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China, 3State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory,
Xiamen University, Xiamen, China, 4Institute of Translational Medicine, Shanghai Jiao Tong University,
Shanghai, China

Background:The prognosis of patients with hepatocellular carcinoma (HCC) is a
research hotspot. This study aimed to identify novel prognostic protein markers
for HCC using data-independent acquisition mass spectrometry (DIA-MS) and
develop an integrative predictivemodel to enhance clinical decision-making and
patient stratification.

Methods: DIA-MS were implemented to identify valuable prognostic HCC
biomarkers in 31 patients with different prognoses. A prognostic model was
developed and validated using immunohistochemistry (IHC).

Results: Cytoskeleton-associated membrane protein 4 (CKAP4) and
procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) were identified
as key prognostic proteins, with higher expression levels associated with
poor prognosis. Immunohistochemical validation confirmed the prognostic
value of CKAP4 and PLOD2. A nomogram incorporating AJCC stage and the
combination of CKAP4 and PLOD2 demonstrated superior predictive Sability for
overall survival (OS) compared to individual indicators. The model predicted an
outcome with a concordance index (C-index) of 0.738 (95% CI, 0.698–0.779)
and significantly stratified patients into distinct risk groups (P < 0.001).

Conclusion: In conclusion, this study identified CKAP4 and PLOD2 as novel
prognostic protein markers for HCC. The developed nomogram, integrating
these molecular markers with AJCC stage, shows promise in predicting OS and
stratifying risk in HCC patients.
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GRAPHICAL ABSTRACT

Schematic overview of the study design. DEPs, differentially expressed proteins; PRGs: prognosis-related genes; PRPs, prognosis-related proteins.

1 Introduction

Hepatocellular carcinoma (HCC) persists as a formidable
global health challenge, ranking as the sixth most prevalent
malignancy and the third leading cause of cancer-related
mortality worldwide. The annual incidence surpasses 905,000
new cases, resulting in over 830,000 deaths (Bray et al., 2018;
Forner et al., 2018). Despite significant advancements in
therapeutic modalities, the prognosis for HCC patients remains
dismal, primarily due to the high propensity for recurrence and
metastasis, exacerbated by the frequent presence of underlying liver
dysfunction (Tateishi et al., 2005).

Serum biomarkers alpha-fetoprotein (AFP) and vitamin K
absence/antagonist-II (PIVKA-II) play complementary roles in
HCC prognosis. AFP reflects hepatocytic differentiation and
associates with vascular invasion and early recurrencewhile PIVKA-
II, indicative of angiogenic activity, shows superior sensitivity for
microvascular invasion (Park et al., 2014; Hynes et al., 2024).
Their combined use in models like the GALAD score enhances
recurrence risk stratification (Cagnin et al., 2023). However,
circulating biomarkers lack spatial resolution to assess intratumoral
heterogeneity.

Surgical resection remains the gold standard for curative
treatment in early-stage HCC. However, its efficacy is significantly
compromised by the heterogeneity in post-resection outcomes.
Notably, the postoperative recurrence rate remains alarmingly high,
ranging from 60% to 70% (Chan et al., 2015; Dhir et al., 2016).
While serum biomarkers provide valuable prognostic information,
they lack spatial resolution to assess intratumoral molecular
heterogeneity, a critical determinant of recurrence patterns. This
high recurrence rate has emerged as the primary determinant of
poor prognosis in post-surgical HCC patients. Consequently, there

is an urgent need for integrated prognostic models that combine
circulating biomarkers with tissue-specific molecular markers to
accurately stratify patients based on their recurrence risk, guide the
development of personalized treatment strategies, and inform more
effective post-operative surveillance protocols.

Current prognostic tools, including the Child-Pugh scoring
system, Cancer of the Liver Italian Program (CLIP), and Barcelona
Clinic Liver Cancer (BCLC) staging systems, exhibit limitations in
their applicability across diverse patient subgroups (Trevisani et al.,
2024; Johnson et al., 2022; Kudo et al., 2003). While numerous
potential biomarkers have been identified in blood and tumour
tissues, many studies focus on single genes or proteins, which are
insufficient for comprehensive HCC prognostication (Gao et al.,
2019; Zhang et al., 2021; Che et al., 2021). Moreover, the clinical
validation of these biomarkers remains limited, underscoring the
need for more integrative approaches.

Recent advancements in mass spectrometry technologies,
characterized by enhanced sensitivity, resolution, and accuracy,
coupledwith sophisticated bioinformatics tools, have revolutionized
proteomic research (Zhang et al., 2024). The data-independent
acquisition (DIA) mass spectrometry mode, in particular,
offers superior proteome coverage, reproducibility, and
quantification accuracy (Kitata et al., 2022). This technological
progress has facilitated the identification of novel DEPs as potential
prognostic biomarkers in cancer research.

In this study, we employed DIA-MS quantitative proteomic
analysis on 31 paired HCC and adjacent non-tumour tissue samples
to identify prognostic protein markers. We developed a prognostic
model using Least Absolute Shrinkage and Selector Operation
(LASSO) -COX regression and evaluated the predictive value of key
proteins through survival analysis. Furthermore, we integrated these
molecular markers with clinical features to construct a nomogram
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for HCC prognosis prediction. Our approach aims to enhance the
accuracy of HCC progression prediction and identification of high-
risk patients, potentially improving clinical decision-making and
patient outcomes.

2 Materials and methods

2.1 Clinical sample collection

This study comprised two independent cohorts of HCCpatients.
Cohort 1 included paired HCC and adjacent non-tumour tissue
samples from 31 patients who underwent hepatectomy for liver
surgery at the specimen repository of Guangxi Medical University
Cancer Hospital, with samples collected between 2016 and 2018
(Supplementary Table S1). The distinction between HCC tissues
and adjacent non-tumour tissues is based on intraoperative rapid
frozen pathological assessment. Subsequently, the diagnosis was
confirmed by two independent pathologists to ensure the accuracy
and reliability of the assessment. The 31 paired samples were used
for proteomic characterization, and the follow-up data for these
patients had a cutoff date of May 2021. Additionally, Cohort 2
consisted of 48 patients with HCC undergoing radical resection
at Guangxi Medical University First Affiliated Hospital between
2017 and 2019 (Supplementary Table S2). This cohort was utilized
for immunohistochemical validation, and the follow-up data had
a cutoff date in September 2023. This study was approved by the
Research Ethics Committee of the Guangxi Medical University
Cancer Hospital (2019 (KY-E-18), LW2024130) and the First
Affiliated Hospital of Guangxi Medical University [2019 (KY-E-
086)].

2.2 Sample preparation

Tissue samples were homogenized in lysis buffer (abs9229,
Absin, China) and subjected to sonication. The homogenates
were centrifuged at 13,000 × g for 20 min at 4°C. Protein and
peptide concentrations were determined using the BCA assay
(23,225, Thermo Scientific, United States). The supernatants
were collected and stored at −80°C for further analysis. Proteins
were extracted using a lysis buffer containing 1% sodium
deoxycholate (DOC), 10 mM tris (2-carboxyethyl) phosphine
(TCEP), 40 mM chloroacetamide (CAA), and 100 mM Tris-HCl
(pH 8.5). ProteaseMAX surfactant solution (Promega Corporation,
United States) was added to a final concentration of 0.01%.
The mixture was heated at 95°C for 5 min and then subjected
to ultrafiltration. The protein digest was diluted with 100 mM
tetraethylammonium bromide (TEAB) to a final concentration
of 1 μg/μL. Lysyl endopeptidase (Lys-C) and trypsin were added
at appropriate ratios, along with ProteaseMAX surfactant solution
to a final concentration of 0.02%. The digestion was carried out
at 37°C for 30 min and quenched with 10% trifluoroacetic acid
(TFA). Finally, the peptides were desalted using a C18 solid-
phase extraction column (2 μm, 75 μm × 500 mm, WAT054960,
Thermo Scientific, United States) and then lyophilized. For the LC-
MS analysis, the peptide concentration was standardized to 1 μg
per sample.

2.3 DIA-based LC-MS/MS

Peptide analysis was performed using an Orbitrap Exploris
480 mass spectrometer equipped with field asymmetric ion
mobility spectrometry (FAIMS) coupled to an EASY-NanoLC
1,200 system (both from Thermo Fisher Scientific, MA, United
States). Peptides were reconstituted in 0.1% formic acid (FA) prior
to analysis. Chromatographic separation was achieved using an
Acclaim PepMap C18 analytical column (75 μm × 25 cm) with a
130-min gradient. Data-independent acquisition (DIA) mode was
employed for LC-MS/MS analysis of peptides from each sample.
FAIMS compensation voltages (CV) were set at −45 and −65.
MS scans were acquired over an m/z range of 350–1,200 with a
resolution of 120,000. The automatic gain control (AGC) target was
set to 300 with a custom maximum injection time. HCD-MS/MS
was performed at a resolution of 30,000, with an AGC target of 200
and collision energies of 25, 30, and 35. The column flow rate was
maintained at 250 nL/min. Quality control samples, consisting of
pooled aliquots fromall experimental samples, were analyzed inDIA
mode at the beginning of the MS study and after every six injections
to monitor instrument performance.

2.4 MS spectrometry data analysis

Raw data processing and analysis were performed using
Spectronaut 14 (Biognosys AG, Switzerland). Database searches
for spectral library generation were conducted against the UniProt
human database (20,416 entries). Search parameters included a
maximum of two missed cleavages, a minimum peptide length
of six amino acids, and a maximum of three modifications per
peptide. The Q-value (false discovery rate, FDR) thresholds for
both library generation and DIA analyses were set to 0.01. The
MS proteomics data have been deposited to the ProteomeXchange
Consortium (http://proteomecentral.proteomexchange.org) via the
iProX partner repository with the dataset identifier PXD051768
(Ma et al., 2019; Chen et al., 2021).

2.5 DEPs identification and functional
analysis

Protein expression in HCC tissues was compared to adjacent
non-tumour liver tissues. Proteins detected in <50% of samples were
excluded, and missing values were imputed with half the minimal
value for each protein. DEPswere defined as thosewith a fold change
(FC) > 1.80 or <0.56 and a paired t-test P-value <0.01. Partial least
squares discriminant analysis (PLS-DA) was employed to assess the
relationship between protein expression and sample types.

Protein expression values were normalized to address technical
variability and batch effects. The workflow comprised: (1) Total
Protein Normalization (TPN) to adjust for inter-sample variations
in total protein content; (2) Log10 transformation to stabilize
variance across the dynamic range of protein abundances; (3) Pareto
scaling to mitigate dominance by high-abundance proteins. To
generate the hierarchical clustering heatmaps, the data was first
standardized by autoscaling to normalize the dataset. The Pearson
correlation coefficient was used as the distance measure, and the
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average linkage method was applied for clustering. A heatmap with
hierarchical clustering analysis was generated based on normalized
protein values to provide an overview of DEP characteristics. Gene
Ontology (GO) analysis was conducted using the STRING database
(https://string-db.org/), focusing on biological processes, molecular
functions, and cellular components. The Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analyses were
conducted utilizing the Metascape database (https://metascape.
org/) (Zhou et al., 2019), with the screening parameters established
as aminimumoverlap of 3 and aminimum enrichment factor of 1.5.

2.6 Construction and validation of a
prognostic model

To investigate the relationship between protein expression
levels and overall survival (OS) of HCC patients, univariate Cox
regression analyses were performed. Proteins with P < 0.05 were
selected for further analysis. To eliminate gene collinearity, LASSO-
COX regression analysis was conducted using the R package
“glmnet”. The optimal penalty parameter λ was determined by 3-
fold cross-validation. Risk scores were calculated as the sum of each
protein’s coefficient multiplied by its expression level. Patients were
classified into low- and high-risk groups based on the median risk
score. Kaplan-Meier curves were generated using the R package
“survminer” to compare OS between groups using a log-rank test.
The model refinement process is summarized in the graphical
abstract and Supplementary Material.

The predictive ability of the signature was validated using an
independent cohort. Univariate and multivariate Cox regression
analyses were performed to determine whether the combination
of CKAP4 and PLOD2 was an independent prognostic factor
for OS in HCC patients. Nomograms were generated from Cox
regression coefficients using the “rms” package. Time-dependent
receiver operating characteristic (ROC) curves were used to evaluate
the predictive ability of CKAP4, PLOD2, and related clinical
parameters for 1-, 2-, and 3-year OS in the validation set. X-tile
(version 3.6.1) was used to determine suitable cut-off points for
the risk score (Camp et al., 2004). The clinical utility of the model
was assessed using the C-index, decision curve analysis (DCA),
calibration curves, and time-dependent ROC curves.

2.7 Immunohistochemistry

Liver samples from HCC patients were fixed, paraffin-
embedded, and sectioned using standard methods. Sections
were deparaffinized, hydrated, and subjected to antigen retrieval.
Nonspecific binding was blocked with sheep serum albumin.
Sections were incubated with primary antibodies against CKAP4
(16,686-1, Proteintech, China) and PLOD2 (66,342-1, Proteintech,
China). Secondary antibody incubation was carried out using a
universal two-step assay kit (PV9000, Zsbio, China), followed by
staining with diaminobenzidine (AR1027, Boster, China). After
counterstaining with hematoxylin (C0107, Beyotime, China),
the sections were dehydrated and mounted. Image analysis was
performed using Image-Pro Plus 6.0.

2.8 Statistical analysis

Statistical analyses were conducted using SPSS 22.0 and R
software (version 3.6.3). Data are expressed as mean ± standard
deviation (SD). Statistical significance between two groups was
determined using Student’s t-test. A two-tailed P-value < 0.05 was
considered statistically significant.

3 Results

3.1 Global proteome characterization of
HCC and adjacent non-tumour liver tissues

DIA quantitative proteomics was conducted on 31 paired
cancerous and non-tumour samples fromHCC patients, identifying
8,908 unique proteins. The average number of proteins identified
in HCC liver tissue was 7,705, compared to 7,264 in normal
liver tissue. The mean number of proteins identified in HCC liver
tissue (7,705) significantly exceeded that in normal liver tissue
(7,264) (Figure 1A,B). Moreover, patients with high Edmondson
grades exhibited a greater number of identified proteins in
HCC tissue (Figure 1C).These results show the differences in protein
expression quantities betweenHCC tissue and normal liver tissue, as
well as the relationship between protein numbers in HCC tissue and
Edmondson grades.

Quality control sample correlation analysis demonstrated
significant concordance, with heat map analysis revealing strong
correlation coefficients between HCC and non-tumour groups
(Supplementary Figure S1A,B). High inter-experiment correlation
coefficients evidenced robust stability and reproducibility. Partial
least squares discriminant analysis (PLS-DA) further confirmed this
distinct pattern (Figure 2A).Theheatmap clearly delineated protein-
level differences between tumour and adjacent non-cancerous
tissues, supporting subsequent comparisons (Figure 2B).

3.2 Proteomic features of DEPs in HCC

To assess the significance of differential protein expression,
we performed t-tests on the FC of each protein in the HCC
group compared to the adjacent non-tumour group. DEPs were
defined as those with P < 0.01 and FC > 1.80 (up-regulated)
or FC < 0.56 (down-regulated). This analysis yielded 1,533 DEPs
(Supplementary Table S3), comprising 866 up-regulated and 667
down-regulated proteins in the HCC group. A volcano plot
visualized the statistical distribution of DEPs in HCC compared to
adjacent non-tumour tissue (Figure 2C).

To elucidate the potential functions of DEPs, we conducted
functional enrichment analysis. Gene Ontology (GO) analysis
encompassed biological processes, cellular components, and
molecular function annotations, providing a comprehensive
functional overview of the DEPs. Proteins upregulated in
hepatocellular carcinoma (HCC) patients compared to adjacent
non-tumour tissues were significantly enriched in small molecule
catabolism, amino acid metabolism, fatty acid metabolism,
and organic acid catabolism, among other biological processes.
Cellular component annotation revealed that the majority of
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FIGURE 1
Comprehensive proteomic analysis of hepatocellular carcinoma (HCC) patient samples. (A) Protein identification in paired liver tissue samples (n = 31
pairs). Pink bars represent normal liver tissue; green bars represent HCC tumour tissue. (B) Violin plots depicting the distribution of identified proteins in
normal (pink, n = 31) and tumour (green, n = 31) liver tissues. Statistical significance was determined using a paired t-test (∗∗∗∗P < 0.0001). (C)
Comparison of protein identification in tumour tissues stratified by Edmondson grade. Statistical analysis was performed using one-way ANOVA with
Tukey’s post hoc test (ns: not significant, P > 0.05;∗∗P < 0.01).

DEPs were localized to the mitochondrial matrix, peroxisomes,
and organelle inner membranes. Molecular function analysis
demonstrated an enrichment in oxidoreductase activity
(Supplementary Figure S2A). Additionally, we performed Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway-based
enrichment analysis of the DEPs. Results indicated significant
involvement in energy metabolism, carbohydrate metabolism,
signaling pathways, post-translational protein modifications, and
protein transport (Supplementary Figure S2B).

3.3 Establishment and validation of a
prognostic model based on CKAP4 and
PLOD2 in hepatocellular carcinoma

From 1,533 DEPs, univariate Cox regression analysis identified
179 prognosis-related proteins (P < 0.05, Supplementary Table S4).
Comparison of prognosis-related proteins (PRPs) from
our cohort with prognosis-related genes from The Cancer
Genome Atlas (TCGA)-LIHC cohort (Supplementary Table S5)
revealed 27 common signatures (Supplementary Table S6).
These proteins underwent a multistage refinement process
summarized in graphical abstract. Subsequent LASSO-Cox
regression analysis (Figure 3A,B) resulted in a prognostic model
incorporating CKAP4 and PLOD2. The prognostic index was
calculated as:

Risk score = (CKAP4expression ∗ 1.07370337029954e − 08)

+ (PLOD2expression ∗ 7.98110767056107e − 08)

To validate the model’s predictive capacity, patients were
stratified into high-risk (N = 15) and low-risk (N = 16) groups
based on the median risk score (Figure 3C). The high-risk
group exhibited higher mortality rates and shorter survival times,
with overexpression of both CKAP4 and PLOD2. Kaplan-Meier
analysis confirmed poorer prognosis in the high-risk group (P
< 0.001, Figure 3D).

ROC curve analysis demonstrated the model’s stability
(Supplementary Figures S3A,B). In the discovery cohort, the model

showed a sensitivity of 0.944 and specificity of 0.769, with an
area under the curve (AUC) of 0.915. Time-dependent ROC
analysis yielded AUCs of 0.899, 0.951, and 0.962 for 1-, 2-,
and 3-year OS, respectively. A positive correlation was observed
between CKAP4 and PLOD2 expression levels (R = 0.72, P
< 0.001, Supplementary Figure S4A). These results underscore the
model’s robust performance in predicting HCC prognosis.

3.4 Validation of prognostic proteins by
immunohistochemical analysis

Immunohistochemistry (IHC) confirmed elevated CKAP4 and
PLOD2 expression inHCC tissues compared to peritumoural tissues
(Figure 4A,B,D). Higher expression of both proteins correlated
with shorter survival times (Figure 4C,E), consistent with mass
spectrometry results (Supplementary Figure S5A–D). Kaplan-Meier
analysis revealed worse prognosis in patients with high CKAP4 and
PLOD2 expression (Figure 4F,G). Additionally, CKAP4 and PLOD2
expression levels showed a positive correlation (R = 0.56, P < 0.001)
(Supplementary Figure S4B). To further investigate their combined
effect, patients in the validation cohort (N = 48) were stratified
into three groups based on CKAP4 and PLOD2 expression. Group
1 (low CKAP4, low PLOD2) demonstrated the shortest OS, while
Group 3 (high CKAP4, high PLOD2) had the longest OS. Group
2 (discordant expression, i.e., high CKAP4+low PLOD2 or low
CKAP4+high PLOD2) showed intermediate OS (Figure 4H).

3.5 Establishment and evaluation of
nomogram

Univariate analysis identified AJCC stage, BCLC stage, CKAP4,
PLOD2, and the CKAP4+PLOD2 combination as significantly
associated with OS (Table 1). However, multivariate Cox regression
analysis integrating these variables revealed AJCC stage (HR = 3.12,
95% CI 1.89-5.14; P < 0.001) and the CKAP4+PLOD2 combination
(HR = 2.67, 95% CI 1.75-4.08; P < 0.001) as independent prognostic
factors (Table 1), whereas BCLC stage lost significance (HR = 1.395,
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FIGURE 2
Identification of differentially expressed proteins (DEPs) and their correlation with clinicopathological features of hepatocellular carcinoma (HCC). (A)
Partial least squares discriminant analysis (PLS-DA) of protein expression profiles in HCC tumours (pink, n = 31) and paired adjacent normal tissues
(green, n = 31). (B) Hierarchical clustering heatmap of DEPs in HCC tumours (C) and paired adjacent normal tissues (P). Sample annotations are
indicated by colored bars below the heatmap, representing tumour status (red: tumour; green: non-tumour), age, gender, alpha-fetoprotein (AFP)
levels, tumour number, tumour size, vascular invasion status, Barcelona Clinic Liver Cancer (BCLC) stage, Edmondson grade, TNM stage, overall
survival (OS), and tumour classification. (C) Volcano plot illustrating the distribution of DEPs between HCC and adjacent normal tissues. Red dots
represent significantly upregulated proteins, green dots represent significantly downregulated proteins, and gray dots (NS) indicate proteins with no
significant differential expression.

95% CI 0.63-3.09; P = 0.411). These validated predictors were used
to construct the primary nomogram (Figure 5A).

To directly compare staging systems, we developed parallel
nomograms using identical variables (AJCC/BCLC stage +
CKAP4/PLOD2 combination). The BCLC-integrated model
demonstrated moderate discriminatory power (1-/2-/3-year AUCs:
0.715/0.812/0.732; Supplementary Figures S6A–F), significantly
underperforming the AJCC-based nomogram across all
endpoints (AUCs: 0.818/0.846/0.775; Figure 5C). This systematic
comparison (visualized in Figure 5C vs. Supplementary Figure S6B)
confirmed AJCC’s superior integration with molecular markers.
Furthermore, ROC analysis demonstrated the integrated
nomogram’s enhanced predictive capacity over individual indicators
(Supplementary Figures S7A–C), validating its clinical utility for
HCC risk stratification. The C-index for the OS nomogram was
0.738 (95% confidence interval [CI], 0.698–0.779). Calibration
curves demonstrated good agreement between predicted and
actual 1-, 2-, and 3-year OS probabilities in the validation cohort
(Figure 5D). DCA showed that the model could improve the net
benefit and exhibit a broader threshold probability in predicting the
prognosis of HCC patients (Figure 5E).

Based on the established nomogram, we calculated the total
score for each patient in the validation set and used the best cutoff
points of the total score to establish risk stratification. Patients
were categorized into high-risk (>121.85), medium-risk (>51.59 and
≤121.85), and low-risk (≤51.59) groups. Survival analysis showed
significantly better prognosis in the low-risk group compared to the
high-risk group (P < 0.001, Figure 5B).

4 Discussion

HCC remains a significant global health challenge, characterized
by high incidence and poor prognosis despite considerable advances
in treatment modalities over recent decades. The paucity of
robust prognostic markers underscores the pressing need for
a distinct and reliable predictive model. In this study, we
leveraged mass spectrometry-based proteomics to unveil the
molecular heterogeneity of HCC and identified a significant
association between the expression of CKAP4 and PLOD2 and OS.
Furthermore, our analysis revealed that AJCC stage may also serve
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FIGURE 3
Development and validation of the prognostic model. (A) LASSO regression analysis of 27 overall survival (OS)-related proteins. Cross-validation plot
for the LASSO-Cox regression model to determine the optimal tuning parameter (λ). The x-axis represents log(λ) values, while the y-axis shows partial
likelihood deviance. The λ value yielding the minimum mean 3-fold cross-validated error was selected. (B) LASSO-Cox regression coefficient profile
plot for variable selection. The vertical dashed line indicates the optimal λ value that minimizes the mean cross-validated error. (C) Distribution of risk
scores, patient survival status, and heatmap depicting the expression levels of CKAP4 and PLOD2 in the study cohort. (D) Kaplan-Meier survival analysis
stratified by risk score for predicting overall survival. The p-value was calculated using the log-rank test.

as a potential prognostic factor, aligning with previous findings in
HCC research (Ouyang et al., 2020; El‐Fattah et al., 2016).

In the development of prognostic models for HCC, serum
biomarkers such as AFP and protein induced by PIVKA-II are
commonly prioritized for inclusion. While classically prognostic in
HCC,AFP lost independent significancewhen combinedwith tissue
proteomics, consistent with evidence suggesting serum biomarkers’
limited value in tissue-enriched cohorts, particularly early-stage
HCC. This may reflect biological redundancy or sample size
limitations. PIVKA-II was excluded due to unavailable retrospective
data. Future studies will prospectively integrate serum and tissue
biomarkers to enhance prognostic precision.

We developed a personalized prognostic nomogram and
established risk stratification criteria to aid in the clinical
management of HCC patients at initial diagnosis. Our
comprehensive analytical assessment confirmed the model’s
excellent ability to differentiate and calibrate, effectively predicting
OS and accurately stratifying HCC patients by risk in our dataset.
This tool has the potential to assist clinicians in making informed
decisions regarding treatment strategies and follow-up protocols.

Our findings indicate that CKAP4 and PLOD2 are critical
prognostic molecules in HCC, with significant overexpression
associated with poor prognosis. CKAP4, also known as p63, is
localized in the endoplasmic reticulum and plays a crucial role

in maintaining its structure (Shibata et al., 2010). The protein
is categorized into two main subtypes: TAp63 and ΔNp63.
While TAp63 belongs to the p53 family and exhibits tumour-
suppressive functions, the ΔNp63 subtype is often upregulated
in tumour cells and associated with poor prognosis and disease
progression (Wu et al., 2003; Carroll et al., 2006). This upregulation
has been reported in various cancers, including pancreatic
ductal adenocarcinoma, lung adenocarcinoma, and squamous
cell carcinomas of the lung and esophagus (Kimura et al.,
2016; Shinno et al., 2018). PLOD2, a member of the PLOD
family responsible for lysine hydroxylation, is localized in the
rough endoplasmic reticulum and involved in collagen post-
translational modification. Recent studies have implicated the
PLOD family, particularly PLOD2, in tumour progression, invasion,
and metastasis (Wang et al., 2021; Jiang et al., 2020; Eisinger-
Mathason et al., 2013). Elevated expression of both PLOD1 and
PLOD2 has been associated with poor prognosis and increased
invasiveness in HCC (Yang et al., 2023; Li et al., 2023). PLOD2, as a
key enzyme promoting stable collagen cross-linking, plays a crucial
role in facilitating tumour cell motility, invasion, and proliferation
(Du et al., 2017; Kiyozumi et al., 2018; Yang et al., 2020; Qi
and Xu, 2018).

Our study revealed a positive correlation between CKAP4 and
PLOD2 expression in HCC, a finding that has not been previously
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FIGURE 4
Validation of CKAP4 and PLOD2 expression in relation to HCC progression. (A) Representative immunohistochemistry (IHC) images illustrating CKAP4
and PLOD2 expression in hepatocellular carcinoma (HCC) tissues (n = 48) and adjacent non-tumour tissues (n = 38). Scale bar: 100 μm. (B–E)
Quantification of CKAP4 and PLOD2 expression using integrated optical density (IOD) values in HCC and adjacent non-tumour liver tissues. Statistical
analyses compare expression levels between patients with good prognosis (long survival) and poor prognosis (short survival), as defined by median
survival time (∗∗∗∗P < 0.0001,∗∗∗P < 0.001,∗∗P < 0.01). (F) Kaplan-Meier survival analysis stratified by CKAP4 expression in HCC patients (P = 0.007). (G)
Kaplan-Meier analysis of overall survival in HCC patients stratified by high and low PLOD2 expression, based on the validation cohort (P < 0.001). (H)
Kaplan-Meier analysis of overall survival in HCC patients stratified by the combined CKAP4 and PLOD2 expression: low expression of both proteins, low
expression of one protein (CKAP4 low + PLOD2 high or CKAP4 high + PLOD2 low), or high expression of both proteins (P = 0.002). All P-values for
survival analyses were calculated using the log-rank test.

reported. However, the interactions between these proteins in
HCC and their exact molecular mechanisms in tumour regulation
require further investigation. IHC results elucidated the expression
patterns of CKAP4 and PLOD2 in HCC tumour tissues and
surrounding areas, providing visual evidence of their upregulation.
Cox regression analysis confirmed that the combination of CKAP4
and PLOD2 is an independent prognostic factor for OS in HCC
patients, suggesting that overexpression of these proteins may
predict shorter survival time and poorer prognosis.

This molecular prognostic signature synergizes with clinical
staging systems to enhance predictive precision. Multivariate
analysis confirmed that the AJCC staging system has superior
prognostic independence compared to BCLC, which may be
attributed to its detailed classification of tumour invasiveness and
metastasis. Model comparisons further validated the enhanced
predictive accuracy of the AJCC-based nomogram, indicating
a stronger alignment with the biological characteristics of
hepatocellular carcinoma progression. The nomogram developed
in this study incorporates AJCC stage, a recognized risk factor in

many HCC prediction models (Wang et al., 2023), with CKAP4 and
PLOD2 expression levels. While current tissue-based approaches
(including our DIA proteomics) may not fully resolve intratumoral
heterogeneity compared to advanced spatial techniques like laser-
capture microdissection, this model overcomes AFP’s critical
limitation in capturing tumourmicroenvironment architecture.The
integration of AJCC staging with CKAP4/PLOD2 spatial expression
patterns achieved superior prognostic accuracy compared to
serum biomarkers, with the combined model demonstrating
greater predictive power than individual factors in assessing HCC
prognosis.

The model’s postoperative prognostic stratification capability
should be interpreted within current therapeutic paradigms.
Although our model primarily emphasizes postoperative prognosis
stratification, the selection of treatment modalities remains a
critical consideration, especially for advanced hepatocellular
carcinoma (BCLC stage C). These molecular insights must be
contextualized within evolving clinical paradigms. Despite current
guidelines recommending systemic therapy (such as tyrosine kinase
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TABLE 1 Univariable and multivariable analyses of factors associated with survival in the IHC validation cohort (n = 48).

Characteristics Univariable analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value

Gender 1.237 (0.375–4.082) 0.727

 Male

 Female

Age (years) 0.573 (0.277–1.184) 0.133

 ≤55

 >55

Edmondson-Steiner grade 1.115 (0.540–2.302) 0.769

 I + II

 III

Tumour number 1.150 (0.441–3.001) 0.775

 Single

 Multiple

Tumour size (cm) 2.068 (0.958–4.463) 0.064

 ≤5

 >5

AJCC stagea 3.000 (1.412–6.376) 0.004 2.529 (1.156–5.535) 0.020

 I + II

 IIIA + IIIB

CKAP4 2.613 (1.246–5.480) 0.011

 Low

 High

PLOD2 4.118 (1.911–8.875) <0.001

 Low

 High

CKAP4+PLOD2

 All low

 Low + high or high + low 1.892 (0.684–5.232) 0.219 1.976 (0.712–5.487) 0.191

 All high 4.450 (1.807–10.955) 0.001 3.745 (1.503–9.331) 0.005

aAmerican Joint Committee on Cancer 8th edition staging for hepatocellular carcinoma.
Boldface type denotes statistically significant P-values (P < 0.05).
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FIGURE 5
Nomogram for predicting survival probability in HCC patients. (A) Prognostic nomogram integrating CKAP4+PLOD2 expression with AJCC stage for
predicting overall survival in hepatocellular carcinoma (HCC) patients. (B) Kaplan-Meier survival analysis stratified by nomogram-predicted risk groups
to assess overall survival in HCC patients. (C) Time-dependent receiver operating characteristic (ROC) curves evaluating the predictive efficiency of the
nomogram. (D) Calibration curves demonstrating the agreement between nomogram-predicted and observed 1-, 2-, and 3-year overall survival (OS)
probabilities. (E) Decision curve analysis (DCA) illustrating the clinical utility of the nomogram for predicting 1-, 2-, and 3-year OS in HCC patients.

inhibitors and immune checkpoint inhibitors) for patients with
BCLC-C, emerging evidence suggests that surgical resection may
be beneficial for specific cases with vascular invasion but no
extrahepatic spread (Govalan et al., 2021; Famularo et al., 2022;
Zhang et al., 2019). Remarkably, 84% (26/31) of our discovery
cohort received adjuvant therapy post-resection—primarily TACE
(16 cases) and radiotherapy (4 cases)—reflecting prevailing Asian
HCC management patterns that favor aggressive local control even
in advanced stages (Zhang et al., 2019).

In this complex landscape, nomograms serve as visual tools for
personalized risk assessment in oncology, addressing the complexity
of balancing various clinical variables while avoiding individual
physician bias (Balachandran et al., 2015). They are particularly
valuable when the benefits of additional treatments are uncertain
and can aid in individualized risk stratification and clinical decision-
making (Weiser et al., 2008; Rudloff et al., 2010). In the context of
HCC, where treatment decisions can be complex and multifaceted,
such tools provide new ideas and strategic insights for prognostic
prediction.

Our study’s strengths include the use of DIAmass spectrometry-
based proteomic analysis, validation in an independent cohort,

rigorous statistical analysis including Cox and LASSO regression,
and the development of a prediction model with good performance,
fewer variables, and clinical accessibility. This approach not only
prevents model overfitting but also improves its clinical applicability
and accuracy (Zhu et al., 2020). However, limitations include a
small sample size and the absence of external validation for the
nomogram. Notably, although we stratifiedHCC patients into early-
intermediate (BCLC-A/B; AJCC I/II) and advanced stages (BCLC-
C; AJCC III), the limited subgroup sizes precluded robust stage-
specific analyses. To address these constraints, we are prospectively
implementing amulticenter validation study with expanded cohorts
to enable statistically powered stratification across disease stages.

5 Conclusion

In conclusion, this study suggests that AJCC stage and
expression levels of CKAP4 and PLOD2 significantly impact HCC
prognosis. The developed nomogram demonstrates effective OS
prediction and risk stratification in our dataset, potentially guiding
tailored treatment and surveillance strategies. The application of
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this liver cancer risk prediction model is of great significance in
individualizing treatment and regular testing for HCC patients.
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