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Using deep learning to screen
OCTA images for hypertension to
reduce the risk of serious
complications

Yiheng Ding1†, Ziqiang Wei2†, Chaoyun Wang2, Xinyue Li1,
Bingbing Li2, Xueting Liu1, Zhijie Fu2, Hongwei Mo2* and
Hong Zhang1*
1Eye Hospital, The First Affiliated Hospital of Harbin Medical University, Harbin, China, 2School of
Intelligent Science and Engineering, Harbin Engineering University, Harbin, China

Background: As a disease with high global incidence, hypertension is known
to cause systemic vasculopathy. Ophthalmic vessels are the only vascular
structures that can be directly observed in vivo in a non-invasive manner. We
aim to investigate the changes in ocularmicrovessels in hypertension using deep
learning on optical coherence tomography angiography (OCTA) images.

Methods: The convolutional neural network architecture Xception and multi-
Swin transformer were used to screen 422 OCTA images (252 from 136
hypertension subjects; 170 from 85 healthy subjects) for hypertension.
Moreover, the separability of the OCTA images based on high-dimensional
feature angles was analyzed to better understand how deep learning models
distinguish such images with class activation mapping.

Results:Under Xception, the overall average accuracy of 5-fold cross-validation
was 76.05% and sensitivity was 85.52%. In contrast, the Swin transformer
showed single-model (macular), single-model (optic disk), and multimodel
average accuracies of 82.25%, 74.936%, and 85.06%, respectively, for predicting
hypertension.

Conclusion: The changes caused by hypertension on the fundus vessels
can be observed more accurately and efficiently using OCTA image features
through deep learning. These results are expected to assist with screening of
hypertension and reducing the risk of its severe complications.

Trial Registration:ChiCTR, ChiCTR2000041330. Registered 23December 2020,
https://www.chictr.org.cn/ChiCTR2000041330.

KEYWORDS

optical coherence tomography angiography, hypertension, deep learning,
convolutional neural network, multi-Swin transformer

1 Introduction

Hypertension is an important public health problem that is responsible for the deaths
of approximately 9.4 million people worldwide each year owing to complications like
arteriosclerosis and stroke (Lim et al., 2012). According to the 2020 International Society of
Hypertension Global Hypertension Practice Guidelines, hypertension is defined as systolic
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blood pressure equal to or greater than 140 mmHg and/or
diastolic blood pressure equal to or greater than 90 mmHg
(Unger et al., 2020). However, blood pressure measurements are
often affected by many factors, including fluctuations at different
time periods (Laski et al., 2000). Moreover, the simple blood
pressure value cannot directly reflect the changes in systemic organs
affected by hypertension. Hypertension can cause damage to the
structure and functions of blood vessels, especially those like the
microvessels in the eye (fundus retinal vessels) and glomerular
capillaries (Laski et al., 2000). In the clinic, compared to simple
blood pressure measurements, changes in the blood vessels caused
by hypertension can better reflect the impacts on important organs
and indicate the risk of serious complications of hypertension.
Therefore, observation of systemic vascular changes is significant
for early detection and treatment of hypertension and enhances
the medical compliance of patients. Retinal vessels can be directly
observed in vivo in a non-invasive manner and reflect changes in
the circulatory system.

Hypertension can cause a series of pathophysiological changes
in the eye, and the most common among these is hypertensive
retinopathy (Keith et al., 1974). Hypertensive retinopathy is caused
by acute and/or chronically elevated blood pressure and reflects the
severity as well as duration of such elevated blood pressure status
(Ambresin and Borruat, 2015; Stryjewski et al., 2016; Ahn et al.,
2014; Tso and Jampol, 1982), which in turn indicate increased risks
associated with stroke (Ong et al., 2013), congestive heart failure,
and cardiovascular death (Tso and Jampol, 1982). Ong et al. (2013)
found that persons with moderate hypertensive retinopathy were
more likely to experience stroke than those with no retinopathy
(multivariable hazard ratio (HR) for moderate vs. no retinopathy:
2.37, 95% confidence interval (CI): 1.39–4.02) after adjusting for age,
sex, blood pressure, and other risk factors. In hypertensive subjects
who had achieved good control of blood pressure with medication,
hypertensive retinopathy was related to increased risk of cerebral
infarction (HR formild retinopathy: 1.96, 95%CI: 1.09–3.55; HR for
moderate retinopathy: 2.98, 95% CI: 1.01–8.83) (Ong et al., 2013).
This suggests that hypertensive retinopathy could predict the long-
term risk of stroke independent of the blood pressure even in treated
hypertensives with good control (Ong et al., 2013). At present,
the main approaches for observing hypertensive retinopathy are
via ophthalmoscope and fundus photography. Generally, only the
central retinal vessels (grade 1 and 2 branches of the central retinal
artery and vein) can be observed by these methods. However,
early angiopathy caused by hypertension often manifests at the
microvasculature level (grade 3 and 4 branches of the central retinal
artery and vein) (Wong and Mitchell, 2004). Thus, obvious vascular
changes are often not observable in patients in the early stages of
hypertension (Wong and Mitchell, 2004). Moreover, most of the
available research results are based on the judgments of observers,
which are not objective enough (Wong and Mitchell, 2004). A

Abbreviations: OCTA, optical coherence tomography angiography; CNN,
convolutional neural network; Se, sensitivity; Sp, specificity; cv, cross-
validation; Acc, accuracy; ROC, receiver operator characteristic; AUC, area
under the curve; HR, hazard ratio; VD, vessel density; FAZ, foveal avascular
zone; ONH, optic nerve head; RNFL, retinal nerve fiber layer; CNV, choroidal
neovascularization; Pr, precision; F1, F1-score; TP, true positive; TN, true
negative; FP, false positive; FN, false negative; CAM, class activationmapping.

previous work reported the development of a new computer-based
program with innovative fundus photography and computational
image processing technology to quantitatively evaluate the retinal
geometry and branching parameters, such as curvature, fractal
dimension, branch angle, and vascular aspect ratio (Cheung et al.,
2012). However, the accuracy of this approach was based on
manual identification, and only larger blood vessels could be
observed via fundus photography. Moreover, the abovementioned
geometric branch parameters are relatively independent low-
dimensional features.

Optical coherence tomography angiography (OCTA) is a
rapid and non-invasive diagnostic imaging technique that can
produce depth stratified and high-resolution images of the retinal
microvascular system without dye injection, thereby avoiding
problems such as allergies caused by fundus fluorescein angiography.
This allows observation of relatively smaller vascular structures and
quantitative analyses of the findings (Spaide et al., 2015). Using
built-in automatic OCTA software, we can easily evaluate retinal
blood flow based on various retinal and choroidal microvascular
parameters, such as vessel density, choroidal capillary flow area,
foveal avascular zone (FAZ) area, and capillary density of the
optic nerve head (ONH). Recently, several OCTA studies have
shown that hypertension causes changes in the retinalmicrovascular
system. An earlier study showed that changes in the foveal blood
flow density were closely related to the Keith–Wagener–Barker
grade (Takayama et al., 2018). In hypertensive patients without
hypertensive retinopathy, the blood flow density of the superficial
macular area was lower, and the retinal nerve fiber layer (RNFL)
was thinner than those in the healthy control group (Hua et al.,
2020). Another study showed that the RNFL was thinner in
hypertensive patients than in healthy controls as the retinal blood
flow density and perfusion density were lower in hypertensive
patients (Lim et al., 2019). Moreover, the blood flow densities in
patients with severe hypertensive retinopathy were lower than those
of healthy controls (Lee et al., 2019).

Deep learning has been applied in the field of ophthalmology
to screen and diagnose cataracts (Gao et al., 2015), keratopathy
(Smadja et al., 2013), and retinal diseases (Ting et al., 2017).
Traditionally, convolutional neural networks (CNNs) have been
used as deep-learning architectures to achieve great results in all
areas of computer vision. However, given the limitations of the
convolutional structure, CNNs still have disadvantages in terms of
the locality of the perception field even with increased network
depth. This prevents the CNN from being able to obtain long-
distance information between key feature points when extracting
image features. Recently, transformer networks have been shown
to generally perform better than CNNs in computer vision
applications.One reason for this is that the self-attentionmechanism
in the transformer network can extract long-distance features
and key information from global data. Just as recurrent neural
networks have solved the problem of long-distance forgetting in
text recognition tasks, transformer networks have provided similar
advantages with respect to images.

Transformer networks require greater amounts of data than
CNNs for training the random initialization network to achieve
better results owing to the complexity of the network structure.
However, acquiring high-quality labeled data is often very
expensive in the field of medical research. Therefore, medical
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image datasets having the same sizes as natural image datasets
are difficult to collect, which motivates the question whether
transformer networks are unsuitable for clinical medical research.
A recent study by Christos et al. (2021) showed that it is possible
to obtain results similar to those with CNNs for medical problems
by importing ImageNet pretraining weights into the transformer
network through transfer learning; the study also demonstrated the
feasibility of transformer networks for small-sample problems in the
medical field.

For problem of With regard to OCTA images and hypertension,
previous studies have shown that hypertension can affect the density
distribution of blood vessels in the patients’ eyes. Considering the
specificity of this problem, we need a deep-learning model that
can capture key long-distance information from global blood vessel
features and associated data, for which transformer networks may
be better choices. In the subsequent sections, we compare some
classical CNNs with the transformer network.

2 Methods

2.1 Data preparation

2.1.1 Study participants
We recruited 136 patients (252 eyes) with hypertension

diagnosed by a physician and 85 healthy volunteers (170 eyes)
for the present study (Table 1). The hypertension subjects met the
diagnostic criteria of essential hypertension with no history of other
systemic diseases (such as hyperglycemia, stroke, hematological
diseases, and autoimmune diseases). Furthermore, the healthy
subjects in the control group had no reported history of systemic
diseases. The subjects in both groups had no history of other
intraocular diseases, such as diabetic retinopathy, macular edema,
macular hole, epimacular membrane, age-related maculopathy,
retinal detachment, retinal vascular occlusion, central serous
chorioretinopathy, uveitis, and optic nerve disease; moreover, there
was no history of intraocular surgery, intraocular injection, fundus
laser, and ocular trauma. They had no glaucoma or suspected
glaucoma (large cup–disc ratio, asymmetric cup–disc ratio, defective
or narrow rim, optic disc hemorrhage, or suspected changes in
the nerve fiber layer) and were not first-degree family members of
non-glaucoma patients. We performed comprehensive physical and
eye examinations for the patients, including systemic examination,
best-corrected visual acuity (BCVA), intraocular pressure (IOP),
computer optometry, slit lamp examination, fundus photography,
and OCTA. The exclusion criteria included the following:

(1) primary or other secondary retinal diseases;
(2) inability to complete OCTA examination;
(3) severe corneal leukoplakia, cataract, strabismus,

nystagmus, etc.;
(4) severe ametropia (>+ 300 or <−600);
(5) IOP not within the range of 10–21 mmHg;
(6) OCTA scan quality <7/10.

This study was approved by the ethics committee of the
First Affiliated Hospital of Harbin Medical University, Harbin,
China (approval no. 2020151) and was registered with the China
Clinical Trial Center (no. ChiCTR2000041330). All procedures were

conducted in accordance with the guidelines of the Declaration
of Helsinki.

2.1.2 Image acquisition
The RTVue imaging device (Optovue, Inc., Fremont, CA,

United States) was used to scan the macular area with 6 × 6 mm
angiography and optic disc with 4.5 × 4.5 mm angiography in all
eyes withoutmydriasis to obtain images of themicrovascular system
in the superficial layer of the macular retina and retinal posterior
capillary. The instrument was operated at a central wavelength of
840 nm and speed of 68,000 scans per second, where each B scan
involved 245 scans in both the horizontal and vertical directions.
The microangiography composite algorithm was used to analyze
complex signal changes (intensity and phase changes are included
in the continuous B scan at the same position) and generate the
microvascular image. We used the AngioVue®OCTA software to
analyze all scans.

2.2 Data preprocessing

The dataset was first divided into training and test sets in the
ratio of 8:2. The sample categories in the training set, test set, and
total dataset were the same. To minimize the evaluation differences
caused by the size of the dataset, we mainly adopted two measures:

1) Perform data augmentation on the OCTA images in the
divided training set, such as random flip, rotation, scaling, and
noise processing. Each image in the training set of the OCTA
image dataset was augmented by a factor of 10, such that the
total size of the training set was 3,380 OCTA images.

2) Five-fold cross-validation (cv) was used to obtain five
cross-training tests on each dataset, and the final average
evaluation index was taken as the final index to minimize the
evaluation differences between samples. Figure 1 schematically
illustrates the division of the dataset into training and
test samples.

2.3 Neural network architecture

The OCTA dataset used in this study contained 422 images,
which resulted in the small-sample problem. To mitigate the
overfitting problem that may occur during neural network training,
we used transfer learning to transfer the model weights of large
natural datasets to the target model to improve model robustness.
After transferring the weights, we input the training images of the
OCTA dataset to the target model for fine-tuning.

We then selected the Swin transformer as the baseline model to
facilitate improvement in subsequent experiments (Liu et al., 2021)
and perform comparisons with some classical CNN models; we
also compared the effectiveness of each algorithm through 5-fold
cross-validation and analysis of the evaluation indicators.Themodel
training involved migration learning, where the pretraining weights
were imported from ImageNet into the target model for fine-tuning
the downstream tasks. No additional processing steps were used to
compare the effectiveness of the algorithms.
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TABLE 1 Datasets of the patient and eye parameter distributions.

Patient Normal (n = 85) Hypertension (n = 136) p value∗

Age (SD) 52.82 (11.35) 52.08 (10.715) 0.703

Male/Female 37/48 68/68 0.349

Eye

Normal (n = 170) Hypertension (n = 252) p value∗

IOP (SD) 15.701 (2.2299) 15.909 (2.3725) 0.159

BCVA, logMAR (SD) 0.04235 (0.04941) 0.05159 (0.04997) 0.063

The Fisher exact test was used for the classified variables (gender), while the Wilcoxon rank-sum test was used for continuous variables (age); IOP: intraocular pressure; BCVA: best-corrected
visual acuity; the standard t-test was used for IOP and BCVA, and the difference was deemed statistically significant at p < 0.05.

FIGURE 1
Optical coherence tomography angiography (OCTA) image dataset cross-validation diagram. The OCTA dataset is divided into five independent parts,
of which four are taken as the training set and one part is used as the test set each time. Finally, the average index of the five models is taken as the
overall model evaluation index.

After selecting the baseline model, we used multimodel fusion
and prior knowledge initialization to improve the model. Then,
visual analysis was performed to observe the locations of lesions
caused by hypertension in the OCTA images, and the lesion areas
were analyzed based on prior medical knowledge.

The multimodel fusion network used here is called multi-Swin
as it is composed of two branches for Swin-transformer-based
late fusion. In the diagnosis of hypertension, the macular area is
mainly used to observe changes in the micro blood vessels and
FAZ area, while the optic disc region is used to observe changes to
the relatively larger vessels; the cup–disc ratio can also be used to
judge the damage to the nerves. Hence, we combined observations
from these two areas to make a more comprehensive judgment. The
model structure has two branches, so the images from the macular
and optic disc areas are input into these two branches separately.
Considering that the image information in the two branches is not

the same, we adopted a weight training strategy without sharing to
fully extract the data from the two branches. Figure 2 shows the
structure of the model used in this study.

We made some changes to the multimodel fusion initialization
because the multi-Swin model predicts hypertension by integrating
directly obtained image information from the macular and optic
disc areas.

First, we input the OCTA images of the macular and optic
disk areas to the Swin transformer networks separately for training
and obtaining the “prior knowledge” weights; then, we attempted
four different initialization methods for multimodel fusion, namely
double ImageNet pretraining, macular pretraining + ImageNet
pretraining, optic disc pretraining + ImageNet pretraining, macular
pretraining + optic disc pretraining. Through these approaches, we
expect that one of the branches can obtain prior knowledge before
multimodel fusion to help the other branch extract features better.
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FIGURE 2
Multimodel-fusion-based information fusion of data from the macular and optic disc areas of the OCTA image. During training, the macular and optic
disc images are imported into two separate Swin transformer branches. Then, the macular model branch adopts the pretraining weights of the macular
arm (trained on only macular images), while the visual panel model branch adopts the pretraining weights from ImageNet (pretrained on large natural
images). Finally, the embedding heads of the two model branches are connected in series as the information fusion head for training.

2.4 Evaluation metrics

In our experiments, the following indices were used to
evaluate the diagnostic performance of the model: accuracy
(Acc), sensitivity (Se), specificity (Sp), precision (Pr), recall,
and F1-score (F1). The calculation formulas for these metrics
are as follows:

Accuracy: Acc = (TP+TN)/(TP+ FP+TN+ FN),
Sensitivity: Se = TP/(TP+ FN),
Specificity: Sp = TN/(FP+TN),
Precision: Pr = TP/(TP+ FP),

Recall: Re = Se, and
F1-score: F1 = 2∗ Pr ∗Re/(Pr+Re),

where true positive (TP) denotes the model that correctly
predicts the OCTA image of a patient with hypertension; true
negative (TN) represents themodel that correctly predicts theOCTA
image of a normal person; false positive (FP) refers to the model
that mistakenly predicts the OCTA image of a normal person as a
hypertensive patient; false negative (FN) refers to the model that
mistakenly predicts the OCTA image of a hypertensive patient as
a normal person. Furthermore, the receiver operator characteristic
curve and area under the curve (AUC) were adopted to evaluate the
network classification ability.

2.5 Equipment and statistical analysis

The experimental deep neural network was established on
Keras’s deep-learning framework; the machine learning tool Scikit-
Learn based on Python was used to interact with Keras’s interface.
The operating system used was Ubuntu16.04, and the hardware

platform was configured with an Intel Xeon (R) CPU E5-
2620v3@2.4GHzx12 processor and Nvidia GeForce GTX1080Ti
graphics card.

The quantitative variables were described in terms of the mean
± standard error of the mean, and the Shapiro–Wilk test was
used to assess data normality. For comparison between groups, the
standard t-test was used when the quantitative variables obeyed the
assumption of homogeneity of variance of the normal distribution
and the Wilcoxon rank-sum test was used otherwise. The qualitative
variables were described via frequency and percentage, and the
Fisher exact test was used for comparisons between groups. The
differences were considered to be statistically significant at p < 0.05.

3 Results

3.1 Baseline model

To verify our previous judgment, we compared the training
results of the Swin transformer network and classical CNNs for
the macular OCTA images. Based on five-fold cross-validation, the
accuracy evaluation results are as shown in Table 2.

It is seen from this table that for the divided five-fold dataset,
the transformer model achieves greater accuracy. To further
verify the effectiveness of the transformer network for identifying
hypertension, we choose the Xception and transformer models with
better effects with the classical CNN architecture to compare other
evaluation indices, whose results are shown in Table 3.

It is seen from Table 3 that the five-fold cross-validation of the
Swin transformer model is better than the Xception model for all
evaluation indices, which fully validates the effectiveness of the
transformer model.
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TABLE 2 Comparison of accuracy evaluations between the transformer and classical convolutional neural network.

K fold Swin-T Xception (Chollet, 2017) EfficientNet-B3 (Tan and Le, 2019) ResNet50 (He et al., 2016)

F1 82.50% 75.41% 70.00% 66.25%

F2 83.75% 73.93% 77.50% 71.25%

F3 75.00% 72.12% 71.50% 67.50%

F4 86.25% 79.40% 72.25% 71.25%

F5 83.75% 79.40% 75.00% 70.00%

Average 82.25% 76.05% 73.25% 69.25%

Comparisons of the accuracies between the transformer and classical convolutional neural networks through 5-fold cross-validation. The values shown in boldface in the table represent the
maximum values of those rows.

TABLE 3 Comparison of other evaluation indices between the Swin transformer and Xception models.

K fold Swin transformer Xception

ACC SE SP F1-score AUC ACC SE SP F1-score AUC

F1 82.50% 89.58% 71.88% 0.8600 0.8710 75.41% 84.51% 61.76% 0.8049 0.8047

F2 83.75% 85.42% 81.25% 0.8632 0.8711 73.93% 87.80% 67.06% 0.8354 0.7906

F3 75.00% 85.42% 59.38% 0.8039 0.7454 72.12% 86.08% 51.18% 0.7874 0.7906

F4 86.25% 89.58% 81.25% 0.8866 0.9329 79.40% 83.60% 59.71% 0.7924 0.7931

F5 83.75% 83.33% 84.38% 0.8602 0.8548 79.40% 85.60% 70.29% 0.8319 0.8607

Average 82.25% 86.67% 75.63% 0.8548 0.8550 76.05% 85.52% 62.00% 0.8104 0.8249

ACC: accuracy; Se: sensitivity; Sp: specificity; F1: F1-score; AUC: area under the curve. The values shown in boldface in the table indicate the maximum values for the indices.

3.2 Multi-Swin transformer

We first trained the images from the macular and optic disc
areas separately to obtain the prior knowledge weights required to
initialize the multimodel fusion network. The model accuracies of
the two sets of images are shown in Table 4.

After obtaining the prior knowledge weights, we designed four
comparative experiments to analyze the effects ofmultimodel fusion
under different prior knowledge weights, as shown in Table 5.

From this table, it can be concluded that the multi-Swin model
is improved to various degrees by the addition of different prior
knowledge weights, which makes the model closer to the global
optimal point and prevents it frombeing trapped in the local optimal
point while speeding up model convergence.

3.3 Multi-Swin result analysis

From the above experiments, we obtain five model weights
that are optimal for the five-fold cross-validation. To verify the
effectiveness of the multimodel method, we compared the multi-
Swin network with the Swin transformer network for various
evaluation indices, and the results are shown in Table 6.

TABLE 4 Comparison of accuracy evaluation indices between the
macular and optic disk models.

K fold Single model
(macular)

Single model (optic
disk)

F1 82.5% 75.90%

F2 83.75% 71.08%

F3 75% 77.11%

F4 86.25% 83.13%

F5 83.75% 75.90%

Average 82.25% 76.62%

Comparisons of the accuracies of the macular and optic disk models through 5-fold
cross-validation. The values shown in boldface in the table represent the maximum values
of the rows.

It is seen from the table that multi-Swin outperforms
the Swin transformer model for most of the indices. In the
present study, we expect that this model would have greater
sensitivity to detect more hypertensive patients; accordingly, the
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TABLE 5 Comparison of the four multimodel experiments.

K fold Double ImageNet Macular + ImageNet Optic disk + ImageNet Macular + optic disk

F1 81.93 83.13 80.72 80.72

F2 81.93 83.13 80.72 81.93

F3 77.11 78.31 75.9 77.11

F4 86.75 91.57 84.34 89.16

F5 85.54 85.54 89.16 86.75

Average 82.652 84.336 82.168 83.13

ImageNet represents the ImageNet pretraining weights, Macular represents the “prior knowledge” weights obtained from pretraining with macular images, and Optic Disk represents the “prior
knowledge” weights obtained from pretraining with optic disc images. The values shown in boldface in the table represent the maximum values of the rows.

TABLE 6 Comparison of the single-model (macular) and multimodel training indices.

K fold Swin transformer Multi-Swin

ACC SE SP F1-score AUC ACC SE SP F1-score AUC

F1 82.50% 89.58% 71.88% 0.86 0.8710 83.13% 88% 75.76% 0.78 0.8624

F2 83.75% 85.42% 81.25% 0.86 0.8711 83.13% 88% 75.76% 0.78 0.84

F3 75.00% 85.42% 59.38% 0.80 0.7454 78.31% 84% 70.11% 0.72 0.7745

F4 86.25% 89.58% 81.25% 0.89 0.9329 91.57% 92% 90.9% 0.89 0.9552

F5 83.75% 83.33% 84.38% 0.86 0.8548 89.16% 88% 90.9% 0.87 0.9303

Average 82.25% 86.67% 75.63% 0.8548 0.8550 85.06% 88% 80.69% 0.81 0.87248

ACC: accuracy; Se: sensitivity; Sp: specificity; F1: F1-score; AUC: area under the curve. The values shown in boldface in the table represent the maximum values for the indices.

sensitivity of multi-Swin can reach 88%, which is in line with the
research goals.

At the same time, we also visualized the weights of the last self-
attention blocks in the two branches of the multi-Swin network
trained on the OCTA dataset through the Grad class activation
mapping (CAM) method, whose results are shown in Figure 3.
As seen from this figure, the model mainly focuses on the FAZ
area and its surroundings as well as the ONH, while the attention
points in the OCTA images of healthy people are irregularly
distributed.

4 Discussion

In this study, a deep-learning network suitable for the research
problem was designed and combined with OCTA images to
distinguish hypertensive patients from healthy people based on the
morphological characteristics of the fundus vessels. To the best of
our knowledge, this is a pilot effort on combining deep learning
with the structural characteristics of fundus vessels (especially
microvessels) observed via OCTA to distinguish patients with
hypertension from normal subjects. The classification results based
on CNN had an average accuracy of 76.05% and average AUC

value of 0.8249. In contrast, the Swin transformer showed better
ability to predict hypertension based onmacular OCTA images with
an average accuracy of 82.25% and average AUC value of 0.855.
Meanwhile, themultimodel fusion approach showed the best results,
with an average accuracy of 85.06% and AUC value of 0.8719.
In addition, with the Swin transformer network, the single-model
(macular) branch showed better ability to predict hypertension
than the single-model (optic disk) arm. Based on the evaluation
indices, there is a high correlation between OCTA images and
hypertension predicted using deep learning, where the sensitivity of
the multimodel approach is 88%. As a significant evaluation index
for preliminary screening of a disease, the sensitivity value suggests
that OCTA image features recognized through deep learning can
help identify changes in retinal vessels caused by hypertension
more accurately and efficiently. However, direct observations of
microvascular changes often cannot achieve such results. Hence,
the proposed model has clinical significance for early detection and
treatment of hypertension while also improving patient medical
compliance. Furthermore, the drawbacks of evaluating a small
number of samples can be reduced through cross-validation and
data augmentation techniques. The proposed transfer learning and
evaluation strategies are thus useful for analyzing small medical
samples in the future.

Frontiers in Cell and Developmental Biology 07 frontiersin.org

https://doi.org/10.3389/fcell.2025.1581785
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Ding et al. 10.3389/fcell.2025.1581785

FIGURE 3
Examples of OCTA images correctly predicted by the deep-learning network. The two images in each column represent the OCTA data corresponding
to a single subject: (a, b) macular and (c, d) optic disc images from a healthy volunteer; (e, f) macular and (g, h) optic disc images from a patient with
hypertension. The results include the predicted categories, probability values, and corresponding class activation mapping.

The OCTA image results predicted by the deep-learning model
were analyzed using the interpretability method. The model basis
for classifying hypertension shows a certain regularity in the
image features, which can explain the problems observed with
the evaluation indices. The CAM visualization analysis indicates
that the heatmaps in the images judged as hypertension are
focused on the FAZ area and ONH, where these focus areas
are relatively irregular for images judged as normal. First, this
indicates that there may be individual differences in the fundus
vessels of normal people that cannot be regularly identified by
CAM visualization analysis in the absence of significant local
lesion characteristics. Second, most of the vessels around the fovea
are the tail ends of the fundus vessels and are relatively small;
additionally, the thermal map of hypertension focused on this
area also confirms the pathological mechanisms of hypertension
noted earlier. Considering that the single model prediction of
hypertension for the macular area is better than that for the optic
disk, we consider that the features of the FAZ area play more
important roles in the prediction. Simultaneously, we note from
previous articles (Hua et al., 2020; Lee et al., 2019; Donati et al.,
2021) that compared with normal subjects, the blood flow around
the fovea is decreased and non-perfusion area in the fovea is
significantly increased in patients with hypertension. Shin et al.
(2020) observed that the perimeter of the blood vessels and
total perfusion area per unit area around the ONH are lower
in patients with hypertension; these findings are consistent with
the results of the CAM visualization in our study and explain
the significance of the image features of the optic disc in the
multimodel method. Thus, we have verified the rationality and
correctness of our research method, determined the direction for
quantitative analysis of the OCTA image features, and provided a

feature analysis method independent of statistical features for future
disease diagnosis research.

Compared with a previous method of extracting and measuring
specific vascular morphological features (such as curvature, fractal
dimension, branching angle, and vascular aspect ratio) from fundus
photography (Cheung et al., 2012), we identified the overall
morphological characteristics of and changes in the fundus vessels
from a higher dimension through OCTA images and deep learning,
especially since the relatively small vessels cannot be observed
accurately by fundus photography. The problem of parameter
accuracy caused by manual identification and measurement is also
solved. Furthermore, we can determine the changes in the blood
vessels caused by hypertension and suggest their effects on other
important organs of the body owing to the advantages of OCTA,
which allows early intervention to reduce damage to other organs
in the body as well as reduce the risk of prognosis. The proposed
approach can also improve the efficiency and accuracy of clinical
judgment of fundus vascular changes caused by hypertension when
combined with deep learning.

Aside from the encouraging results, our experiments have some
limitations; accordingly, follow-up research will need to consider
changes in vascular morphologies and functions in the OCTA
images of patients with different grades of hypertensive retinopathy
(Keith–Wagener–Barker grade) (Aissopou et al., 2015) as well as
OCTA changes in the blood vessels of hypertensive patients with
no significant vascular changes in fundus photography. Owing to
the limit on the amount of data that can be collected from healthy
subjects, our dataset shows a clear imbalance with significantly
more images from hypertensive individuals than healthy controls;
this imbalance appears to influence the model performance as the
sensitivity scores are consistently higher than specificity scores.
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Furthermore, the use of data from both eyes of the patients is
debatable since any induced bias may be enhanced by this practice.
These conditions will be improved and perfected in subsequent
studies with further expansion of the sample size.

The current approach of classifying the results from pictures
via the interpretable method will be used as a guide to conduct
a specific analysis of the OCTA image features in our future
research; to this end, we anticipate that a general explanation can
be acquired from interpretation of the results of the deep-learning
method to guide the OCTA image features needed to characterize
hypertension.

5 Conclusion

Hypertensive effects are reflected in OCTA images, and the
features related to hypertension can be extracted from these
images by deep learning. Using the interpretable deep-learning
algorithm, we analyzed the classification results of the model to
explain the influences of important features from the FAZ area and
ONH on hypertension. These efforts provide not only a guide for
quantitative analysis of OCTA characteristics in the future but also
a theoretical foundation for clinical observation of hypertension
through vascular changes, allowing early intervention and treatment
of hypertension as well as prediction and reduction of its systemic
risks through OCTA.
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