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Primordial germ cells (PGCs) are the progenitors of gametes (sperm and eggs),
making them crucial for understanding germline transmission and epigenetic
modifications, which are critical for studying transgenerational effects of
nutrition and metabolic diseases. This is particularly relevant given the growing
evidence that environmental factors, such as diet, can influence metabolic
disease risk across generations through modulating epigenetic mechanisms, as
seen in both human and animal studies. The unique biological and experimental
attributes make PGCs in the chicken embryo a potential model for exploring the
complex interactions between nutrition, epigenetic inheritance, and metabolic
diseases, providing insights that are translatable to metabolic health and disease
prevention tactics. This brief review emphasizes the potential of chicken PGCs
as a model system to investigate the mechanisms underlying transgenerational
metabolic programming.

KEYWORDS

nutritional programming, nutriepigenetic, metabolic processes, PGCs,
transgenerational effects

1 Introduction

Epigenetic regulation during development plays a crucial role in cell fate determination,
lineage specification, and the establishment of cellular identity. Metabolic diseases such
as obesity, type 2 diabetes, and non-alcoholic fatty liver disease are affected by epigenetic
mechanisms including DNA methylation, histone modification, and non-coding RNA
expression (Nicoletti et al., 2024; Rivera-Aguirre et al., 2023; Gómez de Cedrón et al.,
2023). Nutritional factors such as vitamin B12, folate, and choline act as methyl
donors or coenzymes for one-carbon metabolism, and their dietary intake can
modulate the epigenetic patterns, impacting the onset and progression of metabolic
diseases (Nicoletti et al., 2024; Rivera-Aguirre et al., 2023). Endocrine disruptors like
phthalates, bisphenol A, pesticides, polychlorinated biphenyls, and dioxins, as well as
nutritional imbalances, can induce epigenetic changes in primordial germ cells (PGCs),
potentially resulting in altered phenotypes in later generations (Rizzo et al., 2023;
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Brehm and Flaws, 2019; Brieño-Enríquez et al., 2016). Studies have
shown that exposure to metabolic disruptors during prenatal or
early life stages can cause metabolic diseases in future generations,
underlining the need to understand the epigenetic memory and
molecular determinants of these effects (Feroe et al., 2017). A
key challenge in the field is identifying model systems that
allow researchers to track how specific environmental factors,
such as nutrition, trigger epigenetic modifications and subsequent
changes in gene expression patterns. These models must enable
the study of both immediate effects and potential transmission
across generations. Potent models are essential for developing
nutritional programming strategies to produce desired traits and
implement efficient preventive measures for metabolic diseases.
The chicken embryo model offers unique advantages for studying
these interactions, as it allows precise temporal control over
environmental exposures without maternal confounding effects.
However, debate persists regarding the stability and inheritance of
environmentally-induced epigenetic changes. While some studies
demonstrate transgenerational effects of nutritional interventions
(Wu et al., 2019), others question the molecular mechanisms and
evolutionary significance of such inheritance (Verdikt and Allard,
2021). This brief review aims to shed light on the potential of
chicken PGCs as a model for studying how prenatal nutritional and
environmental factors influence epigenetic inheritance in metabolic
disorders, and the mechanisms linking environmental signals to
specific epigenetic modifications.

2 The chicken model for metabolic
processes research

Chickens have been considered a useful model to explore
the role of adipokine mediated regulation in metabolic and
reproductive diseases, with parallels to metabolic diseases in
humans (Mellouk et al., 2018). Key adipokines, including
adiponectin, visfatin, and chemerin, demonstrate conserved
regulatory functions across both species (Mellouk et al., 2018).
Chickens constitutively exhibit hyperglycemia despite having
normal levels of hyperactive endogenous insulin, requiring large
doses of exogenous insulin to induce hypoglycemia, mirroring
the insulin resistance seen in human type 2 diabetes pathology
(Mellouk et al., 2018; Haselgrübler et al., 2017). Moreover, chickens
have been genetically selected for traits such as fatness, which is
associated with phenotypic variations in adiposity and metabolic
disorders (Resnyk et al., 2017). Additionally, the metabolic genes
in chickens are largely conserved with those in humans, and
several quantitative trait loci (QTLs) connected to fatness in
chickens include genes that link to human obesity or diabetes
susceptibility (Mellouk et al., 2018; Nadaf et al., 2009). The chicken’s
metabolic system allows for the insights into nutrient metabolism
particularly through hepatic lipogenesis and tissue-specific insulin
signaling patterns (Mellouk et al., 2018). In both humans and
chickens, the liver is the primary site for de novo lipogenesis (90%)
(Liu et al., 2018). Furthermore, the post-hatch period in chickens
is especially useful for studying metabolic programming, as it
involves substantial changes in livermetabolism that are comparable
to human metabolic processes (Van Every and Schmidt, 2021).
Besides, chickens offer a well-established model for researching

human lipid metabolism disorders, including non-alcoholic fatty
liver disease (Ayala et al., 2009).The robustness of chickenmetabolic
pathways is demonstrated by the genome-scale metabolic model
iES1300, which demonstrates substantial homology with human
carbohydrate metabolism networks (Salehabadi et al., 2022).

3 Current limitations in understanding
metabolic-epigenetic interactions

Current limitations in metabolic-epigenetic research center
on three key challenges. The incomplete knowledge about how
specific metabolites induce epigenetic changes, like histone
acetylation and methylation, and how these changes in turn
control metabolic pathways is one of the main limitations.
This bidirectional interaction is key in a variety of biological
contexts, encompassing embryonic development, cancer, and
chronic diseases, however, it is difficult to characterize due to the
complexity of these processes and their heterogeneity between
cell types and conditions (Milazzotto et al., 2023; Ge et al., 2022;
Gómez de Cedrón et al., 2023). Furthermore, the field is impeded
by the limited understanding of how epigenetic changes caused by
metabolic alterations can be passed down between generations,
as seen in studies of paternal transgenerational inheritance of
metabolic diseases (Pepin et al., 2022). The potential for targeted
nutritional and lifestyle interventions to modulate epigenetic marks
and maintain metabolic homeostasis is promising, yet the precise
mechanisms and long-term effects of such interventions have yet to
be fully understood (Gómez de Cedrón et al., 2023).

4 Nutritional programming in chicken
model

Growth and development-related metabolic pathways can be
optimized through prenatal dietary stimulation. Maternal nutrition,
for example, β-carotene supplementation, can influence embryonic
development through the growth hormone-insulin-like growth
factor axis, promoting liver development and affecting metabolism-
related gene expression (Wang et al., 2024). Contrariwise,
prenatal protein undernutrition, induced by albumen removal,
has been shown to cause long-term alterations in body weight,
reproductive performance, and hepatic metabolism, underscoring
the vital role that proper prenatal nutrition plays in metabolic
programming (Willems et al., 2015).

Understanding the epigenetic changes driven by nutrients
is necessary to gain deeper insight into diet-gene interactions.
Nutriepigenetics provides insights into improving poultry health
and performance by modulating genes associated with immunity,
metabolism, and growth (Hassan et al., 2022). The in ovo feeding
(IOF) technique, originally designed for vaccine delivery in broiler
hatcheries, has evolved into a cost-effective approach for studying
early nutrition in chickens (Das et al., 2021). This method now
incorporates a variety of substances, including nutrients such as
glucose, amino acids, and vitamins, as well as supplements like
probiotics,prebiotics, exogenousenzymes,hormones, vaccines,drugs,
and nutraceuticals (Das et al., 2021). Given the critical role of
embryonic nutrition in regulating tissue and organ development in
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later stages, in ovo injections and IOF are recognized as powerful tools
for implementing targetednutritional strategiesatearlydevelopmental
stages, and to investigate the effects of injected chemicals and the
epigenetic changes they cause. For instance, the administration of
L-leucine in ovo has been found to stimulate lipid metabolism and
enhance thermotolerance in male chicks under heat stress, indicating
a sex-dependent metabolic response (Han et al., 2018).

Dietary methyl donors such as folate, choline, and B vitamins
are crucial for DNA methylation, influencing gene expression
and disease risk (Anderson et al., 2012). In ovo folic acid
supplementation has been reported to improve immune function
and growth in broilers by modifying histone methylation in
immune gene promoters (Li et al., 2016). Furthermore, feeding-
based dietary betaine supplementation has been shown to
modulate DNA methylation in response to corticosterone-induced
hepatic cholesterol accumulation. Key cholesterol gene expression
(HMGCR, CYP7A1) was normalized by reversing corticosterone-
induced methylation changes, highlighting the epigenetic influence
of diet (Wu et al., 2024). Paternal folate supplementation in chickens
has been shown to affect the growth and metabolic profiles of
offspring, with changes in lipid and glucose metabolism linked
to alterations in spermatozoal and hepatic miRNAs and lncRNAs
(Wu et al., 2019). Guo et al. (2024) found that excessive folic acid
intake in male chickens can alter sperm DNA methylation (6 mA
and 5 mC), increasing hepatic lipogenesis and lipid accumulation
while reducing lipolysis in both roosters and their offspring.
This study highlights environment-sensitive regions in the sperm
epigenome that respond to dietary factors and transmit an
epigenomic map, potentially shaping metabolic health in offspring.

Despite the advantages of embryonic manipulations in avian
species, there have been relatively few studies on PGCs concerning
the transgenerational inheritance effects of epigenetic stimuli.

5 Main metabolic-epigenetic crosstalk
in chicken germ cells

PGCs in chicken possess unique epigenomic landscape, which,
despite sharing some conserved features with mammals, exhibit
distinct epigenetic signatures that reflect their evolutionary and
developmental pathways, reviewed in (Woo and Han, 2024). In
chickens, PGCs are specified by preformation and are influenced
by maternally inherited factors, contrasting with the inductive
specification seen inmammals (Kress et al., 2024).Unlikemammalian
PGCs, chicken PGCs do not experience genome-wide DNA
demethylation or a decrease in histone H3K9me2, which are typical
featuresofextensiveepigeneticprogramminginmammals(Kressetal.,
2024). Instead, chicken PGCsmaintain high levels of 5mC and exhibit
a unique epigenetic signature characterized by high global levels of
H3K9me3, particularly in inactive genome regions. This signature
is progressively established during migration and remains stable in
the gonads, indicating a divergence from the basal state resetting
observed inmammals.Theprocesses in chickenPGCs aremore about
chromatinreconfigurationrather thanbona fideprogramming,asseen
inmammals (Kress et al., 2024). Additionally, the transcription factor
Zeb1 andhistonemethylation regulateBMP4 expression, highlighting
the interplay between genetic and epigenetic factors in PGC
development(Zhouetal.,2021).LncRNAsalsocontributesignificantly

to chicken PGCdevelopment (Jiang et al., 2021). Furthermore, during
mitotic arrest, chicken prospermatogonia undergo unique epigenetic
programming, characterized by gradual DNA demethylation and
histone acetylation, which differs from the mammalian pattern
(Choi et al., 2022). These findings underscore the distinct epigenetic
landscape of chicken PGCs, which involves a combination of
DNA methylation, histone modifications, and non-coding RNAs,
all contributing to the regulation of germ cell development and
differentiation (Woo and Han, 2024; Rengaraj et al., 2022).

MetabolicregulationinchickenPGCsinvolvesacomplexinterplay
of pathways and factors that ensure proper development and function.
Glycolysis is a critical metabolic pathway, with glucose phosphate
isomerase (GPI) being essential formaintaining glycolysis and energy
supply in chicken PGCs. Knockdown of GPI significantly reduces
the expression of glycolysis-related genes and endogenous glucose
levels, underscoring its role in PGC proliferation (Rengaraj et al.,
2012). Additionally, the transition from glycolysis to oxidative
phosphorylation is a key event in PGC formation, indicating a shift
in energy metabolism as these cells develop (Zuo et al., 2023). The
C1EIP gene, regulated by STAT3 and histone acetylation, promotes
PGC formation by interacting with ENO1 and inhibiting the Notch
signaling pathway (Jin et al., 2020). The TGF-β and Wnt signaling
pathways are also activated during PGC formation in vitro and in vivo,
further emphasizing the metabolic and signaling intricacies involved
in PGC regulation (Ding et al., 2024). Autophagy, as indicated by
the increased number of autolysosomes, is another metabolic process
that is enhanced in PGCs, especially following BMP4 induction
(Ding et al., 2024). The piRNA pathway also plays a protective
role in PGCs, with piRNA pathway genes such as CIWI and CILI
being crucial for maintaining genomic integrity and preventing
DNA double-strand breaks (Rengaraj et al., 2014). These pathways
collectively underscore the complex metabolic network that supports
the development and function of chicken PGCs, integrating energy
metabolism, signaling, and genomic protection mechanisms.

Metabolic pathways are intricately linked to epigenetic changes,
asmetabolites can influence epigeneticmechanisms, and conversely,
epigenetic modifications can regulate metabolic processes (Verdikt
and Allard, 2021). This metabolic-epigenetic interplay is crucial
during early germ cell development, affecting cell fate determination
and potentially playing a role in transgenerational epigenetic
inheritance (Verdikt and Allard, 2021).

6 Chicken PGCs: a tool for
transgenerational studies

ChickenPGCsmayofferawindowintotheepigeneticmechanisms
that mediate the transgenerational effects of prenatal nutritional
interventions. Growing evidence suggests that dietary influences can
significantly impact epigenetic marks in PGCs, which are crucial
for transgenerational inheritance. The application of nutritional
programming in chickens, unlike inmammals, allows for the isolation
of nutritional effects without hormonal interference, providing a
clearer understanding of its impacts on growth and metabolism
(Willems et al., 2015). The unique accessibility of avian PGCs during
early development, due to their migration via blood circulation,
provides an opportunity for their collection, which is not as easily
achievable in mammalian models (Nakamura et al., 2013). Chicken
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FIGURE 1
The in ovo model for investigating nutrient-induced metabolic programming in chickens through PGCs. In ovo stimulation (E12) and in ovo feeding
(E14-18) introduce nutripigenetic factors (e.g., prebiotics, probiotics, methyl donors, carbohydrates, hormones, vitamins, and amino acids) that
influence embryonic development (F1). These interventions can induce epigenetic modifications (including histone acetylation, DNA methylation, long
non-coding RNA, and miRNA regulation) that affect key metabolic pathways such as glycolysis, gluconeogenesis, lipid metabolism, amino acid
metabolism, and insulin signaling. Changes in metabolic regulation may alter glucose homeostasis, lipid storage, and insulin sensitivity, potentially
leading to metabolic disorders. Through primordial germ cells (PGCs), these epigenetic and metabolic effects can be inherited across generations,
contributing to intergenerational (F1-F2) and transgenerational (F3-F4) inheritance of metabolic traits. This highlights the potential of chicken PGCs as a
valuable model for studying the epigenetic basis of nutrition-induced metabolic diseases.

PGCs can be isolated from embryos at various stages of development,
each offering unique advantages for research and application. The
isolation of PGCs from embryonic blood is commonly performed
at HH stages 14–16, where they are abundant in circulation before
migrating to the gonadal regions (Dehdilani et al., 2023). Additionally,
chicken PGCs can be isolated from the embryonic gonadal regions
at later stages, such as HH 26–28, where they have migrated and
begun to settle (Zare et al., 2023). Chicken PGCs are characterized by
several molecular markers that are crucial for their identification and
study such as SSEA-1, EMA-1, SSEA-4, and SSEA-3 (Mathan et al.,
2023). Pluripotency markers such as POUV, SOX2, and NANOG,
along with germ cell markers like DAZL and CVH markers are
consistently expressed across various conditions, including fresh
isolation, cryopreservation, and in vitro culture, indicating the cells’
stability and resilience (Ibrahim et al., 2024). Chicken PGCs are a
model for in vitro culture. The chicken is the only vertebrate whose
PGCs can be stably cultured in vitro for an extended period of time
(Ichikawa and Horiuchi, 2023). The ability to culture chicken PGCs
in vitro has been well-documented, with various studies highlighting
their resilience and the maintenance of their germline characteristics

during long-term culture and cryopreservation (Kong et al., 2018;
Ibrahim et al., 2024). The development of optimal culture systems
for chicken PGCs has been a focus of several studies comparing
the efficiency of different media dedicated to cell expansion and
differentiation (Dehdilani et al., 2023). One of the most efficient
systems is the feeder-free culture method developed by for expanding
chickenPGCs,applied intheresearchover the lastdecade(Whyteetal.,
2015). Despite the advancements, challenges remain in establishing
standardizedcultureconditions.Aprimaryissueis theinconsistencyin
protocols across different laboratories, leading to variations in success
rates for cell growth and maintenance. These discrepancies make it
difficult to replicate and reproduce results reliably. The derivation,
expansion, and long-term culture of PGCs appear to depend on
multiple factors, including the quality of materials, embryos and
incubationquality, thebreedofchickens fromwhichPGCsarederived,
and the specific combination of culture components essential for PGC
survival (Dehdilani et al., 2023). Successful cultivation of chicken
PGCs requires specific growth factors and supplements to maintain
their developmental potency, stemness, survival, and proliferation
(Dehdilani et al., 2023).Theabsenceof these essential components can
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impair cell growth and viability. Key growth factors include Fibroblast
GrowthFactor2 (FGF2),ActivinA,BMP4, Insulin-likeGrowthFactor
1 (IGF-1) and B27 supplement (Miyahara et al., 2016; Whyte et al.,
2015; Barkova et al., 2022; Choi et al., 2010).

Additionally, the short-term interval between generations
enables tracking the transgenerational effect of studied dietary
factors. Artificial insemination technology and the high
reproductive capacity of hens, producing up to 300 eggs annually,
allow for the generation of enough offspring broilers to study the
potential transgenerational impacts of nutritional interventions
(Ibrahim et al., 2025). Chickens provide a uniquemodel due to their
ability to minimize maternal confounding effects through direct
manipulation of egg content, which is not possible in mammalian
models (Morisson et al., 2017). This allows for precise control
over the nutritional environment during critical developmental
periods, facilitating the study of nutritional programming and
its transgenerational effects (Morisson et al., 2017). The success
of nutritional interventions heavily depends on the selection of
suitable delivery techniques and platforms, a condition fulfilled
through the application of in ovo injection in chicken embryos.
The use of chickens as a model for nutritional rehabilitation, as
demonstrated in studies involving dietary interventions in broilers,
further underscores their potential as a translational model for
human nutritional studies (Baxter et al., 2018). Chickens have been
instrumental in advancing knowledge about the role of specific
nutrients, such as omega-3 fatty acids, in early life nutritional
programming,which can inform strategies to improve humanhealth
and productivity (Cherian, 2013).

Recent research by Verdikt et al. has highlighted the interplay
between metabolic and epigenetic regulation of PGCs in mammals,
particularly in the context of transgenerational epigenetic
inheritance (Verdikt and Allard, 2021). Their review suggested
that environmental factors may influence epigenetic remodeling
in PGCs through metabolic pathways, thereby affecting gene
expression. While most studies have focused on mature germ
cells, such as sperm and eggs, PGCs remain relatively understudied
despite their potential sensitivity to environmental changes. This
sensitivity makes PGCs a crucial window for investigating how
epigenetic information is transmitted across generations. Another
study also hypothesized that the DNA methylome of sperm may
show changes in its expression profile in response to high paternal
folic acid intake, which has been widely suggested as a methyl
donor for the DNA methylation process, and then the altered
sperm DNA methylome could transmit certain metabolic and
developmental changes from father to offspring (Guo et al., 2024).
Although chickens may not serve as an ideal translational model
for studying germline programming mechanisms in humans due to
species-specific differences, they are highly valuable for investigating
multigenerational effects of nutrients, particularly in the context of
metabolic processes.The in ovo model allows researchers to explore
how nutrients impact epigenetic regulation of metabolic processes,
gene expression, and development across generations (Figure 1).
This approach provides critical insights into the inheritable effects
of key nutrients, which are relevant to human health and the
development of other vertebrates.

Overall, the investigation into transgenerational inheritance in
chicken PGCs not only enhances our understanding of evolutionary
biology and adaptation but also holds potential implications for

improving animal breeding and addressing metabolic health issues
in broader contexts.

7 Conclusion and perspectives

In agreement with Diniz et al. (2024), further advances are
essential for translating findings into applications for developmental
disorders and understanding the broader implications of early-life
nutrition for long-term health outcomes. Therefore, investigation
of nutriepigenetic effects transmission through the chicken PGC
model has revealed important insights, while also highlighting
critical areas for future research: (1) elucidating the molecular
mechanisms underlying nutrient-induced epigenetic modifications
in PGCs, (2) understanding how thesemodifications aremaintained
and transmitted across generations, and (3) determining the
conservation of these mechanisms across species. The chicken PGC
model offers unique advantages for addressing these questions,
particularly through its experimental accessibility and ability to
control environmental exposures precisely. It is important to note
that this model system should be applied carefully and serve
primarily at the very early stages of preclinical trials, providing an
initial overview of basic pathways (particularly metabolic pathways)
at a general, conserved annotation level. The simplicity and ethical
advantages of the in ovo model make it particularly valuable as
a preliminary screening tool prior to more comprehensive studies
using established animal preclinical models.
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Glossary

PGC Primordial germ cell

QTLs Quantitative trait loci

IOF In ovo feeding

HMGCR 3-Hydroxy-3-Methylglutaryl-CoA Reductase

CYP7A1 Cytochrome P450 Family 7 Subfamily A Member 1

miRNAs MicroRNAs

lncRNAs Long Non-Coding RNAs

6mA N6-methyladenine

5mC 5-Methylcytosine

H3K9me2 Histone 3 Lysine 9 Dimethylation

H3K9me3 Histone 3 Lysine 9 Trimethylation

Zeb1 Zinc Finger E-Box Binding Homeobox 1

BMP4 Bone Morphogenetic Protein 4

GPI Glucose Phosphate Isomerase

C1EIP Chromosome 1 Expression in PGCs

STAT3 Signal Transducer and Activator of Transcription 3

ENO1 Enolase 1

TGF-β Transforming Growth Factor Beta

piRNA PIWI-Interacting RNA

CIWI PIWI-Like Protein 1

CILI PIWI-Like Protein 2

HH Hamburger-Hamilton Stages

SSEA-1 Stage-Specific Embryonic Antigen-1

SSEA-4 Stage-Specific Embryonic Antigen-4

SSEA-3 Stage-Specific Embryonic Antigen-3

POUV POU Class 5 Homeobox 1 (also known as OCT4 in mammals)

SOX2 SRY-Box Transcription Factor 2

NANOG NANOG Homeobox (Pluripotency-Associated

Transcription Factor)

DAZL Deleted in Azoospermia-Like

CVH Chicken Vasa Homolog

FGF2 Fibroblast Growth Factor 2

IGF-1 Insulin-like Growth Factor 1

E Embryonic day

F1 First Filial Generation

F2 Second Filial Generation

F3 Third Filial Generation
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