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Introduction: Diabetes mellitus (DM) and associated comorbidities correspond
to female infertility by many interrelated mechanisms. Yet most prior research
focuses only on ovary dysfunction. Our work evaluates literature mechanisms of
DM-induced uterine tube and endometrial dysfunction, corresponding impacts
on female fertility, and potential evidence-based intervention targets.

Methods:We conducted a scoping review (mapping review) follows the Joanna
Briggs Institute (Manual for Evidence Synthesis, 2020 version). After identifying
the research questions, we conducted a comprehensive search across four
electronic databases by entering the keyword “diabetes”, with a combination
with other keywords as the uterus, endometrium, uterine/Fallopian tube,
infertility and embryo implantation. We excluded manuscripts that address the
issue of gestational diabetes. Most of these studies were in animals.

Results: There is compelling evidence for connecting DM with uterine tube
infertility via endometriosis, thyroid dysfunction, and susceptibility to infectious
disease. DM damages the endometrium before pregnancy via glucose toxicity,
lesions, excessive immune activity, and other mechanisms. DM also hinders
endometrium receptivity and embryo–endometrium crosstalk, such as through
disrupted endometrium glucose homeostasis. We also hypothesize how DM
may affect the function of immune cells in uterine tube and uterus, including
changes in the number and types of cells of innate and acquired immunity,
disrupting immunological barrier in uterine tube, alterations in formation of
neutrophil extracellular traps or polarization of macrophages.

Discussion: We discuss evidence for clinical practice in terms of glycaemic
control, lifestyle modifications, and medical interventions. For example,
there is currently substantial evidence from rodent models for using
metformin for increase in endometrial thickness, number of stromal cells
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and blood vessels and restoration of normal endometrial architecture,
and bariatric surgery for recruitment of protective immune cell types to
the endometrium. We also briefly highlight the future prospects of stem
cells, artificial intelligence, and other new approaches for managing DM-
associated female infertility. Further studies are necessary for optimizing female
reproductive outcomes.

KEYWORDS

diabetes mellitus, hyperglycaemia, infertility, endometrial receptivity, embryo-
endometrium crosstalk, endometrial immune cell, tubal infertility, hypothyroidism

1 Introduction

Diabetes mellitus (DM) is a common and chronic
metabolic disease, characterised by hyperglycaemia secondary
to absolute/relative insulin deficiency and/or insulin resistance
due to pancreatic Langerhans islet beta-cell dysfunction,
often accompanied by features of metabolic syndrome
(American Diabetes Association Professional  Practice  Committee, 
2022). Approximately 537 million adults (20–79 years) globally
are living with diabetes; the vast majority exhibit type 2 diabetes
mellitus (T2DM). The total number of people living with diabetes
is projected to increase to 643 million by 2030 and 783 million
by 2045. These projections indicate that one in eight adults will
be living with diabetes in 2045 (Ogurtsova et al., 2017; Cho et al.,
2018). But over the past few years, the frequency of less common
type–the type 1 diabetes mellitus (T1DM) - worldwide has
also increased, from 2% to 5% (Alzhanuly and Sharipov, 2024).
People living with diabetes have an increased risk of developing
complications. The most common complications affect the heart,
blood vessels, eyes, kidneys, nerves, teeth, gums and association
with carcinogenesis (Kupcova et al., 2023; Addanki and Sumathi,
2024; Mirestean et al., 2023). Yet diabetes also impacts a rarely
discussed aspect of health: reproductive health. DM may lead to
disruption of normal sexual and reproductive function in men and
women via diabetic-induced end organ damage and psychological
stress. Whilst the incidence of sexual problems increases with age,
these problems are also present in young adults, mostly those with
type 1 diabetes mellitus (Jacobson et al., 2015).

Infertility is defined as a failure to achieve pregnancy within
12 months of unprotected intercourse or therapeutic donor
insemination in women younger than 35 years, or within 6 months
in women older than 35 years; and affects up to 15% of couples
(Infertility Workup for the Women’s Health Specialist, 2019). Large
numbers of people are affected by infertility in their lifetime.
Approximately 17.5% of the adult population—roughly 1 in 6
worldwide—experience infertility; indicating the urgent need to
increase access to affordable, high-quality fertility care for those in
need (Cox et al., 2022; Njagi et al., 2023).

On 4 April 2024, the National Vital Statistics System of the
Centres for Disease Control and Prevention released the final
“Births” report for 2022 as well as the provisional “Births” report for
2023. Both reports attested to a worrisome trend for maintaining
current population levels: a decline in the general fertility rate
among women ages 15–44 and thus in the attendant annual
number of live births in the United States (Adashi et al., 2024).

The reasons for the decline in fertility include health, social, and
societal factors. To a lesser but substantial extent, the increase
in patients with diabetes and who are of reproductive age also
contributes to the decline in fertility. An increased number of
male patients with DM have been reported in childbearing age
and the DM prevalence is closely associated with the decline
of fertility (Lutz, 2006). Diabetes can impact male fertility in
many ways; such as erectile dysfunction, ejaculatory dysfunction
(either retrograde ejaculation or a complete lack of ejaculation),
or testicular dysfunction—including reduced testosterone synthesis,
decreased spermatogenesis, increased germ cell apoptosis, and
semen abnormalities (Badejogbin et al., 2024; Graziani et al., 2024).
The most commonly discussed problem in diabetes is erectile
dysfunction in men with diabetes. The pathophysiology of erectile
dysfunction in DM consists of vascular, hormonal, and neurologic
insults (Gandhi et al., 2017). Diabetic neuropathy may impair
autonomic and somatic nerve processes essential for erections.
Diabetes is also associated with impaired relaxation of cavernosal
smooth muscle due to endothelial-derived nitric oxide induced by
glycosylation products (Patel et al., 2017). Men with diabetes may
also be at increased risk of low serum testosterone levels, which
may lead to a decline in sexual desire and directly or indirectly
to erectile dysfunction (Lockie et al., 2024; Grossmann et al.,
2008). Various experimental and clinical studies reveal that
DM is associated with worse conventional sperm parameters,
reaching particularly low values, compared with the general
population. T1DM can influence the expression of genes involved
in sperm DNA repair; resulting in a high rate of nuclear DNA
fragmentation, mitochondrial DNA deletions with mitochondrial
respiratory chain alteration, and subsequent decreased sperm
motility (Condorelli et al., 2018). Recent studies in animal models
suggest that mesenchymal stem cells may be the future of
improving diabetes-induced male reproductive dysfunction and
semen parameters (Lu et al., 2024; Kocamaz et al., 2025).

A less-discussed problem is reproductive dysfunction in women
with diabetes. They often experience lower rates of fertility than
women who do not have diabetes. There are multiple factors
associated with diabetes that can make it difficult for women
to achieve a pregnancy; such as obesity, being underweight,
having diabetic complications, having polycystic ovary syndrome
(PCOS), or having an autoimmune disease. These conditions can
lead to irregular or absent periods, premature menopause, or
higher risk for endometrial cancer. The prevalence of PCOS in
women with T1DM is higher than in the general population
(Łebkowska et al., 2024). PCOS is themost commonendocrinopathy
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affecting reproductive-agedwomen, with impacts across the lifespan
from adolescence to post-menopause. PCOS affects 10%–13% of
women of reproductive age and has many causes. The PCOS Society
revised the diagnostic criteria for PCOS (Teede et al., 2023) to
when all of the following criteria apply: (1) ovarian dysfunction
(oligo-ovulation or polycystic ovaries on an ultrasound scan), (2)
clinical or biochemical hyperandrogenism, and (3) other related
disorders associated with hyperandrogenism are excluded (e.g.,
Cushing’s syndrome). PCOS occurs when there is peripheral insulin
insensitivity and subsequent hyperinsulinaemia, which together
with elevated luteinising hormone act on ovarian theca cells and lead
to increased androgen production. Elevated androgen levels prevent
normal follicular maturation, causing infertility. Hyperinsulinemia
often leads to T2DM and metabolic syndrome, increasing the risk
of cardiovascular diseases (Azziz et al., 2009), and depressive and
anxiety symptoms (Çetintulum Aydın et al., 2025).

In general, diabetic females have problems such as
delayed menarche, irregular menstrual cycle, subfertility,
complications in pregnancy, and early menopause. Diabetic
females also have the negative effect of oxidative stress on the
reproductive system (Andlib et al., 2024). Most corresponding
scientific articles evaluate only dysfunction of the ovary in diabetes.
Our scoping review reveals the mechanisms of diabetes-induced
tubal and endometrial dysfunction, corresponding impacts on
fertility, and potential intervention targets.

2 Methods

This scoping (mapping) review follows the Joanna Briggs
Institute Manual for Evidence Synthesis (Peters et al., 2024). Firstly,
we identified the research questions: impact of diabetes on the
cellular microenvironment of uterine tube and uterus and the
process of implantation and embryo-endometrium crosstalk. As
a next step, we conducted a comprehensive search across four
electronic databases (Web of Science, Scopus, Google Scholar, and
PubMed/MEDLINE) by entering the keyword “diabetes”, with a
combination with other keywords as the uterus, endometrium,
uterine/Fallopian tube, infertility and embryo implantation.
Articles in English with full-text or with an explanatory abstract
were included into the study. Then, articles were assessed by
two experts with more than 20 years of clinical and research
experiences, one endocrinologist/diabetologist and one expert in
reproductive medicine and clinical embryology, for relevance to
the subject (selecting the evidence). We excluded all manuscripts
that address the issue of gestational diabetes, which has a
different pathomechanism of development and only appears during
pregnancy (we focused on infertility). A data/evidence extraction
and analysis tool were used to systematically collect data from the
included studies, followed by a narrative synthesis to summarize
and interpret the findings. We choose this approach due we would
like to explore the breadth of the literature, map and summarize
the evidence (from basic to clinical research), identify knowledge
gaps and inform future research directions (Munn et al., 2018).
Additionally, this scoping review can be a precursor to a further
systematic review.

Although the use of artificial intelligence (AI) methods in
writing review articles is on the rise, we did not use any of the options

offered by current modern technology.The use of AI tools in writing
scoping reviews has some critical limitations. Current AI tools can
struggle with factual accuracy, citation errors, and a lack of deep
contextual analysis (Thurzo and Varga, 2025).

3 Diabetes and tubal infertility

Uterine tubes are responsible for cardinal processes needed for
successful reproduction; including the uptake and transportation of
oocytes, transport of spermatozoa, fertilization, and transport of the
fertilized ova and early-stage embryo towards the uterine cavity. The
interaction of the tubal epithelium with the spermatozoa facilitates
sperm functions, selection, and activation (capacitation). Moreover,
the uterine tube also provides a particular microenvironment that
in vivo is crucial for early embryo nutrition and development
(Csöbönyeiová et al., 2022; Varga et al., 2022). Diabetes is a negative
factor for women’s reproductive health, especially in relation to
endometrial pathologies and impaired embryo implantation. There
is less knowledge about the negative impact of diabetes on the
reproductive function of the uterine tubes. Nevertheless, diabetes is
an independent risk factor of tubal infertility (Egbe et al., 2020).

The association between diabetes and tubal infertility (Figure 1)
is an area of growing interest in medical research. Whilst the
direct link between diabetes and tubal infertility is not fully
understood, several mechanisms and factors may contribute to this
association. It is interesting that the opposite association—tubal
infertility/tubal blockage—is associated with increased risk of both
T2DM (Tobias et al., 2015) and gestational diabetes (Tobias et al.,
2013).However, it is possible that tubal infertility is diagnosed earlier
than diabetes itself, which indicates that reproductive health is a
sensitive barometer of overall health.

3.1 Diabetes and disrupt tubal transport
function

Diabetes is associated with tubal infertility due to its systemic
multifactorial effects on vascular, autonomic nervous, immune, and
hormonal systems; which impact the transport function of the
uterine tubes. Diabetes can probably disrupt the transport function
of ciliated epithelium lining the uterine tubes. This damage may
result from chronic hyperglycaemia leading to oxidative stress:
elevated reactive oxygen species levels may impair the frequency of
cilia beating and reduce the effectiveness of oocyte/early embryo
transport (Kaltsas et al., 2023). However, the cited authors do
not support this conclusion with any experimental results. In
the scientific literature, we found only an indirect connection
between increased oxidative stress (even in general, not especially
caused by diabetes) and tubal transport disruption. In women
with ectopic tubal pregnancy (as a result of disrupted tubal
transport), it is possible to detect a higher level of oxidative
stress (Tok et al., 2021; Üreyen Özdemir et al., 2022). Although
ectopic tubal pregnancy can also be a consequence of a previous
inflammation of the uterine tube, it may not be only in connection
with impaired ciliary function due to higher oxidative stress.
Therefore, we consider this connection between diabetes and
impaired ciliary beating to be speculative for now.
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FIGURE 1
Schematic diagram summarizing the multifactorial pathways by which diabetes affect female fertility (with focus on uterine tube, uterus and embryo –
endometrium crosstalk).

Diabetes has been linked to an increased progression of
endometriosis (Alhallak et al., 2023); which can involve the uterine
tubes and lead to scarring, blockages, or adhesions. However,
this link is only partially true vice versa: endometriosis is not a
risk marker for T2DM (Vaduva et al., 2023), but endometriosis
increases the risk of gestational diabetes (Salmeri et al., 2023).
Tubal endometriosis significantly impacts the transport mechanism
of the female oocyte, male spermatozoa, and early-stage embryo
inside the uterine tube (Xia et al., 2018; Nassir et al., 2024). In
vitro, the peritoneal fluid fromwomenwith endometriosis decreases
the tubal ciliary beat frequency. This impairment of ciliary action
in women with endometriosis might reduce fertility (Lyons et al.,
2002).Therefore, it is also possible that endometriosis without direct
anatomical effects on the uterine tubes may negatively affect tubal
transport function.

Hypothyroidism–as a common DM associated thyroid
dysfunction - affects the size of tubal epithelial cells in rabbits
(presence of larger-sized ciliated cells in the entire uterine tube, and
larger-sized secretory cells in the isthmus of uterine tube), probably
also changes the metabolism of these cells, and may impact tubal
reproductive function (Anaya-Hernández et al., 2015).

3.2 Diabetes and tubal immune cells

In general, clinical and subclinical inflammation in the
female reproductive organs significantly reduces fertility - that’s
why it is important to think about how diabetes can affect

innate and acquired immune cells in the uterine tube. The
uterine tube is an immunologically privileged organ and should
tolerate allogenic sperm and semi-allogenic embryos without
eliciting an inflammatory immune response. The immune
cells–mostly intraepithelial regulatory T lymphocytes of the
uterine tube probably represent a type of “immunological barrier”
(Visnyaiová et al., 2024; Varga et al., 2019).

The role of tubal neutrophils is largely unknown. From
veterinary reproductive medicine studies is known, insemination
always stimulates neutrophil migration into the female
reproductive tract, which eliminates excess spermatozoa and
bacterial contaminants introduced by the breeding process
(Alghamdi and Foster, 2005). In 2004, a new mechanism of
how polymorphonuclear cells such as neutrophils clear away
microbes was described–the formation and release of web-like
DNA structures and antimicrobial proteins called neutrophil
extracellular traps (NETs) (Brinkmann et al., 2004; Janko et al.,
2023; Tonello et al., 2025). In general, the human spermatozoon
is a sufficient stimulus to trigger the release of NETs. Neutrophils
trap spermatozoa by enmeshing them through NETs. This direct
cell contacts between the neutrophils and spermatozoa, which
can result in the entrapment of sperm cell, represents the first
stage of sperm phagocytosis by neutrophils (Zambrano et al.,
2016). NETs formation should be considered in future studies of
reproductive failure, as these extracellular fibres and NET-derived
pro-inflammatory capacities will impede proper oocyte fertilization
(Rivera-Concha et al., 2023; León et al., 2024). In relation to diabetes,
recently more studies show that NETs perform as double-edged
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sword. On one side, NETs could repress the infection-related
inflammation; on the other side, excessive production of NETs
may have severe impact on the organic damage and be involved in
many inflammatory diseases, such as T1DM, T2DM, and diabetes-
induced complications (Zhu et al., 2023). However, in relation to
diabetes-induced tubal infertility and the formation of NETs,   we
still need to answer three emerging questions.

1) Does such NETs formation inside the uterine tube also
occur in vivo? All the above-cited experiments with
NETs formation in co-culture of neutrophils and male
spermatozoa were performed with neutrophils isolated
from peripheral blood. But it is known that, uterine tube
neutrophils exhibit a phenotype distinct fromperipheral blood
neutrophils (Smith et al., 2006).

2) Tubal epithelial cells produce and release to tubal fluid
prostaglandin 2 after luteinizing hormone stimulation which
suppress the phagocytic activity of neutrophils for sperm
in vivo (Marey et al., 2013).

3) There is no experimental or clinical data on how diabetes
affects the formation of NETs inside the uterine tube and
whether it contributes to increased sperm capture before
fertilization and subsequent infertility - it is only a hypothesis
derived from the fact that diabetes affects the formation of
NETs in other organs.

Macrophages are also essential immune cells critical to normal
reproductive functions, exhibiting significant adaptability that
allows for the transformation into various phenotypes in response
to their surrounding environment. Macrophages exhibit functional
plasticity. M1 macrophages serve as essential component of the
immune system’s response to infections, characterized by their
potent pro-inflammatory properties. Following an inflammatory
response, an anti-inflammatory response is required to restore
immune homeostasis. This is marked by a phenotypic transition
wherein M1 macrophages polarize toward the M2 phenotype. The
primary functions of M2 macrophages include the repair and
remodelling of damaged tissues, participation in angiogenesis and
secretion of anti-inflammatory cytokines (Ghamangiz et al., 2025;
Chen et al., 2023). In uterine tubes, macrophages are localized
within the epithelium and lamina propria and exhibit cyclic changes
in numbers during menstrual cycle (Gaytán et al., 2007). The
normal function of uterine tubemacrophages can be diverse. During
sperm phagocytosis, macrophages form extracellular traps as a
possible mechanism of sperm selection within the uterine tubes
(Lu et al., 2023). Several studies have confirmed that the number
of macrophages significantly increases in ectopic pregnancies
when compared to normal uterine tubes (Shaw et al., 2011;
Wang et al., 2020). The role of macrophages in the pathogenesis
of tubal ectopic pregnancy is not clear, but macrophages might
dysregulate both tubal motility and smooth muscle contraction of
the uterine tube (Visnyaiová et al., 2024). In tubal inflammatory
conditions such as salpingitis and hydrosalpinx, an increase in
the number of macrophages has been reported. In particular,
M1 macrophages, producing proinflammatory cytokines (IL-6 and
IL-8), are predominant (Yoshino and Ono, 2025). In case of
diabetes, persistent hyperglycaemia and oxidative stress have been
shown to synergistically exacerbate the polarization propensity of

M1 macrophages, leading to sustained secretion of potent pro-
inflammatory mediators. In diabetic patients with wound healing
problems (as a common clinical complication of diabetes), the
diabetic microenvironment stimulates migration of monocytes
to the wound and they transform into M1 macrophages. This
exacerbates the inflammatory response at the wound site and
impedes normal wound healing. Therefore, the persistence of
the pro-inflammatory M1 phenotype and deficiency of M2-
type macrophages in diabetic wounds may contribute to an
unbridled pro-inflammatory microenvironment (Song et al., 2025).
There are no experimental or clinical data on how diabetes
and a hyperglycaemic microenvironment affect the function and
polarization of macrophages in the uterine tube. We can only
assume that diabetes also causes a switch of macrophages to M1
more easily in the diabetic uterine tube, which will damage the
transport function of the uterine tube (causing infertility and ectopic
pregnancy).

Tubal intraepithelial immune cells are mostly
intraepithelial regulatory T-lymphocytes (Varga et al., 2019).
Hypothyroidism–which is often associated with diabetes - can
influence immune cells in the uterine tube by increasing the number
of intraepithelial lymphocytes in the ampulla, whilst decreasing in
the isthmus (Méndez-Tepepa et al., 2020). It is therefore possible
that hypothyroidism damages the immunological barrier between
the lumen of the uterine tube (with sperm) and the wall of the
uterine tube, thereby contributing to tubal infertility.

Additionally, DM is hypothesized to increase susceptibility
to infectious diseases (Benfield et al., 2007), including increased
frequency and severity of urogenital infections (Fünfstück et al.,
2012); e.g., pelvic inflammatory disease, chlamydia, or gonorrhoea.
These infections can cause tubal scarring, blockages, or
hydrosalpinx—all of which contribute to tubal infertility.

3.3 Diabetes and tubal autonomic nerve
dysfunction

Diabetic autonomic neuropathy, autonomic nerve system
dysfunction, is a serious and common complication of diabetes.
Diabetic autonomic neuropathy—along with vasculopathy;
connective tissue damage; and other endocrine, nutritional, and
pharmacological factors—may influence reproductive functions
(Verrotti et al., 2014) and hypothetically can reduce tubal smooth
muscle contractility and peristalsis. Estimating the significance
of diabetic autonomic neuropathy in relation to disrupting tubal
transport function is speculative, as there is no direct evidence
from experimental publications. However, diabetic autonomic
neuropathy negatively affects many pelvic organs and is associated
with various complications, including urinary bladder and sexual
dysfunction (Agochukwu-Mmonu et al., 2020).

4 Impacts of diabetes on the
endometrium before pregnancy

Untreated or improperly treated diabetes affects the
morphology and function of the endometrium (uterine mucosa,
Figure 1). Hyperglycaemia facilitates endometrial hyperplasia, as

Frontiers in Cell and Developmental Biology 05 frontiersin.org

https://doi.org/10.3389/fcell.2025.1582039
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Jackuliak et al. 10.3389/fcell.2025.1582039

a precancerous condition of endometrial carcinoma (Zhou et al.,
2020); and causes abnormal uterine bleeding (Vygivska et al.,
2024) and endometrial carcinoma (Wang et al., 2022). In women
diagnosed with endometrial hyperplasia, DM is a risk factor
for coexistent cancer, and thus may be included in a predictive
algorithm for risk stratification (Raffone et al., 2020). Precise
etiological links between diabetes and endometrial pathologies
are mostly unknown. The underlying biological mechanisms
involved in endometrial pathologies in diabetic patients—including
hyperglycaemia, insulin resistance, hyperinsulinemia, changes
in epithelial-to-mesenchymal transition, chronic inflammation,
and obesity—may contribute to an increased risk of endometrial
carcinoma in diabetic patients (Wang et al., 2022). The prevalence
of hypothyroidism in diabetic patients is higher than in the
general population, particularly in those with T1DM due to the
shared autoimmune nature of both conditions; hypothyroidism is
another mechanism that facilitates uterine hyperplasia (Rodríguez-
Castelán et al., 2019).

4.1 Diabetes and morphological changes
of endometrium

Chronic exposure to a glucose-rich environment creates several
physiological and pathophysiological changes. In experimental
diabetes-induced rats, histological examination of the endometrium
indicates tissue oedema, changes in the morphology of the uterine
glands, the presence of inflammatory cells, and a decrease of CD45
positive (so-called leukocyte common antigen) cells (Nacar et al.,
2016). A hyperglycaemic cellular microenvironment mediates
irreversible cell damage or changes in cell proliferation. Glucose
is toxic when high levels deleteriously affect cells and tissues
(Giri et al., 2018). There are several pathways, such as glycosylation,
by which hyperglycaemia induces toxicity. Glycosylation is one of
themost common protein post-translational modification events, in
which diabetic patients with increased plasma glucose levels exhibit
proportionally more glycation. Aberrant glycosylation can influence
multiple cellular properties; including cell signalling, proliferation,
transformation, differentiation, apoptosis, migration, and invasion
(Sharma et al., 2024). N-acetylgalactosaminyltransferase 2
(GALNT2) enzyme can modify the epidermal growth factor
receptor glycosylation and activity, and thereby may enhancing
cell proliferation within the endometrium of diabetic patients
(Zhou et al., 2020). Another mechanism may be increased
expression of neuronal and endothelial nitric oxide synthase
(nNOS and eNOS, respectively) in the diabetic uterus (Karabulut
and Sonmez, 2021); which may affect cell communication,
immune reactions, and vascular functions. However, there are
more possible mechanisms by which chronic hyperglycaemia can
lead to endometrial changes, such as by impaired angiogenesis
and endothelial dysfunction. Yet disrupted angiogenesis has
until now been described only during placental development
in the case of gestational diabetes and not in the endometrium
before pregnancy (Zhou et al., 2016; Huang et al., 2024;
Milan et al., 2024). Additionally, endometrial carcinoma cell culture
experiments indicate that high glucose inhibited cell apoptosis,
facilitated cell cycle progression, and enhanced the adhesion and
invasion activity of endometrial cancer cells by mediating the

upregulation of Snail and downregulation of E-cadherin expression
(Han C. et al., 2015).

Diabetes has the potential to facilitate the progression not
only of anatomically normally localised endometrium in the
uterine cavity, but also of endometriosis lesions (Alhallak et al.,
2023). Results of the mentioned immunohistochemical study
confirmed changes in steroid hormone receptor levels inside
endometriosis lesions (in stromal and epithelial compartments),
increased macrophage abundance (immune activation is associated
with endometriosis progression), and reduction of phosphate
and tensin homolog (PTEN) expression (PTEN is essential for
maintaining cellular homeostasis by regulating cell proliferation,
survival, and metabolism).

4.2 Diabetes and endometrial immune cells

The innate and adaptive immune mechanisms are key
components of regulation of reproductive function of uterus and
its endometrium. In recent years, views on the importance and
functioning of the endometrial immune cells during blastocyst
implantation, placentation, and subsequent pregnancy have changed
significantly. During early pregnancy, uterine natural killer (NK)
cells are the most abundant cell type at the maternal–embryonal
interface, comprising 70% of the total lymphocytes in the
endometrium in the third month of pregnancy before undergoing a
decline (Fu and Wei, 2021; Lapides et al., 2023). Approximately
20%–30% of women with idiopathic recurrent miscarriages or
recurrent implantation failure exhibit altered uterine NK cell
counts (Kuon et al., 2017; Lapides et al., 2022). In pregnant
mice, experimentally induced hyperglycaemia alters immune
homeostasis, including NK cell proportion and function in
peripheral blood and endometrium (Xiong et al., 2024).

Endometrial macrophages are likely to play an essential
role during the menstrual cycle, especially in the menstrual
context of tissue degradation, which requires regulated repair,
regeneration, and phagocytic clearance of endometrial tissue debris
to re-establish tissue integrity in preparation for pregnancy as
they have a role in angiogenesis and wound healing in other
tissues (Ma et al., 2022). Macrophages play an important role in
the development of endometriosis lesions and the concomitant
inflammation. Nowadays, endometriosis has been referred to as
‘a disease of the macrophages’, as macrophages are abundant in
lesions where they are recruited and undergo alternative activation.
Macrophages also play a role in enhancing inflammation, following
with neutrophil recruitment through the release of chemokines
(Abramiuk et al., 2022). M2 macrophages predominate in lesions
and are involved in collagen fibres formation (fibrogenesis) in
endometriosis lesions (Duan et al., 2018). Since diabetes contributes
to the development of endometriosis, a chronic disease in women
that also causes infertility, it is possible that one of the mechanisms
is through the increasing the number and changing in polarisation
of macrophages.

Obesity is also often associated with diabetes. Obesity itself
causes M1 macrophage numbers to increase (although typically
this occurs in adipose tissue, accompanied by adipose tissue
inflammation and insulin resistance). On the other hand, anti-
inflammatory M2 macrophages are typical in the adipose tissue of
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slender individuals (Castoldi et al., 2016; Chylikova et al., 2018).
Metformin, a drug used to treat hyperglycaemia, can influence
the polarization of macrophages toward M1 and M2 phenotypes.
The ability of metformin to support M2 polarization and suppress
M1 polarization could enhance its anti-inflammatory properties
and potentiate its protective effects in conditions such as chronic
inflammatory diseases (Jafarzadeh et al., 2025). There are already
initial indications that metformin and a higher presence of M2
macrophages could be helpful in placentation and improving pre-
eclampsia in pregnancy (Shen et al., 2025).

In contrast to macrophages and NK cells recruited to the
pregnant uterus from the first weeks, neutrophils are barely found
until the second trimester where a novel pro-angiogenic decidual
neutrophil population has been identified (Amsalem et al., 2014).
Changes in endometrial neutrophil behaviour and neutrophil
extracellular traps formation have so far only been described
in the case of gestational diabetes. Neutrophil activity is indeed
altered in gestational DM, exhibiting pronounced activation and
spontaneous generation of NETs by isolated neutrophils in in
vitro culture (Stoikou et al., 2017). Also, Shen et al. (2021)
demonstrated that hypoadiponectinemia in gestational DM is
the cause of NETs formation and NETs promoting trophoblast
apoptosis. It is hypothetically possible that an excessive neutrophil
activity in gestational DM could contribute to the development of
preeclampsia (Vokalova et al., 2018). It is therefore pertinent to
ask whether pre-gestational diabetes also changes the activity of
neutrophils in the endometrium and thus, for example, reduces
endometrial receptivity and the possibility of implantation? In
other hand, embryonic trophoblast cells preventing neutrophil
activation and inhibiting NETs formation through vasoactive
intestinal peptide-mediated pathways (Calo et al., 2017). Diabetes
facilitates the progression of endometriosis and endometriosis
elevates peripheral bloodNETs content (Sun et al., 2025). However, a
direct link between endometrial NETosis and diabetes has not been
described so far.

For the sake of completeness, we add that hypothyroidism
(which is often associated with diabetes) also causes endometrial
hyperplasia and higher infiltration of immune cells into the
endometrium. Since most experimental animal models only
evaluate the isolated effect of diabetes or hypothyroidism on
endometrial tissue, it is still unclear in clinical practice which of
these two factors has a greater impact on uterine pathology or
whether it is a combined effect (Rodríguez-Castelán et al., 2019).

5 Impacts of diabetes on endometrial
receptivity and embryo–endometrium
crosstalk

Endometrial receptivity, a key determinant of pregnancy
success, refers to the ability of the endometrium to support
embryo implantation. Inadequate endometrial receptivity often
results in embryo implantation failure and miscarriage (Lessey
and Young, 2019; Liu et al., 2024). Endometrial epithelium—a
simple columnar epithelium composed of ciliated cells and secretory
cells—plays a critical role in the initial stages of embryo implantation
because it provides the first physical contact site for the blastocyst.
Endometrial receptivity is complicated and can be regulated by

various signalling pathways. During the narrow period during the
hormonally regulated menstrual cycle when the endometrium is
optimally receptive to the implantation of an early-stage embryo,
the “implantation window,” epithelial cells undergo structural
and biochemical changes. Secretory epithelial cells form specific
projections from the plasma membrane termed pinopodes and
produce membrane-associated glycoprotein mucin 1 (Wu et al.,
2019). Endometrial receptivity is often disrupted in diabetic patients
due to a combination of cellular, metabolic, hormonal, immune,
and vascular abnormalities. Receptive endometrium is the first step
of embryo implantation (Ashary et al., 2018). Implantation and
subsequent decidualisation of the endometrial stroma during early-
stage pregnancy depend on proper embryo–endometrium crosstalk.
This synchronized dialogue includes an intricate interplay among
epithelial, immune, and stromal cells; hormones; immune factors;
cytokines; exosomes; and adhesion molecules—underpinning the
process of implantation, placenta formation, and further embryo
development (Tan et al., 2024). Unfortunately, this stage of
development is commonly termed a “black box” because of its
inaccessibility, as it occurs inside the uterus. Nowadays, with tissue
engineering methods and various cultivation systems, it is possible
to form endometrial two-dimensional models to three-dimensional
organoids and novel assembloids that can recapitulate many aspects
of endometrial tissue architecture and cell composition during
implantation (Kleinová et al., 2024; Kim et al., 2025).

5.1 Diabetes and endometrial receptivity
impairment

Implantation failure or miscarriage is an important reason for
infertility in diabetic women. This implantation failure depends
upon the degree ofmetabolic control of diabetes in the first trimester
(Greene, 1999). Causes of endometrial receptivity impairment and
disrupt embryo–endometrium crosstalk in diabetic women may be.

• Decreased chance of early-stage embryo adhesion to the
endometrial epithelium: Diabetes increases integrin gene
expression in the endometrium at the time of embryo
implantation, which can lead to disorganized cell-to-cell or
cell-to-extracellular matrix adhesion (Bakhteyari et al., 2019).

• Altered endometrial epithelial cells functional morphology:
Disrupts differentiation/transformation of surface epithelial
cells before and during implantation due to changes in
the expression of cytoskeletal proteins and their modifying
enzymes, contributing to changes in cell shape (Keller et al.,
2024) and regulating posttranslational modification of proteins
involved in the maintenance of epithelial cell polarity
(Ruane et al., 2024). Cytoplasmic projections of secretory
epithelial cells—pinopodes, ultrastructuralmarkers of receptive
endometrium—are reduced and poorly developed in diabetic
mice (Albaghdadi and Kan, 2012; Ma et al., 2021), and
membrane-associated glycoprotein mucin one is overexpressed
in endometrial epithelial cells (Albaghdadi and Kan, 2012).

• Downregulation of some signalling factors; including cytokines,
growth factors, and homeobox transcription factors important for
endometrial receptivity and placentation: Expression of insulin-
like growth factor 1 (IGF-1), leukaemia inhibitory factor
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(LIF), and Beclin-1 (a key protein involved in autophagy) is
decreased in endometrial epithelial cells; and IGF-1 expression
is decreased also in decidual cells in diabetic women (tissue
obtained after miscarriages) (Gurbuz et al., 2019). Among
the mentioned signalling factors, LIF plays a pivotal role
in implantation, is abundantly expressed in the glandular
epithelium during the implantation window phase, and is
induced in the stroma surrounding attached blastocysts
(Aikawa et al., 2024). Decreased expression of LIF was also
described in endometrial epithelial cells of diabetic mice
(Albaghdadi and Kan, 2012; Ma et al., 2021). Zhou et al. (2021)
described that less-differentiated epithelium for implantation
in mice is present in the case of absence of epithelial IGF-
1 receptors, and additionally epithelial IGF-1 receptors are
activated by IGF-1 produced in endometrial stromal cells (this
production is also decreased in diabetic women).

• Maternal hyperinsulinemia: In insulin-treatedmice a significant
increase of endometrial phosphorylated mechanistic target of
rapamycin (p-mTOR) is present (Li et al., 2017). The mTOR
pathway is an important negative regulator of autophagy
that plays a positive role in early pregnancy by positively
regulating decidualisation and trophoblast invasion; as well as
regulates the infiltration, enrichment, and functional regulation
of decidual immune cells (Li et al., 2024).

• Disrupted endometrial glucose homeostasis: Over-activation
of the important regulator of glycogen metabolism, the
adenosine monophosphate-activated protein kinase (AMPK)
in an animal model of T1DM (Zhang et al., 2020), but
not in T2DM (Ma et al., 2021).

• Immune dysregulation creating an endometrial
microenvironment less conducive to implantation: Albaghdadi
and Kan (2012) described overexpression of interferon gamma
(IFNG) in the uterus of diabetic mice; probably associated
with nonreceptive endometrium and embryo loss. IFNG
secreted during pregnancy by uterine NK cells acts as a negative
regulator of trophoblast invasion (Verma et al., 2018).

• Vascular defects: In diabetes, endometrium during pregnancy
(so-called decidua) has morphologically detectable vascular
changes that likely contribute to embryo loss and
birth defects. Burke et al. (2007) described in diabetic mice
impaired endometrial spiral artery modification, including
fewer spiral arteries in the implantation site and a smaller
lumen diameter of spiral arteries. This results in an abnormal
blood supply to the endometrium, leading to possible structural
and functional defects during placentation and embryo
development.

5.2 Diabetes and disrupt
embryo–endometrium crosstalk

However, disruption of the synchronized molecular and cellular
dialogue between the endometrium and the embryo in the case of
maternal diabetes may not only occur due to impaired function of
the endometrial tissues. There are also possible causes in the context
of the embryo, because of which embryo–endometrium crosstalk
may be disrupted (Figure 1).

• Embryotoxicity of glucose: In in vitro cell cultures,
hyperglycaemic conditions are toxic to early-stage embryos
(Sutton-McDowall et al., 2006). Also, in vivo animal studies
support the findings that impaired pre-implantation embryo
development, and increases DNA damage and protein O-
GlcNAcylation (Brown et al., 2018), can potentially disrupt
embryo–endometrium crosstalk.

• Changes in stress-related receptors of the blastocyst: Seeling et al.
(2018) described in rabbits higher expression of alfa-2A
adrenergic receptors in trophoblasts cells than in embryoblast
cells, whilst in normoinsulinemic blastocysts this expression
was reversed (higher in embryoblast cells). The function of
these receptors in this early stage of embryonal development
is unknown.

Thus, it is evident that diabetes can significantly alter complex
communication between the embryo and endometrium during
and after implantation through metabolic, hormonal, immune,
and structural changes. This disruption can negatively affect
implantation, pregnancy establishment, and maintenance.

6 Potential intervention targets

In clinical practice there are general recommendations to
improve embryo–endometrium crosstalk in diabetic women
(Figure 2).

• Glycaemic control: Tight glucose control before and during
pregnancy is crucial to minimise adverse effects on the
endometrium and embryo.

• Lifestyle modifications: Weight management, a healthy diet,
and regular exercise can improve insulin sensitivity and overall
reproductive health.

• Medical interventions (Table 1): Medications such as
metformin (for insulin resistance) or low-dose aspirin (to
improve blood flow) may be beneficial in some cases. In recent
years there has also been discussion about the effect of the new
group of antidiabetic drugs termed glucagon-like peptide-1
receptor agonist (GLP-1RA).

Many studies indicate that metformin, when used to treat
PCOS, significantly reduced serum androgen levels, improved
insulin sensitivity, restored menstrual cyclicity, and was successful
in triggering ovulation. As a result, metformin may be useful
for treating PCOS-related infertility (Attia et al., 2023). Fewer
studies have evaluated the direct effects of metformin on the
endometrium. In animal models, orally administrated metformin
led to an increase in endometrial thickness compared with sham
endometrium. Metformin exhibited a significant increase in the
number of endometrial glands, stromal cells, and blood vessels
(Imran et al., 2024) and restores normal endometrial architecture
(Carnovale et al., 2025). Also, other drugs such as clomifene
citrate and thiazolidinediones (e.g., rosiglitazone and pioglitazone)
are often used to increase insulin sensitivity and decrease insulin
resistance; these drugs are considered to be first-line ovulation-
inducing drugs in infertile women with PCOS either alone or in
combination with metformin (El-Khayat et al., 2016).
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FIGURE 2
Algorithm outlining the treatment approach for fertility disorders.

GLP-1RA therapy has potential for reversing female infertility.
Previously, it was thought that weight loss could correct hormonal
imbalances and consequently restore ovulation. However, the
effects of GLP-1RA on the endometrium—crucial for embryo
implantation—remain unclear (Sola-Leyva et al., 2025). GLP1-
RA treatment was associated with substantial improvement in
homeostasis model assessments: insulin resistance, body mass
index, waist circumference, sex hormone binding globulin level,
and a slight reduction in total testosterone level compared with a
control group. A decrease in total body fat was evident in European
populations. GLP1-RAmonotherapywas not superior tometformin
in terms of free testosterone, dehydroepiandrosterone sulphate, and
free androgen index (Zhou et al., 2023).

Lifestyle interventions aimed at improving fertility in women
living with obesity accompanied by T2DM are imperative given
the interconnected nature of these conditions. Balanced, minimally
processed, plant-based diets—with low glycaemic load meals and
moderate fat and fibre intake—hold promise in terms of supporting
fertility among women with obesity and T2DM; more studies
focusing on this population are necessary to comprehensively
assess fertility outcomes through lifestyle modifications (Gitsi et al.,
2024). However, if we consider that the most important factor that
positively affects fertility isweight, bariatric surgery is also beneficial.
Bariatric surgery can help improve fertility and pregnancy outcomes
in several ways. Excess weight may trigger hormone imbalances that
can affect a person’s ovulation cycles and impart difficulties to getting
pregnant. Excess weight can also increase the chances for conditions
that affect fertility. Bariatric surgery effectively increased levels of
sex hormones (Moxthe et al., 2020). Obese females had a significant
decrease in total and free testosterone after bariatric surgery.
Bariatric surgery also led to lower E2 levels and increased luteinizing
hormone, follicle-stimulating hormone, and sex hormone binding

globulin levels. Sexual function reflected by Female Sexual Function
Index scores also improved (Abdullah et al., 2022). Weight loss
in women after bariatric surgery corresponded to significant
reductions in serum CRP and IL-6, but not TNF-α levels. Tissue
immune cell densities in endometrium were unchanged except for
“protective” CD8+ lymphocytes, which increased significantly with
weight loss and play important role in immune surveillance in
endometrial cancer prevention. Tissue CD3+ lymphocytes density
correlated negatively with systemic IL-6 levels (Naqvi et al., 2022).

6.1 Future possible or alternative therapies

The near future may bring three more new methods that
can restore fertility in patients with diabetes. First, application
of mesenchymal stem cells due to their regenerative effects and
their participation in several paracrine pathways can improve
the fertility outcome (Chatzianagnosti et al., 2024). According to
Pala et al. (2014), in a rodent model, stem cells are not even
needed directly, but growth factors as the granulocyte colony-
stimulating factor affecting stem cells are sufficient for regeneration
of the diabetes damaged endometrium. Second, artificial intelligence
has the potential to improve infertility diagnosis and assisted
reproduction techniques outcomes—with possible applications
such as ultrasound monitoring of folliculogenesis, endometrial
receptivity, embryo selection based on quality and viability, and
prediction of post-implantation embryo development—in order
to eliminate potential contributing risk factors (Medenica et al.,
2022). Third, recent findings suggest a promising role of autologous
platelet-rich plasma in enhancing endometrial cell differentiation,
promoting vascular regeneration, and, most importantly, increasing
endometrial thickness (Stefanović et al., 2025).
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TABLE 1 Summarizing of mechanisms of the three most common used antidiabetic drugs in treatment of fertility disorders of diabetic patients.

Antidiabetic drug Effect in fertility

Metformin Improved ovulation and menstrual regularity in women, mostly with PCOS and obesity. Metformin improves insulin sensitivity,
which can help regulate hormone levels, leading to more regular menstrual cycles and improved ovulation.
Some studies suggest that metformin, especially when combined with other fertility drugs like clomiphene citrate, can improve
pregnancy rates in women with PCOS.
Reduced risk of ovarian hyperstimulation syndrome in women with PCOS undergoing IVF treatment.
Reduced risk of miscarriage in women with PCOS.
Studies on metformin's impact on sperm parameters (count, motility, morphology) have yielded mixed results. Some studies show
no significant effect on sperm count, while others suggest potential improvements in morphology and chromatin packaging.
Conversely, some animal studies indicate a decrease in sperm count and motility with metformin use.
There is some evidence suggesting metformin might have a beneficial effect by targeting the vascular system in erectile dysfunction.
Studies have shown neutral or even beneficial effects on testosterone level.

Thiazolidinediones
Glitazones

Improvement in insulin sensitivity in women with insulin resistance and PCOS but also in obese men.
Glitazones can help restore ovulation in women with PCOS and improve ovulation.
Decreased in androgen levels (such as testosterone), which is often elevated in women with PCOS, thus potentially improving
menstrual regularity and fertility.
Mixed results on live birth rates (some RCTs found little to no significant increase in live birth rates compared to other treatments
like clomiphene citrate.
In males, some studies have explored the impact of glitazones on semen quality (improvements in parameters like sperm
concentration and motility).
The weight loss associated with glitazone therapy could lead to improvements in fertility parameters.

GLP-1 receptor agonists (GLP-1RA) Improved fertility through weight loss. This can manifest as more regular menstrual cycles, improved ovulation, and increased
pregnancy rates. Weight loss achieved with GLP-1RAs in obese men may positively impact fertility by improving hormone profiles
and semen quality.
Direct stimulating role – potential anti-inflammatory and anti-fibrotic effects in the ovaries and endometrium, which could be
beneficial for fertility.
GLP-1RAs have shown promise in improving menstrual regularity and potentially increasing fertility rates in overweight and/or
obese women with PCOS in the preconception period. Some studies even suggest they can reverse polycystic ovary morphology and
decrease androgen levels.
There are increasing reports of unplanned pregnancies in women using GLP-1RAs, potentially due to improved ovulation as they
lose weight.
Some small early studies and animal research suggest GLP-1RAs might have a beneficial impact on semen parameters like sperm
concentration, motility, and morphology. They may also improve sperm metabolism and insulin secretion in vitro.
Animal studies have shown mixed results regarding the effect of GLP-1RAs on testosterone levels, with some indicating a decrease
and others showing no significant change.

Fertility disorders are addressed by various fields of medicine.
Many pathogenetic mechanisms are still poorly understood and
therefore treatment is often problematic and insufficiently effective.
Many results come from animal studies and are only indirectly
applied to human medicine. Another problem is that results from
animal models are not confirmed in human medicine. Many new
treatment modalities are under discussion in terms of managing
fertility disorders: use of stem cells, immunological treatment (in
case of autoimmune aetiology), and many others. This article is also
intended to contribute to the opening of new research questions and
possibly new discussions regarding managing patients with DM.

7 Limitations

We identify two major limitations of present study. The first
is that we cannot clearly confirm which endometrial and tubal
pathology is caused only by diabetes and chronic hyperglycaemia,
and which pathologies often associated with diabetes - such as
hypothyroidism (Biondi et al., 2019), obesity, PCOS (Zhu et al.,
2021), chronic inflammation, or presence of diabetes-associated
autoantibodies - also play an important role. Especially, DM

and thyroid dysfunction often coexist in patients. The close
association between diabetes and hypothyroidism is primarily due
to autoimmunemechanisms,metabolic interactions, and shared risk
factors. The prevalence of hypothyroidism (including subclinical
hypothyroidism) in individuals with T1DM varies in different
countries and ethnic groups from 7% to 35% in both sexes
(Medenica et al., 2024; Han J. et al., 2015; Talwalkar et al., 2019). It is
still unclear in clinical practice which of these two factors–diabetes
or hypothyroidism - has a greater impact on tubal and/or uterine
pathology or whether it is a combined effect.

The second limitation is that most of studies describe the
association of diabetes and uterine/tubal infertility in rodent
models (mice, rats, rabbits), or mini-pigs and the use of different
drugs limits the translational potential some of the described
results. Knowledge about the normal function of immune cells
in the reproductive tract is usually based on knowledge from
veterinary embryology, breeding of cattle, dogs and horses.
Experimental induction of diabetes in laboratory animals may
include administration of low-dose streptozotocin, causing
pancreatic beta-cell dysfunction; and/or feeding a high fat diet,
causing insulin resistance (Gheibi et al., 2017). Additionally,
genetically modified mice—such as non-obese diabetic mice or
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knockout models—are used to study the genetic and autoimmune
aspects of diabetes (Pearson et al., 2016). Surgical removal of the
pancreas can also be a feasible approach for advanced diabetes
research (Heinke et al., 2016). Each method has its advantages
and limitations, depending on the research goals. Based on current
experimental (laboratory animal-based) research focused only on
diabetes, it is impossible to predict unequivocally whether diabetes
alone has an impact on fertility, whether the impact is more
pronounced in the presence of diabetes-associated disorders, or
whether diabetes-associated disorders have a more significant
negative impact than hyperglycaemia itself. Moreover, fertility in
rodent models and humans differs significantly in several biological
and physiological aspects (poly-ovulatory cycles in rodents instead
of mono-ovulatory cycles in humans, superficial implantation
in rodents instead of deep trophoblastic invasion in humans,
short reproductive cycle and large litter sizes in rodents, etc.)
(Garretson et al., 2023; Biondic et al., 2023). Therefore, the
results of many of the aforementioned animal experimental studies
cannot be directly transferred to human clinical practice. Rodent
models are invaluable for advancing basic reproductive biology and
developing therapeutic approaches due to their rapid reproduction,
genetic manipulability, and cost-effectiveness. However, due to
critical differences in reproductive physiology, findings in rodents
must be cautiously extrapolated to humans. Integrative approaches
combining animal models, human tissue/organoid models, and
clinical studies are essential for translational success in human
reproductive medicine.

8 Conclusion

Thirty years ago, women with diabetes and possible infertility
were recommended an individual approach within reproductive
medicine centres (Briese and Müller, 1995). Since then, researchers
have been trying to better understand the biological mechanisms
that impair endometrial receptivity, embryo–endometrial crosstalk,
or tubal transport function in diabetic women. Diabetes definitively
contributes to sexual dysfunction and consequently to subfertility.
Yet there are many open questions regarding the pathophysiology
of the problems, which can be different in males and females.
We mentioned the limitations of prior experimental studies. In
clinical practice, more longitudinal clinical studies with larger
sample sizes are necessary to better comprehend the connection
between diabetes and sexual dysfunction and infertility, mainly in
females. Understanding and dividing the role of fertility and sexual
issues in reproductive dysfunction can help guide evaluation and
management.

Diabetes can significantly alter embryo–endometrium crosstalk
through metabolic, hormonal, immune, and structural changes.
Proper management of diabetes and its associated conditions

is essential to optimize endometrial receptivity and improve
reproductive outcomes in diabetic women. Recent findings
nevertheless point to the importance of screening patients
with infertility for DM, and vice versa (Medenica et al., 2024).
Women with pregestational diabetes are advised to plan their
pregnancies to optimize glycemia and reduce fertility and pregnancy
complications (Chimenea et al., 2024).
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Glossary

AI artificial intelligence

AMPK adenosine monophosphate-activated protein kinase

CRP C-reactive protein

DM diabetes mellitus

DNA deoxyribonucleic acid

eNOS endothelial nitric oxide synthase

GALNT2 N-acetylgalactosaminyltransferase two

GLP-1RA glucagon-like peptide-1 receptor agonist

IFNG interferon gamma

IGF-1 insulin-like growth factor 1

LIF leukaemia inhibitory factor

mTOR mechanistic target of rapamycin

NETs neutrophil extracellular traps

NK cell natural killer cell

nNOS neuronal nitric oxide synthase

O-GlcNAcylation O-linked-N-acetylglucosaminylation

PCOS polycystic ovary syndrome

p-mTOR phosphorylated mechanistic target of rapamycin

PTEN phosphate and tensin homolog

T1DM type 1 diabetes mellitus

T2DM type 2 diabetes mellitus

TNF-α tumour necrosis factor α
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