study did not
comment on the primary cilia architecture or frequency of ciliated
cells in mutant Rabl2 tissues though the sperm in the latter
resembled that of Rabl2mot mice.

4.2 Rabl4/Ift27

Initially, Ift27 was discovered as part of the IFT-B core in
Chlamydomonas by biochemical studies (Lucker et al., 2005). Later
it was identified as an ortholog of Rab-like 4 (Rabl4). It retains
four characteristic RabF motifs, which together with phylogenetic
analysis suggested that it belonged to the ancestral Rab family in the
LECA (Diekmann et al., 2011). It forms a nucleotide independent
heterodimer with Ift25 (Bhogaraju et al., 2011) that localizes at the
basal body and undergoes IFT in various organisms (Qin et al., 2007;
Wang et al., 2009; Bhogaraju et al., 2011; Huet et al., 2014). Ift27
binding to Ift25 is required for the latter’s entry to the cilium but
not its stability (Eguether et al., 2014). The Ift25/Ift27 heterodimer
interacts with the Ift74/Ift81 heterodimer which tethers it to the
IFT-B1 core subcomplex (Bhogaraju et al., 2011; Taschner et al.,
2014). GTP binding to Ift27 is not required for the assembly

of the Ift25/Ift27 heterodimer but promotes the engagement of
the latter to IFT-B1 and its ciliary cycling (Eguether et al., 2014;
Huet et al., 2014; Liu et al., 2023).

The requirement of Ift27 for cilia biogenesis is context
dependent. In Trypanosomes Ift27 silencing impedes cell growth
and flagellum formation (Huet et al., 2014). In contrast, Ift27 is
dispensable for cilia assembly in mice as its ablation results in
neonatal lethality without structural ciliary anomalies except in
the sperm flagella (Zhang et al., 2017). Nevertheless, Ift27−/− mice
display pleiotropic structural defects in the skeleton, heart, lung, and
brain that are reminiscent of defective Hh signaling (Eguether et al.,
2014). Studies in mice cells suggested that Ift27 independent of
the IFT-B complex associates and stabilizes a nucleotide-free form
of Arl6/Bbs3, followed by GTP loading and Arl6 activation that
triggers the assembly of the BBSome-Arl6 coat on membrane
surfaces (Jin et al., 2010), mediating the export of the BBSome
(Liew et al., 2014). Ift25/Ift27 heterodimer associates with the
BBSome via Lztfl1, a BBSome modulator and is required for the
export of the BBSome, Lztfl1 and its cargoes, such as Ptch1, Smo and
Gpr161 out of the cilium (Eguether et al., 2014). In Chlamydomonas
as in mammals IFT27 is not required for IFT (Sun et al., 2021).
Here LZTFL1 stabilizes IFT25/IFT27 that is essential for BBSome
recycling at the cilia tips (Sun et al., 2021), independent of IFT27
nucleotide state and facilitates BBSome-dependent phospholipase D
ciliary export (Liu et al., 2023).
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While hypomorphic variants in IFT27 cause Bardet-Biedl
syndrome 19 (BBS19; OMIM #615996), a rare autosomal recessive
condition characterized by ciliopathy characteristics, such as
severe intellectual disability, polydactyly, renal failure, obesity,
retinitis pigmentosa, and hypogonadism (Aldahmesh et al., 2014;
Schaefer et al., 2019; Zhou et al., 2021); loss-of-function variants
in IFT27 have been associated with a lethal fetal ciliopathy with
short ribs, hypodysplastic kidneys, imperforate anus and situs
invertus with severely impaired ciliogenesis in patient-derived
kidney sections (Quélin et al., 2018; Haïm et al., 2025).

4.3 Rabl5/Ift22

A ciliary role was first anticipated for Rab-like 5 (Rabl5)
when ifta-2, its ortholog in C. elegans was found to localize in
ciliated sensory neurons (Schafer et al., 2006). While ifta-2 null
worms did not exhibit typical ciliary defects they showed abnormal
insulin-IGF-1-like signaling. Rabl5 is conserved acrossmany ciliated
organisms (Schafer et al., 2006; Silva et al., 2012). Studies showed
that IFT22, a Rabl5 ortholog in C. reinhardtii associated with
IFT-B complex, specifically with the IFT81/IFT74 heterodimer
(Silva et al., 2012; Taschner et al., 2014). While in trypanosomes
its recruitment to IFT-B1-1 subcomplex is essential for flallega
formation; IFT and flagellation did not depend on its nucleotide
state (Wachter et al., 2019). Work in C. reinhardtii suggests that
active IFT22 interacts with GTP bound Arl6 to recruit the BBSome
to the basal body (Xue et al., 2020). This study also revealed
that ciliary uptake and cycling of the BBSome does not depend
on IFT22. In contrast Chlamydomonas and Trypanosoma brucei
(Adhiambo et al., 2009; Silva et al., 2012; Wachter et al., 2019)
IFT22 disruption did not affect ciliogenesis or ciliary signaling in
hTERT-RPE cells (Takei et al., 2018).

5 Exocyst in membrane trafficking

The exocyst is a conserved ∼ 750 kDa heterooctameric
complex that belongs to the Complexes Associated with Tethering
Containing Helical Rods (CATCHR) class of MTCs that modulate
tethering and fusion of post-Golgi and recycling endocytic vesicles
at the plasmamembrane (Ungermann and Kümmel, 2019). Its holo-
complex comprises of eight subunits: Sec3, Sec5, Sec6, Sec8, Sec10,
Sec15, Exo70 and Exo84 in budding yeast that are termed EXOC1-8
in mammals (Hsu et al., 1996; TerBush et al., 1996). Each exocyst
subunit contains the characteristic CATCHR domain and CorEx
(core of exocyst) motif, an N-terminal coiled-coil followed by a
rod composed of short antiparallel helical bundles (Mei et al., 2018).
Themammalian exocyst is an octamer that is dynamically assembled
from two subcomplexes (SC), SC1 (EXOC1-4) and SC2 (EXOC5-8)
that are pre-assembled at the vesicles and likely arrive together at the
plasma membrane (Ahmed et al., 2018; Maib and Murray, 2022).

Exocyst recruitment to secretory vesicles involves Sec15/Exoc6
binding Sec4p/Rab33b (Guo et al., 1999) and Sec2 its GEF
(Medkova et al., 2006). Myo2, the yeast myosin V binds both Exoc6
and Rab33b (Jin et al., 2011). For vesicle delivery to polarized
membranes, the conversion of PI4P to PI(4,5)P2 by Arf6 triggers
exocyst recruitment and both SC1 and SC2 independently bind

to the membrane PI(4,5)P2 (Maib and Murray, 2022). Studies in
yeast showed that Sec3/Exoc1 (Zhang et al., 2008) and Exo70/Exoc7
(He et al., 2007) bind PI(4,5)P2 in the target membranes to
engage the exocyst at the site of exocytosis. Recent studies also
showed that the exocyst not only mediates SNARE assembly
(Sivaram et al., 2005; Dubuke et al., 2015; Yue et al., 2017) but
functions downstream driving complete membrane fusion and
mixing of vesicle contents (Lee et al., 2024).

5.1 Exocyst and primary ciliogenesis

The exocyst is required to support numerous cellular functions,
such as cell polarity (Polgar et al., 2015), migration (Zuo et al., 2006),
autophagy (Bodemann et al., 2011), and cytokinesis (Gromley et al.,
2005). It was first shown to localize to the primary cilium in MDCK
cells (Rogers et al., 2004) and the ciliary stalk of photoreceptors in
the frog retina (Mazelova et al., 2009). Using live imaging Rivera-
Molina et. al., showed that in the presence of serum, the exocyst
was enriched at the ciliary pocket of internal cilia; upon serum
withdrawal, as the cilia are recycled to the cell surface, the exocyst
was redistributed at its base (Rivera-Molina et al., 2021). In hTERT-
RPE1 cells, SEPTIN9 a filamentous GTPase was shown to activate
RhoA GTPase that in turn recruited the exocyst to the ciliary base
and the depletion of either SEPTIN9 or the exocyst abolished the TZ
and cilia assembly (Safavian et al., 2023).

While some exocyst subunits Exoc2, Exoc4 (Fogelgren et al.,
2011; Seixas et al., 2016) and Exoc6 (Feng et al., 2012) localize to
the axoneme, others such as Exoc3 (Yeaman et al., 2001), Exoc5
(Seixas et al., 2016), Exoc6b (Guleria et al., 2024), Exoc7 and Exoc8
(Seixas et al., 2016) occur at the basal body and periciliary regions
(Figure 4). Some exocyst components also interact with ciliary
proteins: Exoc5 binds Arl13b, Ift20, Ift88, and PC2 (Fogelgren et al.,
2011); Exoc2 and Exoc3 directly interact with Arl13b and genetic
interaction was reported between Arl13b and Exoc5 (Seixas et al.,
2016). Ift20 interacts with Exoc4 and Exoc7 (Monis et al., 2017).
The exocyst was also shown to cooperate with primary cilia in
extracellular vesicle production in MDCK cells (Zuo et al., 2019a).

Studies in vitro and animal models underscore the essentiality
of the exocyst for ciliogenesis (Table 2). Many studies targeted
Exoc5 as it is indispensable for exocyst assembly. In zebrafish,
exoc5 morphants phenocopied pc2 depletion, and the manipulation
of Exoc5 in MDCK cells led to aberrant ciliary assembly and
mechanosensation defects reminiscent of Autosomal dominant
polycystic kidney disease (ADPKD) (Fogelgren et al., 2011).
An exoc5 loss of function mutant in zebrafish showed gross
abnormalities of the brain, retina, and heart consistent with
ciliopathies (Lobo et al., 2017). The complete ablation of exoc5 in
zebrafish resulted in severe cardiac dysfunction and succumbed
4 days post fertilization; Exoc5 endocardial cell-specific silencing in
mice showed dysmorphic aortic valves abrogating ciliogenesis and
allied ciliary signaling (Fulmer et al., 2019). In MDCK cells the
knockdown of Exoc5 or mutating its CTS suppressed ciliogenesis
and its overexpression led to elevated ciliation (Zuo et al., 2019b).
Other studies also recapitulated abnormal ciliation following Exoc5
knockdown inMDCKcells, though lumen formationwas unaffected
in 3-dimensional cultures; mice with kidney-specific knockdown
of Exoc5 exhibited PCP defects with suppressed primary ciliation
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FIGURE 4
Ciliary transport functions of the exocyst complex. (1) Post-golgi vesicles in the secretory pathway are tethered at the plasma membrane by the
exocyst that mediates exocytosis. (2) Vesicles with ciliary cargo are targeted to the cilium by the interaction of Exoc6, an exocyst subunit (not shown
here) with Rab11 and Rabin8. The exocyst localizes at the primary cilium and periciliary regions; its subunits Exoc2, Exoc4, and Exoc6 have been
detected at the axoneme, and others such as Exoc5, Exoc6b, Exoc7, and Exoc8 have been noted at the basal body. The direct binding of Arl13b to
Exoc2 and PC2 to Exoc5 is illustrated. The inset depicts the formation of the heterooctameric exocyst complex at the target membranes by the
dynamic assembly of its subcomplexes (SC), SC-1 and SC-2 which mediates tethering of the vesicles, SNARE assembly followed by membrane fusion.

(Polgar et al., 2015). Seixas et al. showed that Exoc5 conditional
inhibition in mouse kidneys caused high mortality and the
surviving animals had a range of abnormalities including enlarged
kidneys with cysts, significantly fewer and shorter cilia and overall
reduced Arl13b protein levels (Seixas et al., 2016). The Exoc5
CTS was required for proper exocyst function in ciliation and
its mutation led to defective cystogenesis and tubulogenesis in
MDCK cells (Zuo et al., 2019b).

Studies in MDCK cells, zebrafish, and mice also revealed that
Cdc42, a small GTPase that interacts with the exocyst colocalizes
with Exoc5 at the primary cilium and acts in concert with it for
polarized secretion and primary ciliogenesis (Zhang et al., 2001;
Zuo et al., 2011). Accordingly, exoc5 morphant zebrafish have small
eyes (Fogelgren et al., 2011) and show loss of photoreceptor cilia,
similar to that observed following cdc42 silencing (Choi et al.,
2013). Cdc42 depletion in the mouse kidney led to polycystic
kidney disease, aberrant cystogenesis with fewer and abnormal
cilia surrounding the cysts (Choi et al., 2013). The knockdown
of Tuba, a Cdc42-specific GEF suppressed primary ciliation in
MDCK cells and tuba morphant zebrafish exhibited severe renal
abnormalities and defective cilia (Baek et al., 2016). Exoc6 silencing

in hTERT-RPE1 cells produced shorter cilia (Feng et al., 2012).
Inhibition ofExoc6b, a paralog ofExoc6 inATDC5pre-chondrocytes
strongly suppressed both the frequency of ciliated cells, cilia
length, and deregulated chondrocyte differentiation (Guleria et al.,
2024). In C. elegans exoc7 and exoc8 loss of function mutants
showed behavioral defects akin to that observed with dysfunctional
ciliogenesis albeit without any structural ciliary defects
(Jiu et al., 2012).

5.2 Exocyst in ciliary trafficking

The delivery of fibrocystin and PC2 to the ciliary membrane
depends on the exocyst (Monis et al., 2017). Similarly, rhodopsin
targeting to outer photoreceptor segments requires exocyst function.
Accordingly, retina-specific Exoc5 KO in mice led to the loss
of photoreceptor outer segments and their associated cilia, as
well as impaired vision (Lobo et al., 2017). Exoc6 directly binds
Rabin8 in hTERT-RPE1 cells indicating the involvement of the
exocyst in vesicle targeting during cilia assembly (Feng et al.,
2012). In mammalian cells, the trafficking of soluble ciliary
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TABLE 2 Exocyst and cilia in organismal development.

Gene Mutant type Organism/Cell type Cilia Phenotype Reference

Exoc1
Exoc1−/− Mouse NA Peri-implantation lethal Mizuno et al. (2015)

Nanos-Cre+;Exoc1fl/fl Mouse NA Impaired spermatogenesis Osawa et al. (2021)

Exoc3 PF4-Cre+;Exoc3−/− Mouse NA Defective platelet aggregation,
integrin activation, increased
arterial thrombosis

Walsh et al. (2021)

Exoc4 Exoc4−/− Mouse NA Embryonic lethal – survive to
primitive streak stage

Friedrich et al. (1997)

Exoc5

exoc5 KD Zebrafish Unaffected Small body size and eyes, edema,
curly tail up, and defective
left-right patterning

Fogelgren et al. (2011)
Exoc5 misexpression MDCK Loss of cilia with Exoc5 KD and

longer cilia with Exoc5 OE
Altered mechanosensation,
increased cell proliferation in
Exoc5 KD

Exoc5 shRNA KD MDCK

Lower frequency, shorter and
stubby

Abnormal cyst formation with
increased apoptosis on the outside
of the cyst and increased
sensitivity to apoptotic cues, PCP
defects

Polgar et al. (2015)
Ksp-Cre+; Exoc5fl/fl Mouse neonatal lethality, ∼1% of mice

survived to 3 weeks, cystic kidney
with dilated kidney tubules, renal
tubules showed fragmentation and
shrinkage due to apoptosis

exoc5 KD Zebrafish NA Phenotypes related to abnormal
ciliation

Seixas et al. (2016)Ksp1.3-Cre+; Exoc5fl/fl Mouse Suppressed Arl13b protein levels Uterobilateral ureter obstruction
leading to early death,
10-week-old pups with smaller
fibrotic kidneys, numerous cysts

Exoc5 misexpression MDCK Exoc5 KD: absent Exoc5 OE:
longer

Reduced extracellular vesicle
production with Exoc5 KD

Zuo et al. (2019a)

Exoc5-CTS mutant MDCK Fewer, length unaffected Inhibited cystogenesis and
tubulogenesis

Zuo et al. (2019b)

exoc5 KO Zebrafish

Absent

Hydrocephalus, smaller eyes,
pericardial edema

Lobo et al. (2017)
Rho-Cre+; Exoc5 fl/fl Mouse Disorganized photoreceptor outer

segments, shorter photoreceptor
outer segment length

exoc5−/− Zebrafish NA Pericardial edema, severe cardiac
outflow obstruction, death at 4 dpf

Fulmer et al. (2019)NfatC1-Cre+; Exoc5f/f Mouse Reduced length and frequency Ventricular septal defects, apical
coronary vascular haemorraging,
bicuspid aortic valve, valvular
stenosis, and valvular calcification

(Continued on the following page)
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TABLE 2 (Continued) Exocyst and cilia in organismal development.

Gene Mutant type Organism/Cell type Cilia Phenotype Reference

Exoc6

Exoc6 misexpression hTERT-RPE Shorter Exoc6 OE cells arrested
recycling endosomal
trafficking

Feng et al. (2012)

Exoc6−/− (hbd) Mouse NA Inhibition of erythroid iron
assimilation

Lim et al. (2005), White et al.
(2005)

Exoc6b Exoc6b KD ATDC5 Reduced frequency of ciliated
cells and shorter cilia

Impaired chondrocyte
differentiation

Guleria et al. (2024)

Exoc7

Exoc7−/− HeLa and adipocytes NA Abrogation of
insulin-stimulated GLUT4
translocation

Wang et al. (2019b)

exoc7 null C. elegans NA Slow growth,
Uncoordinated movement
Impaired response to
chemical, mechanical, and
thermal stimuli

Jiu et al. (2012)

Exoc8 exoc8 null C. elegans NA Same as exoc7 null worms Jiu et al. (2012)

KD: knockdown; OE: overexpression; NA: not available.

proteins, such as Gli2/3 and Lkb1 to the primary cilium
was dependent on the exocyst and involved Rab14, Rab18,
Rab23, and Arf4 (Niedziółka et al., 2024).

5.3 Exocyst and ciliopathies

Rare pathogenic mutations in several exocyst subunits are
linked to monogenic diseases with abnormal cilia. EXOC2
biallelic mutations cause a neurodevelopmental disorder with
dysmorphic facies and cerebellar hypoplasia (NEDFACH; OMIM
#619306), wherein patient-derived fibroblasts EXOC2 expression
was strongly suppressed leading to impaired vesicle fusion and
exocytosis, and defective ARL13B localization in the cilium
(Van Bergen et al., 2020). Homozygous null mutations in EXOC6B
are linked to spondyloepimetaphyseal dysplasia with joint laxity
type 3 (SEMD-JL3; OMIM #618395) that manifest largely with
skeletal anomalies, such as hyperlaxity of joints and multiple
joint dislocation, although some SEMD-JL3 patients do exhibit
structural brain abnormalities and cognitive deficits (Girisha et al.,
2016; Campos-Xavier et al., 2018; Simsek-Kiper et al., 2022). Our
studies showed that EXOC6B mutant patient-derived fibroblast
cells were defective in primary ciliogenesis (Simsek-Kiper et al.,
2022). Similarly silencing Exoc6b in ATDC5 cells inhibited
cilia assembly and led to abnormal chondrocyte differentiation
(Guleria et al., 2024). Partial loss of function mutations in EXOC7
cause neurodevelopmental disorder with seizures and brain atrophy
(NEDSEBA; OMIM #619072). Truncating mutations in EXOC8 are
linked to neurodevelopmental disorder withmicrocephaly, seizures,
and brain atrophy (NEDMISB; OMIM #619076). Exoc7 null mice
are embryonic lethal (Coulter et al., 2020).The exoc7 loss of function
zebrafish manifest ciliopathy features, such as edema and small
eyes, as well as showed microcephaly owing to elevated apoptosis

that led to a reduction in the number of neural progenitors in the
telencephalon of mutant zebrafish (Coulter et al., 2020).

6 Future perspectives

Here we reviewed the involvement of Rabs, Rab-like factors, and
the exocyst in ciliary trafficking andbiogenesis. Based on the existing
findings we note the below:

The Rab8-Rabin8-Rab11 cascade is implicated in early
ciliogenesis. While Rab8 has been extensively studied we know
comparatively little about the essentiality of Rab11 in this process.
Engineering mutant Rab11 locked in GTP and GDP bound
conformations by gene editing in vitro and animal models may
help to shed light on this.

Activating mutations in LRRK2 linked to PD have been shown
to involve several Rab substrates that function at least in part at the
cilium, includingRab8, Rab10, andRab12.More studies are required
to uncover not only all the Rabs involved but also to elucidate
their precise roles. Furthermore, it is unclear why LRRK2-dependent
cilia loss is cell-type specific, affecting astrocyte and cholinergic
interneuron cilia but not those in medium spiny neurons of the
dorsal striatum (Khan et al., 2024; Lin et al., 2025). It would be
interesting to examine this problem from the lens of the types of
ciliary proteins differentially trafficked in cells sensitive to versus
those that are not to LRRK2 over activating mutations.

For many years RAB23 mutations have been linked to CS
which manifests with ciliopathy-like features. However, ciliation
and trafficking abnormalities in them remain to be elucidated. The
tissue-specific analysis of cilia in major organ systems affected in
CS, for example, the CNS, skeleton, and heart may help to shed
light on ciliary defects and pathologically relevant RAB23 cargo.
In terms of pathomechanisms, future work could focus on the
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genotype-phenotype correlation of RAB28 mutations linked with
CRD and PAP.

Secretomics in HeLa cells has shown that the exocyst is required
for constitutive secretion (Pereira et al., 2023). It would be interesting
for future studies to examine if exocyst-dependent ciliary trafficking
is required in this process.

Conditional depletion of Exoc5 in podocytes, a unique cell
type in the kidney glomerulus damages its structure leading to
proteinuria and renal failure, without primary cilia involvement
(Nihalani et al., 2019). In this study, the authors argue that podocyte-
specific Ift88 silencing also does not lead to renal abnormalities.
This is contrary to another study that reported a homozygous
missense mutation in IFT139 that encodes for TTC21B, an IFT-
A retrograde complex subunit in a patient with Focal segmental
glomerulosclerosis wherein IFT139 silencing was suggested to result
in abnormal primary cilia with aberrant aggregation of IFT-B
components at the tips (Huynh Cong et al., 2014). Further studies
will be needed to resolve the physiological relevance of the exocyst
and cilia axis in podocytes.

The contribution of cilia is unclear in several exocyst-linked
genetic diseases, for example, EXOC7 and EXOC8 linked NEDSEBA
and NEDMISB, respectively. More detailed analysis is warranted
to examine the molecular pathomechanisms in these disorders,
including the disruption of primary ciliogenesis in them.

It is likely that not only the exocyst but other MTCs such
as HOPs also interplay with distinct Rabs to modulate primary
ciliogenesis. Future studies should examine these interactions to
unveil their unique requirements in ciliary trafficking.

Finally, improving our understanding of the crosstalk and
combinatorial action between different constituents of the
membrane trafficking machinery will deepen our understanding of
the sophisticated biological mechanisms underlying cilia biogenesis
and function, as well as their clinical implications.
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