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in ophthalmology public health:
current applications and future
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Nanjing, China, 3The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China

Global eye health has become a critical public health challenge, with the
prevalence of blindness and visual impairment expected to rise significantly
in the coming decades. Traditional ophthalmic public health systems face
numerous obstacles, including the uneven distribution of medical resources,
insufficient training for primary healthcareworkers, and limited public awareness
of eye health. Addressing these challenges requires urgent, innovative
solutions. Artificial intelligence (AI) has demonstrated substantial potential
in enhancing ophthalmic public health across various domains. AI offers
significant improvements in ophthalmic data management, disease screening
and monitoring, risk prediction and early warning systems, medical resource
allocation, and health education and patientmanagement. These advancements
substantially improve the quality and efficiency of healthcare, particularly in
preventing and treating prevalent eye conditions such as cataracts, diabetic
retinopathy, glaucoma, and myopia. Additionally, telemedicine and mobile
applications have expanded access to healthcare services and enhanced the
capabilities of primary healthcare providers. However, there are challenges in
integrating AI into ophthalmic public health. Key issues include interoperability
with electronic health records (EHR), data security and privacy, data quality
and bias, algorithm transparency, and ethical and regulatory frameworks.
Heterogeneous data formats and the lack of standardized metadata hinder
seamless integration, while privacy risks necessitate advanced techniques such
as anonymization. Data biases, stemming from racial or geographic disparities,
and the “black box” nature of AI models, limit reliability and clinical trust. Ethical
issues, such as ensuring accountability for AI-driven decisions and balancing
innovation with patient safety, further complicate implementation. The future of
ophthalmic public health lies in overcoming these barriers to fully harness the
potential of AI, ensuring that advancements in technology translate into tangible
benefits for patients worldwide.

KEYWORDS

ophthalmology, public health, artificial intelligence, digital health, telemedicine

Frontiers in Cell and Developmental Biology 01 frontiersin.org

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2025.1576465
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2025.1576465&domain=pdf&date_stamp=2025-04-16
mailto:mubaiwen@163.com
mailto:mubaiwen@163.com
https://doi.org/10.3389/fcell.2025.1576465
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fcell.2025.1576465/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1576465/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1576465/full
https://www.frontiersin.org/articles/10.3389/fcell.2025.1576465/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Chen and Bai 10.3389/fcell.2025.1576465

1 Introduction

Global eye health has become a major public health challenge.
In 2020, around 1.1 billion people worldwide were affected by visual
impairment, including 43 million blind individuals, 295 million
with moderate to severe visual impairment, 258 million with mild
visual impairment, and 510 million with myopia (Blindness et al.,
2021b; Burton et al., 2021; Philippin et al., 2024). By 2050, the
number of blind people is expected to increase by 610 million, and
474 million people will face moderate or severe visual impairment
(Blindness et al., 2021b). This burden disproportionately affects
developing nations and aging populations, with 80% of cases
concentrated in these vulnerable communities (Yusufu et al., 2021).
This growing issue affects not only individual health but also public
health systems, leading to reduced quality of life, higher economic
costs, lower productivity, and increased social welfare expenses.
Notably, visual impairment among the working-age population led
to a staggering $410.7 billion in global productivity losses in 2020
(Blindness et al., 2021a). Even presbyopia alone, assuming working
individuals under 65, could result in $25.367 billion in losses,
representing 0.037% of global GDP (Frick et al., 2015). These figures
underscore the urgent and imperative need for concerted global
action to address eye health challenges.

The traditional ophthalmic public health system faces several
challenges, primarily the uneven distribution of medical resources.
Low-income countries have just 3.7 ophthalmologists per million
people, while high-income countries have 76.2 (Resnikoff et al.,
2020). This 20 times gap has led to the desert of eye disease
treatment in poor areas, as seen in the northern states of Nigeria,
where 92% of children with blindness lack surgical intervention
(Resnikoff et al., 2020). In low- and middle-income countries,
limited resources worsen eye health issues, resulting in more
untreated vision impairments (Burton et al., 2021). High-income
countries, despite stronger healthcare systems, face new challenges
due to changing patterns of eye diseases (Ameenat Lola Solebo et al.,
2022). As infectious eye diseases decrease, chronic conditions rise
(Wong et al., 2014; Goodman et al., 2023). Additionally, many
healthcare workers lack proper training to diagnose and treat
common eye diseases (Freeman et al., 2013). Public awareness of eye
health is low, leading to delayed treatment and irreversible vision
loss. The annual economic loss of productivity loss is more than
411 billion US dollars, mainly from preventable conditions such
as uncorrected presbyopia (Capo et al., 2022; Williams and Sahel,
2022). These challenges not only threaten global eye health but also
hinder social and economic progress, making the need for effective
solutions urgent.

The rapid development of AI offers valuable solutions to
challenges in ophthalmic public health. AI can efficiently screen
for eye diseases and diagnose them early in large populations
(Hamet and Tremblay, 2017). It also helps optimize medical
resource allocation, with AI-assisted telemedicine (Li J. O. et al.,
2021; Simon et al., 2024) and mobile apps (Suo et al., 2022;
Pundlik et al., 2023) providing high-quality diagnostic support
to primary healthcare facilities. In research, ophthalmic AI
can analyze large amounts of medical data, helping researchers
identify new disease patterns and treatment methods (Ting et al.,
2019). Machine learning also aids in discovering biomarkers,

supporting early diagnosis and personalized treatments for
eye diseases (Linde et al., 2024).

This review examines AI applications in ophthalmic public
health, including data governance, disease screening, risk
prognostication, healthcare optimization, and patient management.
It is relevant to stakeholders such as ophthalmic patients, primary
healthcare providers, and ophthalmologists. By synthesizing
research and case studies, the review highlights AI’s clinical potential
and implementation challenges, offering insights into its future
integration in ophthalmic public health systems.

2 Application of AI models and
algorithms in the field of
ophthalmology public health

2.1 Informatization of ophthalmology

With the rapid development of information technology, AI
is becoming increasingly important in healthcare, especially in
ophthalmic public health. Data informatization is key to improving
healthcare efficiency and quality. AI supports clinical diagnosis,
research, and public health decisions by efficiently processing
ophthalmic data. Computer vision and natural language processing
are crucial for ophthalmology informatization. Relevant algorithms
are shown in Figure 1.

Computer vision is essential in medical diagnosis by analyzing
and interpreting images, enabling computers to process medical
images like fundus photos, corneal topography, and OCT images
(Esteva et al., 2021). This helps advance the informatization of
ophthalmology, with key algorithms such as image enhancement
(Shen et al., 2021; Wang J. et al., 2021), segmentation (Li X. et al.,
2021; Xing et al., 2022), target detection (Son et al., 2020;
Dai et al., 2021), and image registration (Wang Y. et al., 2021;
Zhang et al., 2022). For instance, image enhancement improves low-
quality fundus photos. Shen et al. developed a method using image
decomposition and visual adaptation to enhance clarity and contrast
(Shen et al., 2021). Lee et al. introduced a generative adversarial
network (GAN) approach, termed FQ-UWF (Lee et al., 2024),
that enhances low-quality wide-angle fundus images unsupervised,
providing clearer views for more accurate diagnoses. Image
segmentation divides medical images into key regions for diagnosis.
Li et al. proposed a semi-supervised model that improves accuracy
by combining unlabeled and limited annotated data (Li X. et al.,
2021). Target detection, using deep learning, identifies specific
areas in images. Son et al. developed models for detecting
retinal abnormalities in fundus images, enabling quick and
accurate identification of lesions like microaneurysms and bleeding
(Son et al., 2020). Image registration aligns images from different
times or modes for comparison. Wang introduced a multimodal
retinal image registration method using weakly supervised deep
learning (Wang Y. et al., 2021), while Zhang proposed a two-step
method for optimizing image alignment (Zhang et al., 2022). A
summary of these computer vision algorithms applied to ophthalmic
images is shown in Table 1.

Natural language processing (NLP) focuses on processing and
analyzing text data, enabling the extraction and understanding
of information through automated methods (Wu et al., 2022).
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FIGURE 1
Application diagram of AI in ophthalmology informatization construction. The core AI technologies in ophthalmic informatics focus on computer
vision methodologies (encompassing image enhancement, segmentation, registration and target detection) coupled with natural language processing
implementations (sentiment analysis, text summary, machine translation, named entity recognition, and semantic similarity calculation).

It supports medical decision-making and management by
analyzing electronic medical records, research literature, patient
questionnaires, and other textual data. NLP enhances clinical
decision-making, patient monitoring, educational consultations,
medical record management, and accelerates scientific research.
Key related algorithms include sentiment analysis (Nguyen et al.,
2021), text classification (Zhao et al., 2025), text summarization
(Chotcomwongse et al., 2024), named entity recognition (NER)
(Macri et al., 2023), and semantic similarity calculation (Bible et al.,
2017). For example, text classification can analyze electronic
medical records to categorize diseases, creating algorithms that help
doctors quickly access relevant information, improving efficiency
(Stein et al., 2019). NER technology extracts crucial entities
such as disease names, treatment plans, and drug dosages from
medical records, aiding clinical decision-making and research
(Hossain et al., 2023). Maganti et al. demonstrated NER’s use in
microbial keratitis analysis, improving diagnosis and treatment by
extracting data like inflammation levels and pathogen types from
clinical notes (Wu et al., 2022). Machine translation technology
enables the translation of medical records and documents
across languages, facilitating cross-language communication and
collaboration. Semantic similarity computation finds similarities
between medical records and literature, helping identify disease
patterns and treatment outcomes (Mulyar et al., 2021). For instance,
Yang et al. analyzed medical records from diabetic retinopathy
patients to identify treatment effectiveness across different groups,
aiding doctors in optimizing treatment strategies (Yang et al.,

2021). A summary of these NLP algorithms in ophthalmology is
provided in Table 2.

In the future, as technology improves and data grows, AI
will play a bigger role in ophthalmic data management. These
technologies have the potential to simplify medical processes, but
careful attention must be paid to data privacy, algorithm bias, and
the need for ongoing training of healthcare professionals to ensure
effective and equitable implementation.

2.2 Ophthalmic disease screening and
monitoring

2.2.1 Early screening tool
Early screening is essential for preventing and controlling eye

diseases. Traditional methods, such as door-to-door screening by
field workers, rely heavily on the expertise of ophthalmologists but
face challenges like high costs and low efficiency (Vujosevic et al.,
2020). AI-enabled screening tools can enhance this approach by
assisting in the identification and referral of patients who need
further intervention. This enables large-scale, efficient screening.
Many reviews have highlighted AI’s role in screening ophthalmic
diseases like diabetic retinopathy (Teixeira et al., 2024), glaucoma
(Vieira et al., 2025), and macular degeneration (Kang et al., 2024).

The core of early screening tools lies in image recognition
technology, which can automatically analyze and diagnose
medical images such as fundus images and optical coherence
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TABLE 1 Summary of AI algorithms in computer vision.

No. Algorithm/Model Application References

1 GAN (Generate Countermeasure Network) Ultra-wide angle fundus image quality
enhancement improves the clarity and contrast of
peripheral retinal microlesions in diabetic
retinopathy patients.

Lee et al. (2024)

2 RNN (Recurrent Neural Network) Analysis of choroidal neovascularization activity
using OCT longitudinal sequences.

Romo-Bucheli et al. (2020)

3 Mbsanet (CNN + SA mechanism) Combined recognition of multiple fundus diseases
enables the detection of hard exudates and
glaucomatous optic disc depression in diabetic
retinopathy.

Wang et al. (2023a)

4 Canny edge detection Quantitative analysis of retinal vascular
morphology detects vascular tortuosity and branch
abnormalities in diabetic retinopathy patients.

Li and Chutatape (2004)

5 Hybrid 2D-3D CNN Three-dimensional registration of OCT layered
structure enables longitudinal tracking of retinal
thickness changes in diabetic macular edema
patients.

Khansari et al. (2020), Liu et al. (2024a)

6 U-Net and MSAG network Quantitative choroidal volume measurement
assesses posterior scleral staphyloma in high
myopia patients.

Tsuji et al. (2020), Kundu et al. (2022), Xu et al.
(2024)

7 CoFe net (Fundus enhancement network) Low-quality fundus image enhancement improves
the visibility of microaneurysms and bleeding
points in diabetic retinopathy patients.

Shen et al. (2021)

8 Image decomposition and visual adaptation Enhancing the contrast of vascular stenosis,
arteriovenous crossing signs, and bleeding areas in
hypertensive retinopathy.

Wang et al. (2021a)

9 Transformation consistency self-integration model Semi-supervised glaucoma optic disc/cup
segmentation reduces label dependence, improves
cup-to-disc ratio calculation accuracy

Li et al. (2021b)

10 Weakly supervised deep learning framework The fusion of fundus color photography and
fluorescein angiography (FA) enables precise
localization of non-perfusion areas in diabetic
retinopathy

Wang et al. (2021b)

11 Two-step registration method Efficiently register OCT and OCTA images to
evaluate choroidal neovascularization (CNV)
morphology and blood flow changes in the macular
region.

Zhang et al. (2022)

12 Unpaired generation model Ultra-widefield (UWF) image quality enhancement
improves peripheral retinal imaging, increases the
detection rate of retinal holes and lattice
degeneration

Lee et al. (2024)

tomography (OCT) scans. Common deep learning models used
in image recognition include convolutional neural networks (CNN)
(Schmidt-Erfurth et al., 2018; Liu et al., 2020), generative adversarial
networks (GAN) (Barrera et al., 2023), and attention mechanisms
(Bera et al., 2021). Among these, CNNs are the most widely used
in ophthalmic image recognition due to their strong ability to
extract and classify image features. By training on large ophthalmic
image datasets, CNNs can learn the characteristics of various eye
diseases and accurately diagnose them. Google’s DeepMind team

has developed a CNN-based eye disease screening system that
detects various eye diseases in fundus images with accuracy similar
to professional ophthalmologists (Li Y. et al., 2022). The system
extracts high-dimensional features from images through multi-
level convolution layer and pooling layer, and finally classifies them
through full connection layer. The results show that this method
performs well in the recognition of multiple ophthalmic diseases,
with ACC and AUC reaching 97.05% and 98.66% (Li Y. et al., 2022).
Deep learning also handles complex multimodal data. Multimodal
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TABLE 2 Summary of AI algorithms in natural language processing.

No. Algorithm/Model Application References

1 DPC code selection algorithm Uses text mining to extract key info from discharge summaries and
auto-select DPC codes, improving record standardization and
accuracy

Suzuki et al. (2008)

2 Clinical model clustering (semantic similarity) Uses NLP to cluster models based on semantic similarity, aiding
personalized treatment by identifying patient group characteristics

Goeg et al. (2015)

3 Information extraction algorithm Uses NLP to improve case detection sensitivity and specificity by
extracting information from electronic records

Ford et al. (2016)

4 De-identification method Uses NLP to quickly de-identify records, ensuring privacy during
sharing and analysis, suitable for large-scale data

Wellner et al. (2007)

5 Algorithm evaluation Evaluates algorithm performance in identifying ophthalmic
conditions by analyzing structured and unstructured data to
improve accuracy

Stein et al. (2019)

6 NLP (Natural Language Processing) Reviews NLP applications in ophthalmology, including clinical
document analysis, image report generation, and patient
communication

Wu et al. (2022)

7 Deep learning + NLP Introduces deep learning combined with NLP for ophthalmology,
covering disease diagnosis, treatment recommendations, and
patient history summaries

Yang et al. (2021)

learning models, such as attention-based fusion networks, can
extract key features from various data sources, improving diagnostic
capabilities (Gao et al., 2024). This approach not only enhances
disease recognition but also provides a more comprehensive risk
assessment for patients.

The implementation of AI in real-world healthcare settings
is progressively transforming traditional paradigms of disease
screening andmanagement. In ophthalmic practice, AI technologies
integrated with mobile devices and cloud-based platforms have
enabled multi-scenario coverage extending from clinical facilities to
household environments. For home-based applications, Chen et al.
(2023) developed a smartphone application capable of detecting
pediatric visual impairments through simplified visual acuity
testing and image analysis, achieving an area under the receiver
operating characteristic curve (AUROC) of 0.859 and facilitating
early intervention (Chen et al., 2023). Similarly, Khurana et al.
(2021) created a mobile platform that continuously monitors
visual function changes in patients with diabetic retinopathy (DR)
and age-related macular degeneration (AMD), enabling real-time
data transmission to healthcare providers for effective chronic
disease management (Khurana et al., 2021). In clinical settings,
Heydon et al. (2021) demonstrated AI’s operational efficiency
through a deep convolutional neural network (DCNN) trained
on 128,000 fundus images. This system accomplished referral
decision-making (“referable” vs. “non-referable”) within 15 s,
exhibiting 94.7% sensitivity and 92.6% specificity. Notably, the
implementation reduced manual review requirements by 83%
and shortened screening cycle duration from 14 days to 2 days,
substantially enhancing operational efficiency (Heydon et al., 2021).
These case studies illustrate that AI technologies not only improve
diagnostic accuracy andworkflow efficiency but also extendmedical
services beyond conventional clinical environments through

mobile-cloud integration. This dual capability enables broader
population coverage and more efficient disease management across
healthcare continua.

The cost-effectiveness advantages of AI in ophthalmic
disease screening have been validated through multiple empirical
studies, yet its sustainability requires systematic optimization.
Research within the United Kingdom National Health Service
(NHS) demonstrated that clinician-patient collaborative training
mechanisms improved screening adherence rates by 19 percentage
points, establishing a foundation for technology adoption
(Willis et al., 2023). Lin et al. (2023) further revealed significant
economies of scale in AI-based screening programs: when
regional imaging data centers served populations exceeding five
million, the per-case cost for diabetic retinopathy (DR) screening
decreased from $58.7 to $36.4 (37.9% reduction) (Lin et al.,
2023). In resource-limited settings, Xiao et al. (2021) innovated
a mobile screening unit model that achieved 92.3% AI device
utilization through pre-screening triage by community health
workers, coupled with an 18.7% regional cost recovery effect
(Xiao et al., 2021). However, two critical challenges emerged from
current research: First, performance degradation of AI systems
during longitudinal deployment was observed, as evidenced
by Willis et al.'s finding of a 2.3 percentage point increase in
missed diagnosis rates for atypical glaucoma after 18 months of
implementation (Willis et al., 2023). Second, rigid constraints
in human resource allocation were identified, where AI’s cost-
effectiveness advantage becomes inverted when specialist review
time exceeds 8 min per case. These findings underscore that
developing sustainable AI screening systems necessitates a three-
dimensional safeguard mechanism encompassing: 1) periodic
system updates to maintain diagnostic performance, 2) tiered
workforce training programs to optimize human-AI collaboration,
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and 3) real-time cost surveillance to ensure economic viability.
Addressing these multidimensional requirements represents a
crucial direction for future implementation research.

2.2.2 Long term monitoring system
Long-term patient follow-up and disease monitoring are

essential for effective disease management. Traditional follow-
up methods rely on regular hospital visits and subjective doctor
evaluations, which often result in high costs, low efficiency, and
fragmented information (Long et al., 2020). AI-driven monitoring
systems, leveraging machine learning and data mining, offer
continuous, accurate, and efficient solutions, showing great potential
in managing chronic diseases. For instance, Schmid et al. (2019)
developed a mobile app for AMD self-monitoring, achieving high
diagnostic accuracy (AUC: 0.799 for dry AMD, 0.969 for wet AMD),
surpassing traditional methods (Schmid et al., 2019). For cataract
monitoring, Long et al. created the CC-Guardian model, which
uses Bayesian and deep learning for personalized care, including
telehealth follow-ups. The model’s telehealth module demonstrated
high accuracy, with a sensitivity of 0.959, specificity of 0.945, and
AUC of 0.981, matching internal validation results (Long et al.,
2020). Building effective AI models requires annotated clinical
data for training and independent datasets for testing. Continuous
monitoring and updates are crucial to maintaining their reliability,
especially as new data and disease patterns emerge. This approach
ensures that models remain accurate, generalizable, and capable of
transforming the management of chronic eye diseases.

In summary, intelligent long-term monitoring systems have
greatly improved chronic diseasemanagement by integrating diverse
data and advanced algorithms. However, challenges remain: patient
compliance and data quality, especially in elderly populations, can
affect performance; long-term stability and update mechanisms
need validation; and privacy and data security require urgent
attention.The continuous optimization and refinement of intelligent
long-term monitoring systems are poised to bring transformative
changes to chronic disease management, driving the advancement
of public health toward a more scientific and intelligent future.

2.3 Ophthalmic disease risk prediction and
early warning

In recent years, with the continuous advancements in machine
learning and big data analysis, researchers have developed various
models to predict the occurrence of eye diseases. There have been
many reviews that have reported the application in glaucoma,
diabetic retinopathy, myopia, age-related macular degeneration
and other diseases (Tan and Wong, 2022; Bullimore et al., 2023).
These technologies automatically analyze medical images like
fundus images and OCT scans, using large-scale clinical data (e.g.,
patient history, genetics, lifestyle, and ophthalmic exam results) and
complex algorithms to identify and quantify risk factors for specific
eye diseases. For example, Nugawela et al. developed and validated
a risk model to predict vision-threatening diabetic retinopathy
(DR) in patients with type 2 diabetes (Nugawela et al., 2022). By
using extensive clinical data and retinal images, the model, built
with machine learning algorithms, was tested in resource-limited
environments. The results demonstrated high accuracy (C statistics

ranging from 0.778 to 0.832) and practicality, effectively reducing
resource consumption in DR screening while improving screening
efficiency (Nugawela et al., 2022). Similarly, Li et al. proposed a
deep learning system based on retinal images to predict the onset
and progression of glaucoma (Li F. et al., 2022). By analyzing subtle
features in retinal images, the system identifies potential glaucoma
risks earlier than traditional methods. The results confirmed that
the system performs well in predicting both the incidence and
progression of glaucoma, achieving an AUROC of 0.90 (0.81–0.99)
(Li F. et al., 2022). A summary of these models is in Table 3.

AI technology also has demonstrated significant potential in
predicting the progression of ophthalmic diseases. By utilizing
big data analysis and machine learning models, it provides
ophthalmologists with more accurate prognosis assessments and
disease management recommendations. Leveraging large-scale
clinical and high-resolution image data, AI systems can identify
early signs and key risk factors, enabling dynamic monitoring
of conditions such as diabetic retinopathy (Yang et al., 2023),
glaucoma (Dean et al., 2025), and myopia (Huang et al., 2023;
Wang Y. et al., 2023). For diabetic retinopathy (DR) prediction, Bora
et al. developed a deep learning-based risk prediction model using
color fundus photos. In internal validation, the model achieved an
area under the receiver operating characteristic curve (AUC) of 0.79
(95% CI 0.77–0.81), enabling early intervention and personalized
management of DR in diabetic patients (Bora et al., 2021). Further
advancing this, Dai et al. proposed a deep learning system that
analyzes large-scale longitudinal datasets to predict the timeline
of disease progression in DR patients (Dai et al., 2024). The
system demonstrated a consistency index of 0.754–0.846 and a
Brier score of 0.153–0.241 over 5 years, significantly enhancing
prediction accuracy and reliability (Dai et al., 2024). For myopia
prediction, Huang et al. introduced a time-aware multimodal deep
learning model, which integrates data on axial length, diopter,
and family history (Huang et al., 2023). The model achieved a
precision with an error of just 0.103 diopters, well within clinically
acceptable standards, offering a valuable tool for managing myopia
in children and adolescents (Huang et al., 2023). Similarly, Wang
et al. developed a machine learning model to predict the long-
term vision outcomes of high myopia, providing crucial insights for
patient follow-up and treatment (Wang Y. et al., 2023). In glaucoma
management, Dean et al. verified a deep learning-based visual field
prediction tool, which analyzes patient visual field data to forecast
glaucoma progression (Dean et al., 2025). Ang et al. Used machine
learning method to analyze the factors affecting the 10-year survival
rate of grafts in patients with corneal endothelial disease. The
results show that the machine learning model can accurately predict
the success rate and long-term survival rate of transplantation by
comprehensively analyzing the clinical characteristics of patients,
transplantationmethods and postoperativemanagement (Ang et al.,
2022). This finding is crucial for preoperative evaluation and
personalized surgical planning, improving outcomes. A summary of
these and other eye disease risk prediction models and algorithms is
provided in Table 4.

AI-driven predictive models demonstrate theoretical potential
for optimizing public health strategies in ophthalmology,
particularly in risk stratification and preventive intervention
design. While the integration of algorithmic systems with clinical
knowledge could theoretically enhance personalized treatment,
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TABLE 3 Summary of algorithm/model for predicting the occurrence of ophthalmic diseases.

No. Algorithm/Model Application References

1 Genome wide meta analysis prediction model Identifies risk loci and combines genetic and clinical data to
improve AMD prediction accuracy

He et al. (2024)

2 Cox proportional hazards model Uses EHR data for early diagnosis and intervention of
vision-threatening retinopathy

Nugawela et al. (2022)

3 DiagnosetNet algorithm Predicts glaucoma from fundus photos, enhancing early detection
and diagnosis accuracy

Li et al. (2022a)

4 FusionNet (Multimodal AI algorithm) Integrates visual field and OCT data for improved prediction of
glaucoma optic neuropathy

Xiong et al. (2022)

5 G-Risk (Risk regression model) Deep learning model that screens glaucoma from fundus images,
suitable for large-scale screening

Hemelings et al. (2023)

6 RESNET 101 based deep learning algorithm Predicts myopia from fundus photos and integrates blockchain
for data transparency and verification

Tan et al. (2021)

7 RAIDS (Retinal AI diagnosis system) High accuracy and robustness across different diseases, ideal for
comprehensive eye screening

Dong et al. (2022)

this synergy may be compromised by the black-box nature of
deep learning outputs. Furthermore, overreliance on predictive
analytics risks generating medical and ethical concerns. Sustainable
implementation requires the integration of AI’s computational
capabilities with clinicians’ domain expertise to achieve more
precise, equitable, and explainable clinical decision-making.

2.4 Optimal allocation of ophthalmic
medical resources

Telemedicine, as a crucial application of AI in ophthalmic
public health, has significantly enhanced the accessibility and
efficiency of eye care services, particularly in remote areas and
resource-constrained primary healthcare institutions. AI-assisted
remote diagnosis, treatment planning, and consultation systems
have demonstrated substantial improvements in service delivery
models (Taylor et al., 2007). By overcoming geographical barriers,
telemedicine has emerged as a pivotal strategy for addressing the
unequal distribution of medical resources. Its current operational
paradigm predominantly follows an asynchronous consultation
system characterized by “front-end portable device data acquisition
and cloud-based expert diagnosis.” For instance, Liu et al. evaluated
the application of automated imaging optical coherence tomography
(OCT) devices in remote diagnosis and monitoring of retinal
diseases.This technology reduces reliance on specialized technicians
while markedly improving service convenience and accessibility
in resource-limited regions (Liu Z. et al., 2024). Concurrently,
the proliferation of smartphone technology has enabled novel
approaches in ophthalmic examinations. Vilela et al. investigated
the integration of AI-driven smartphone platforms for high-
precision retinal image analysis (Vilela et al., 2024). The portability
and user-friendly interface of these devices make them ideal
tools for ophthalmic screening in remote areas, where patients
can perform self-examinations after minimal training, thereby

further enhancing service accessibility and operational convenience.
The synergistic combination of automated imaging OCT devices
with AI-enhanced smartphone platforms has significantly
expanded both the coverage and efficiency of ophthalmic public
health services. This technological integration enables broader
populations to receive timely, high-quality diagnostic evaluations
and longitudinal monitoring, representing a paradigm shift in
equitable healthcare delivery.

In the field of AI-assisted telemedicine, Chen et al. emphasized
the application of 5G technology in real-time remote retinal
laser photocoagulation therapy, which significantly enhanced
the accuracy and safety of teleoperated surgical procedures.
Furthermore, microsurgical robotics is emerging as a cutting-
edge advancement in remote ophthalmic treatment (Chen et al.,
2021). Ladha et al. demonstrated the superiority of robot-assisted
techniques over conventional manual methods through simulated
subretinal injection experiments, showing that enhanced injection
precision and reduced human error rates substantially improved
both therapeutic outcomes and patient safety in gene therapy
applications (Ladha et al., 2023). In cataract surgery, Garcia Nespolo
et al. evaluated AI-guided tools for phacoemulsification procedures,
revealing that real-time provision of critical parameters enabled
better surgical control, reduced complications, and improved
operational safety (Garcia Nespolo et al., 2022).

However, the equity and accessibility of ophthalmic
telemedicine still require further improvement. For example, in
certain regions of India, community health workers use portable
fundus cameras (such as the validated Peek Retina) adapted for
smartphones to capture retinal images of patients, which are
then securely transmitted to regional medical centers for remote
assessment and referral by ophthalmologists (Wintergerst et al.,
2020). This model has significantly increased screening coverage
in resource-poor areas, but its daily processing capacity is typically
limited to fewer than 200 cases due to the inefficiency of manual
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TABLE 4 Summary of algorithm/model for predicting the development of ophthalmic diseases.

No. Algorithm/Model Application References

1 AutoML model Multimodal feature fusion using ultra-widefield imaging
automatically detects early lesions (e.g., microaneurysms, exudates)
and predicts 3-year progression risk (AUC 0.92).

Silva et al. (2024)

2 DenseNet-161 model Quantitative OCTA parameters integrating macular vessel density,
nonperfusion area, and foveal avascular zone morphology achieved
89% sensitivity in predicting

Yang et al. (2023)

3 Spatial ordered CNN model Spatiotemporal modeling with 3D convolutional layers detects
visual field changes, reducing false-positive alerts by 37% compared
to linear regression model.

Shon et al. (2022)

4 DeepSeeNet model Multimodal transfer learning with Inception-ResNet-v2 extracts
drusen/pigmentary abnormalities from fundus photos, achieving a
C-index of 0.85 for 5-year late AMD risk prediction.

Peng et al. (2020)

5 GLIM-Net model Time-aware self-attention mechanisms process irregular optic disc
images with positional encoding, showing 23% lower mean absolute
error in predicting 5-year MD slope compared to LSTM baselines.

Hu et al. (2023)

6 Inception-v3 based deep learning model Lesion-specific gradient-weighted class activation mapping
(Grad-CAM) locates exudates/hemorrhages, achieving 93%
sensitivity for predicting 5-year proliferative DR progression.

Bora et al. (2021)

7 Deepdr plus system The Cox proportional hazards-deep learning hybrid model stratifies
patients into rapid (1.2 years), intermediate (3.5 years), and slow
(>5 years) progression groups using the DeepDR Score from
fundus features.

Dai et al. (2024)

8 T-LSTM based deep learning model Time-gated covariate weighting combines refractive error, axial
length, and optic disc tilt, achieving AUC 0.88 for predicting ≥1D
myopia progression within 2 years.

Huang et al. (2023)

9 Machine learning model for long-term vision prediction Multivariable risk stratification incorporating posterior staphyloma
severity, choroidal thickness, and ERG amplitude demonstrated
C-index 0.79 for 5-year risk of ≥0.2 logMAR visual acuity decline in
high myopia.

Wang et al. (2023b)

10 Kalman filter-based machine learning model Adaptive process noise calibration in state-space modeling
improved 5-year glaucoma progression prediction accuracy to 89%
in the United Kingdom Glaucoma Cohort, with cross-center
consistency ICC >0.85.

Dean et al. (2025)

image reading, making it challenging to meet the demands of large-
scale screening. Amore advanced integration ofAI and telemedicine
provides a breakthrough solution to this issue. By deploying
lightweight AI models on the device side, it is possible to provide
instant feedback on image quality and preliminary diagnosis, with
only high-risk cases being uploaded to the cloud for expert review.
This approach has been proven feasible in pilot projects in some
African countries, where screening throughput has been increased
to over 1,000 cases per day, while maintaining a clinically acceptable
error andmissed diagnosis rate (Cleland et al., 2016; Rajkomar et al.,
2019). To further promote and optimize ophthalmic telemedicine,
a range of comprehensive measures is needed, including improving
the accessibility of digital devices, expanding the virtual services
of ophthalmic hospitals, enhancing the digital literacy of primary
healthcare workers, and optimizing communication methods for
telemedicine, thus building a more efficient and inclusive eye
care system.

2.5 Ophthalmology health education

AI technology offers a new learning pathway for primary
healthcare staff, significantly enhancing their professional skills and
service quality. AI-powered online education platforms can deliver
tailored training courses based on the specific needs and knowledge
levels of individual healthcare workers (Fang et al., 2022). These
platforms also update content in real-time, ensuring that medical
personnel stay current with the latest advancements in medical
knowledge, diagnostics, and treatment guidelines (Wu et al., 2020).
Additionally, AI integrates virtual reality (VR) and augmented
reality (AR) to simulate real-life eye surgeries, diagnostic, and
treatment scenarios, providing immersive training experiences for
primary care providers (Ong et al., 2021; Ma et al., 2022). This
method not only boosts engagement and participation but also
helps improve clinical skills (Popov et al., 2024). By offering
opportunities for repeated practice and instant feedback, medical

Frontiers in Cell and Developmental Biology 08 frontiersin.org

https://doi.org/10.3389/fcell.2025.1576465
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Chen and Bai 10.3389/fcell.2025.1576465

staff gain greater confidence and precision in handling various eye
health issues (Bakshi et al., 2021). Moreover, AI-assisted remote
consultation systems enhance communication between primary
care workers and specialists, enabling real-time transmission of
patient records and images, and facilitating multi-party video
consultations. This allows frontline workers to engage in detailed
discussions with experts, gaining valuable guidance. Through its
support in remote diagnosis, consultations, and training, AI has
significantly improved the accessibility and quality of medical
services, addressing the issue of uneven distribution of healthcare
resources.

In addition, AI also contributes to the popularization of patient
health science. With the continuous maturity and popularization
of AI technology, developers have used the AI platform to create
more health science popularization applications, which can provide
personalized eye health education content according to the specific
situation of patients or the receiving population. For example,
for patients with diabetes, the AI system can push knowledge
about the prevention, early detection and treatment of diabetic
retinopathy, help patients better understand their disease, and take
effective self-management measures (Wu et al., 2023). For doctors,
AI can simulate the operation process and help doctors better
understand the difficult operations, such as cataract surgery (Ament
and Henderson, 2011). The health education capabilities of AI
are not limited to the mere dissemination of text and images.
By NLP technology, AI can understand patients’ verbal inquiries
and provide more direct and personalized health advice through
conversational interactions (Wang et al., 2020). This function is
especially suitable for middle-aged and elderly people who are not
familiar with Internet operation, reducing the threshold for them
to acquire eye health knowledge. The development and application
of these technologies have laid a solid foundation for achieving the
goal of eye health for all, and demonstrated their great potential and
prospects in the field of medical education. Through AI technology,
it can not only improve the professional skills and service quality
of grass-roots medical personnel, but also enable patients to obtain
professional and instant health information in daily life, enhance
patients’ coordination and compliance with disease treatment,
and further promote the optimization and efficiency of public
health services.

3 Challenges and prospects

3.1 The interoperability problem in AI
systems

The systemic interoperability challenges in ophthalmic clinical
practice remain a critical barrier to AI-EHR (Electronic Health
Record) integration, rooted in the inherent heterogeneity of
healthcare infrastructure, particularly the diversity of data storage
modalities (Kirshner et al., 2021). The predominant storage
of medical data in unstructured formats imposes significant
computational burdens during AI preprocessing, necessitating
standardized contextualization to ensure data consistency
(Wang et al., 2018). While existing interoperability standards like
HL7 FHIR® prove effective in general medical domains, their
application to ophthalmic imagingmodalities (e.g., OCT and fundus

photography) reveals deficiencies in metadata standardization
frameworks, failing to meet AI models’ requirements for structured
data inputs (Finkelstein et al., 2024). To address these challenges,
the development of intelligent adaptation systems emerges as
a priority solution. These systems employ dynamic semantic
alignment technologies to reconcile heterogeneous data formats,
enabling seamless integration of AI models into clinical workflows
without requiring large-scale system overhauls. Empirical evidence
demonstrates that this approach reduces AI deployment timelines
by over 50% while enhancing clinical operational efficiency (Reddy,
2024). However, persistent technical fragmentation among medical
device manufacturers and commercial competition continue to
hinder large-scale implementation. Consequently, policy-level
coordination is imperative to establish ophthalmology-specific
imaging data interoperability protocols. Such initiatives should
focus on unifying industry standards through multistakeholder
consensus, thereby facilitating the effective adoption and integration
of AI technologies in ophthalmic practice. Regulatory bodies
must prioritize the creation of specialty-adapted validation
frameworks that balance technical feasibility with clinical
utility, ensuring both algorithmic performance and workflow
compatibility.

3.2 Data security and privacy

The application of AI to EHRs and medical image processing,
while enhancing healthcare efficiency and diagnostic accuracy,
poses significant data privacy and security challenges. These
challenges primarily stem from the inherent complexity of medical
data, the necessity for cross-institutional data sharing, intrinsic
vulnerabilities in AI models, and evolving regulatory frameworks
(Daneshvar et al., 2024). A multi-layered and comprehensive
strategy is required to address these concerns. Firstly, data must
undergo rigorous anonymization and de-identification processes,
including the removal or substitution of personal identifiers.
Advanced privacy-preserving techniques such as differential privacy
and federated learning should be implemented to safeguard sensitive
information during AI model training (Sung et al., 2021). Secondly,
robust data encryption protocols combined with strict access
control mechanisms are essential to prevent unauthorized access or
tampering during data transmission and storage (Huang et al., 2022).
From a technical perspective, enhancing AI model security through
secure multi-party computation and homomorphic encryption
can mitigate risks of adversarial exploitation (Gong et al., 2020).
Comprehensive model testing and validation procedures must
be mandated to identify potential vulnerabilities. Furthermore,
establishing a robust data governance framework is critical to
ensure compliance with international regulations including HIPAA
and GDPR (Khatri and Brown, 2010; Rumbold and Pierscionek,
2017). This should be supplemented by periodic security audits
and systematic risk assessments to proactively detect and remediate
potential breaches. By implementing these integrated measures, the
privacy and security risks associated with AI-driven medical data
processing can be substantially mitigated, thereby better protecting
patient rights while maintaining the transformative potential of
AI in healthcare. Future research directions should emphasize
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the development of standardized evaluation metrics for privacy-
preserving technologies and the creation of harmonized regulatory
guidelines across jurisdictions.

3.3 Data quality and bias

The clinical application of AI in ophthalmology faces significant
challenges in data quality, particularly regarding incompleteness,
inaccuracy, and bias, which must be systematically addressed
to ensure AI system reliability and safety. Data incompleteness,
manifested through incomplete medical records or missing
diagnostic results, directly compromises the integrity of AI model
training and diagnostic accuracy (Rajpurkar et al., 2022). To
address this, standardized data collection protocols must be
established, supplemented by automated tools for data completion
and statistical approaches such as imputation techniques for
missing values (Shi et al., 2021). Data inaccuracy arising from
entry errors, measurement deviations, or equipment malfunctions
necessitates rigorous data validation and cleansing strategies.
This includes implementing cross-validation with multi-source
data and employing outlier detection techniques to ensure data
authenticity (Cai and Zhu, 2015). The most complex challenge
lies in data bias, which may stem from sample selection bias,
ethnic disparities, or geographical variations, potentially leading to
suboptimal model performance in specific populations (Zech et al.,
2018). For instance, choroidal melanocytic variations in African
populations risk algorithmic misclassification as pathological
features (Boutros et al., 2024), while retinal pigment epithelial
subdeposits morphology prevalent in Caucasian populations
presents overgeneralization risks in Asian datasets (Bressler SB et al.,
2007). These examples underscore the critical importance of data
diversity and algorithmic fairness. Mitigation strategies should
focus on constructing diverse, representative datasets encompassing
heterogeneous population characteristics. Data augmentation
techniques could be employed to synthesize underrepresented
population data, coupled with the integration of bias detection
and correction mechanisms during model training (Zhang et al.,
2018). Through comprehensive improvements in ophthalmic AI
data quality, we can ultimately develop trustworthy AI diagnostic
systems thatmeet rigorous clinical standards.Thismultidimensional
approach ensures equitable performance across diverse populations
while maintaining diagnostic precision and operational safety.

3.4 Algorithmic transparency and
explainability

Addressing the “black box” challenge in ophthalmic AI -
enhancing the transparency and interpretability of AI algorithms
- represents a pivotal obstacle in advancing clinical translation
(Li et al., 2024). While deep learning models demonstrate
exceptional performance in image recognition tasks, their intricate
decision-making processes often hinder clinicians’ comprehension
and trust (Topol, 2019). The development of AI systems capable
of generating natural language explanations proves essential
for enabling intuitive understanding of algorithmic reasoning
among medical professionals. Concurrently, explicit quantification

of uncertainty in algorithm outputs could further augment
clinical decision-making by contextualizing predictions within
probabilistic frameworks (Chua et al., 2022). A retrospective
analysis revealed that many oversimplified explanation interfaces
inadvertently justified hypersensitivity to imaging artifacts through
spurious pathophysiological correlations (Ong Ly et al., 2024).
This underscores the necessity for sophisticated explanation
architectures, such as dual-layer interpretability frameworks. At
the technical stratum, these systems should provide granular
operational details including feature importance metrics and
model confidence levels. The clinical stratum must translate
these technical parameters into medically relevant concepts,
synthesizing patient history, symptomatology, and imaging
characteristics into explanations aligned with clinical reasoning
paradigms. An interactive interface enabling dynamic adjustment
of explanation specificity based on clinician feedback could
optimize human-AI collaboration. By aligning algorithmic
outputs with clinicians’ cognitive schemata through context-aware
explanations, such systems may enhance perceived trustworthiness
and practical utility (Holzinger et al., 2019). Future implementations
should prioritize bidirectional communication channels that adapt
explanatory depth to clinical context and operator expertise, thereby
fostering responsible integration of AI in ophthalmic practice.

3.5 Ethics and regulation

The integration of AI into ophthalmic public health systems has
precipitated critical ethical and regulatory challenges that demand
rigorous consideration and systematic responses. Conventional
medical device certification protocols mandate fixed algorithm
versions, yet real-world AI implementations necessitate continuous
learning from evolving data streams. The degradation of AI model
performance following clinical deployment, often attributed to
data distribution shifts such as variations in imaging equipment
parameters or evolving patient demographics, has emerged as a
critical concern in medical AI implementation. Empirical evidence
indicates that algorithm updates lacking rigorous validation
against novel environmental data distributions - particularly
when over-adapted to institution-specific imaging acquisition
protocols - may precipitate systematic diagnostic inaccuracies.
This phenomenon has been identified as a central challenge in
the real-world deployment of medical AI systems, underscoring
the imperative for robust cross-institutional validation frameworks
to ensure algorithmic generalizability across heterogeneous
clinical environments (Finlayson SG, 2021). This has catalyzed
the exploration of dynamic certification mechanisms permitting
constrained algorithm iterations within predefined confidence
intervals, coupled with real-time performance monitoring systems.
Diagnostic errors in medical AI may originate from data anomalies,
model deficiencies, or clinical implementation variances, rendering
conventional unitary liability models inadequate (Wiens et al.,
2019). A stratified accountability framework is therefore imperative
to delineate distinct responsibilities among developers, healthcare
providers, and regulatory bodies. Crucially, AI systems should
be positioned as clinical decision-support tools rather than
autonomous diagnosticians (Pinsky et al., 2022). Establishing a
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bidirectional calibration-based interactive paradigm enables AI to
deliver data-driven recommendations while clinicians contextualize
outputs with experiential knowledge, thereby facilitating precise
error attribution and dynamic risk mitigation in technologically
embedded clinical settings (Rajkomar et al., 2019). This human-AI
collaborative framework addresses the practical needs of technology
applications but also ensures patient welfare and sustainable
healthcare ecosystems through shared accountability and value
alignment.

4 Conclusion

This paper provides a comprehensive analysis of the application
and value of AI in ophthalmic public health, with a particular
focus on its transformative impact on screening, diagnosis,
monitoring, continuing medical education, and telemedicine. As
AI technology continues to evolve, innovative solutions are
increasingly being integrated into ophthalmology, helping to
improve early disease detection, enhance diagnostic accuracy,
monitor patient health in real time, elevate the professionalism
of healthcare providers, and optimize the distribution of medical
resources. While current implementations demonstrate measurable
success in augmenting detection sensitivity and optimizing clinical
workflows, critical research gaps demand prioritized investigation,
including addressing interoperability challenges stemming from
heterogeneous data formats, enhancing data security through
anonymization and federated learning, developing explainable AI
systems to resolve the “black box” dilemma, mitigating data quality
and bias via standardized collection and validation protocols,
and establishing dynamic ethical and regulatory frameworks to
harmonize innovation with patient safety. We believe that AI in
ophthalmology will realize a future where every person can benefit
from superior eye care, regardless of their circumstances.
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