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Advances in research regarding
epithelial-mesenchymal
transition and prostate cancer

Xi Wei† , Rui Liu† , Wei Li† , Qi Yu, Qing Tao Yang and Tao Li*

Department of Urology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China

Prostate cancer (PCa) is the most prevalent cancer in men and the fifth
leading cause of cancer-related mortality among men globally. Despite
substantial advancements in patient prognosis attributable to improvements
in PCa treatment, individuals with metastatic castration-resistant prostate
cancer continue to experience poor outcomes. Epithelial-mesenchymal
transition (EMT) is characterized as a cellular event in which epithelial
cells adopt a mesenchymal phenotype while simultaneously losing their
epithelial characteristics. EMT has been demonstrated to be associated with
the progression of PCa, encompassing tumor metastasis, recurrence, drug
resistance, and the development of an immunosuppressive microenvironment.
Consequently, this review synthesizes recent studies on EMT in PCa,
consolidating the events mediated by EMT in the progression of PCa and the
molecular mechanisms linked to EMT activation in this context.
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Introduction

PCa is the most prevalent malignant tumor of the male genitourinary system,
ranking second in incidence and fifth in mortality among malignant tumors in men
globally (Siegel et al., 2023). Treatment strategies for PCa typically depend on factors
including prostate-specific antigen levels, pathological type, Gleason score, and clinical stage
(Teo et al., 2019; Gillessen et al., 2023). For early-stage (T1 and T2) PCa, favorable outcomes
can be attained through active surveillance, local radiotherapy, or radical prostatectomy
(Teo et al., 2019; Gillessen et al., 2023). However, due to the extended latent period of PCa,
approximately 70% of PCa cases are either locally advanced or widely metastatic at the time
of diagnosis. Treatment for advanced PCa primarily relies on androgen deprivation therapy,
radiochemotherapy, and targeted therapies (Falagario et al., 2023; Preisser et al., 2024).
Although these treatments initially yield favorable results, resistance inevitably develops,
resulting in the progression to castration-resistant prostate cancer (CRPC). Once CRPC
manifests, current drugs and treatment methods frequently fail to yield effective outcomes
(Falagario et al., 2023; Preisser et al., 2024). Notably, mounting evidence suggests that EMT
plays a crucial role in the progression of PCa, encompassing recurrence, drug resistance,
metastasis, and the development of CRPC (Dunning et al., 2011; Teng et al., 2021). Thus,
understanding the cellular and molecular mechanisms, including EMT, involved in PCa
progression could offer potential therapeutic strategies to mitigate PCa-related mortality.
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EMT is recognized as a fundamental mechanism in cancer
metastasis (Haffner et al., 2021; Cha et al., 2020). Emerging evidence
indicates that EMT is not only closely associated with tumor
metastasis but also with tumor stemness, cytokine release, cancer-
associated angiogenesis, immune evasion, and chemoresistance
(Pan et al., 2021; Lambert and Weinberg, 2021). Consequently,
EMT is widely acknowledged as a hallmark of cancer and is
considered a potential contributor to mortality in most solid
tumors, including PCa. Notably, extensive evidence supports that
EMT is associated not only with the metastatic and disseminative
capabilities of PCa but also with the development of CRPC.
It has been reported to exhibit significant cross-talk with the
androgen receptor (AR) signaling pathway (Dunning et al., 2011;
Teng et al., 2021). Recent advances in single-cell RNA sequencing
(scRNA-seq) have shed new light on the biological role of EMT
in PCa (He et al., 2024). Analyses of metastatic PCa single-cell
atlases have identified four functional EMT subtypes: classical
mesenchymal, inflammatory, metabolic adaptive, and stem cell-like
(He et al., 2024; Jia et al., 2025). Notably, the stem cell-like subtype
(CD44+) is highly enriched in CRPC and exhibits significantly
reduced sensitivity to androgen receptor (AR) inhibitors (He et al.,
2024; Jia et al., 2025; Baumeister et al., 2021). While single-
cell sequencing offers novel insights into EMT heterogeneity,
its clinical translation remains challenging. A systematic
exploration of EMT’s core mechanisms, regulatory networks,
and heterogeneity—integrated with spatial transcriptomic
approaches—will advance our understanding of PCa progression
and provide critical theoretical foundations for optimizing precision
therapies and risk stratification.

Overview of EMT

EMT is defined as a cellular event in which epithelial cells
acquire a mesenchymal phenotype while losing their epithelial
characteristics (Haffner et al., 2021). This process is frequently
observed in embryonic development, wound healing, organ fibrosis,
and tumor metastasis (Cha et al., 2020). EMT, in conjunction
with mesenchymal-epithelial transition (MET), plays a critical
role in both early and late stages of embryonic development,
including implantation, gastrulation, and heart formation (Pan et al.,
2021). EMT is linked to various tumor functions, including tumor
initiation, malignant progression, tumor stemness, cell migration,
metastasis, and treatment resistance, and is often excessively
activated in cancer cells (Haffner et al., 2021; Cha et al., 2020;
Pan et al., 2021; Lambert and Weinberg, 2021). The hallmark
characteristics of EMT involve epithelial cells gradually losing
adhesion molecules such as E-cadherin and β-catenin, along
with tight junction proteins. This process is accompanied by the
expression of mesenchymal markers, including N-cadherin, R-
cadherin, and vimentin, as well as increased levels of extracellular
matrix and focal adhesion proteins (Pastushenko and Blanpain,
2019; Akhmetkaliyev et al., 2023). When tumor epithelial cells
undergo EMT, their cell polarity and adhesion capabilities diminish,
and they acquire a mesenchymal cell phenotype that promotes
metastasis and drug resistance (Akhmetkaliyev et al., 2023).
EMT is regulated by a series of transcription factors, primarily
comprising Snail transcription factors, basic Helix-loop-helix

(bHLH) proteins, and Zinc finger E-box binding homeobox (ZEB)
transcription factors (Singh et al., 2018). EMT is also reported to
be associated with, and regulated by, various oncogenic pathways,
including Transforming Growth Factor-β (TGF-β), Wnt, and Notch
signaling pathways. These pathways activate the aforementioned
transcription factors, inhibiting the expression of E-cadherin
and promoting the acquisition of a mesenchymal phenotype in
tumor cells (Saitoh, 2023).

EMT and progression in PCa

EMT and metastasis in PCa

Since metastasis is the leading cause of cancer-related deaths
in malignant tumors, developing targeted therapeutic strategies to
inhibit cancer metastasis is crucial (Valastyan and Weinberg, 2011).
EMT is typically associated with tumor metastasis and is recognized
as a primary driver of this process. Mechanistically, following the
EMT, epithelial cells acquire distinct mesenchymal characteristics
(such as diminished cell polarity and adhesion), enabling them to
invade the extracellular matrix as individual cells, thus marking the
initial stage of tumor metastasis (Pastushenko and Blanpain, 2019;
Akhmetkaliyev et al., 2023). Subsequently, these cells detach further
from the primary tumor, enter the bloodstream, and colonize distant
tissues, proliferating and initiating metastasis, indicating that tumor
metastasis relies on the EMT process (Pastushenko and Blanpain,
2019; Akhmetkaliyev et al., 2023; Singh et al., 2018; Saitoh, 2023;
Valastyan and Weinberg, 2011; Lu et al., 2022). This phenomenon
has been observed in various tumors, including PCa. Previous
studies have demonstrated that circulating PCa cells obtained from
the blood of PCa patients exhibit upregulated expression of EMT-
related genes (Pal et al., 2015), and these circulating tumor cells
display a heightened mesenchymal phenotype (Pal et al., 2015).
Similarly, clinical specimens from PCa patients have confirmed
that metastatic tissues exhibit elevated levels of EMT-related genes
and a more pronounced mesenchymal phenotype compared to
primary tissues (Parol et al., 2021).

EMT and metabolic traits in PCa

During EMT, PCa cells undergo marked metabolic
reprogramming, endowing mesenchymal-like cells with unique
adaptations that enhance survival and drive therapeutic resistance
(Du et al., 2022). Recent studies reveal that mesenchymal-like PCa
cells rely on glycolysis via the Warburg effect (Fontana et al., 2023),
with single-cell metabolomics demonstrating a twofold increase
in glycolytic flux compared to epithelial cells (Zhang Z. et al.,
2023). Key regulators include HIF-1α-driven overexpression of
GLUT1 and LDHA, alongside elevated PKM2 dimers that boost
lactate production (Icard et al., 2022). Lactate excretion lowers
tumor microenvironment pH, sustaining mesenchymal phenotypes
through TGF-β signaling while suppressing CD8+ T cell activity
to promote immune evasion (Kao et al., 2022). These cells also
exhibit heightened glutamine dependence, with GLS1 expression
increasing over fourfold (Du et al., 2022). Glutamine breakdown
generates α-ketoglutarate (α-KG) to replenish the TCA cycle (Du
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and Hu, 2021), and ZEB1 reinforces this process by repressing
miR-203, forming a positive feedback loop that upregulates GLS1
(Zhao et al., 2020). Glutamine-derived purines further supportDNA
repair under chemotherapy-induced stress, enhancing cell survival
(Zhou et al., 2020). Mesenchymal-like PCa cells coordinately
enhance fatty acid oxidation (FAO) and synthesis (FAS) (Tan et al.,
2023). Single-cell lipidomics show upregulated CPT1A, which
shuttles fatty acids into mitochondria for β-oxidation (Meng et al.,
2024), while ACC phosphorylation inactivates FAS to relieve FAO
suppression (Carroll et al., 2020). Concurrently, SREBP1-mediated
lipid synthase expression increases membrane fluidity to facilitate
migration (Du et al., 2022).

Epigenetic effects of EMT on PCa

Emerging studies highlight the pivotal role of epigenetic
modifications in PCa metastasis and therapy resistance by
dynamically regulating EMT plasticity (Tan et al., 2022). The
epigenetic network—comprising DNA methylation, histone
modifications, and non-coding RNAs—not only shapes EMT
heterogeneity but also drives adaptive evolution under therapeutic
pressure (Tan et al., 2022). Whole-genome methylation analyses
reveal increased hypermethylation at the CDH1 promoter in
metastatic castration-resistant PCa (mCRPC), resulting in epithelial
marker loss and ZEB1-mediated mesenchymal activation (Lee et al.,
2020). Intriguingly, intermediate EMT (E/M) cells exhibit unique
“bivalent domain” methylation patterns: partial methylation at
epithelial gene promoters (FOXA1) and hypomethylation at
mesenchymal loci (SNAI2), enabling rapid microenvironmental
adaptation (Bhat et al., 2021; Liu Y. et al., 2023). Targeting
DNMT3B reverses EMT phenotypes and restores drug sensitivity
in enzalutamide-resistant cell lines (Wu et al., 2020). Histone
modifications further regulate EMT transcription via chromatin
remodeling (Yang et al., 2023). In AR inhibitor-resistant cells,
H3K27ac enrichment at TWIST1 enhancers sustains mesenchymal
traits (Chen et al., 2022), while dynamic H3K4me3 modifications
at stemness-related genes (SOX2) couple EMT with cancer
stem cell properties (Mitchell et al., 2023). Preclinical studies
demonstrate that EZH2 inhibitors block this reprogramming,
significantly improving paclitaxel response rates in PDX models
(Yang et al., 2021). Non-coding RNAs amplify EMT heterogeneity
through dual epigenetic-transcriptional control (Hashemi et al.,
2022). For example, the long non-coding RNA MALAT1
recruits HDAC3 complexes to the CDH1 promoter, silencing
its expression via histone deacetylation to promote invasion
(Ferri et al., 2022). Clinically, epigenetic silencing of key EMT
suppressors inversely correlates with enzalutamide resistance
in CRPC patients, highlighting their potential as predictive
biomarkers (Nikhil et al., 2020).

EMT and drug resistance in PCa

Overcoming therapy resistance represents one of the most
critical challenges in oncology, as it is a leading cause of
treatment failure in tumors (Vasan et al., 2019). Therapy
resistance encompasses rejection of chemotherapy, radiotherapy,

immunotherapy, and targeted therapies, along with both inherent
and acquired resistance to conventional tumor treatments
(Vasan et al., 2019). The management of locally advanced prostate
tumors relies on androgen deprivation therapy (ADT); however,
clinical outcomes remain limited. Following the initial response,
these patients inevitably progress to CRPC (Falagario et al., 2023;
Preisser et al., 2024), which is connected with various forms of
epithelial plasticity, including EMT (Dunning et al., 2011; Teng et al.,
2021). To support this hypothesis, early studies have indicated that
stem cells associated with castration resistance in PCa may arise
from cells that hcluding tumor-associated macrophages, tumor-
associated fibroblasts, regulatory T cells, and myeloid-derived
suppressor cells (Sun et al., 2012). These immunosuppressive cell
populations have also been shown to promote EMT in tumor
cells through the secretion of inflammatory cytokines or exosomes
(Sun et al., 2012). This interplay has been validated in various solid
tumors, including PCa. In PCa, the expression of N-cadherin is
significantly linked to immunoregulatory features. N-cadherin-
positive regions exhibit a local decrease in intraepithelial cytotoxic
(CD8) T cells and an increase in immunosuppressive regulatory
T cells (Miao et al., 2017). This correlation is associated with the
expression of the IDO1 protein and its metabolite, kynurenine, in
the predominantly N-cadherin-positive regions. In summary, the
dynamic interactions between EMT and the TME play a critical role
in tumor progression and immune evasion. Understanding these
interactions can offer valuable insights into potential therapeutic
targets for enhancing cancer treatment outcomes (Sun et al.,
2012). EMT markers, including N-cadherin, have been reported
to be upregulated following androgen deprivation therapy and
can directly induce the transition of PCa to CRPC (Miao et al.,
2017; Mickova et al., 2021). Similarly, transcription factors related
to EMT have also been implicated in CRPC. For instance,
several studies have indicated that the EMT transcription factor
Snail is related to with elevated Gleason scores, and its ectopic
expression has been shown to result in increased levels of AR and
AR variants. Additionally, Skp2-mediated stabilization of Twist
not only facilitates the progression of PCa to CRPC but also
correlates with resistance to paclitaxel in PCa (Mickova et al.,
2021; Ruan et al., 2017). Furthermore, TGF-β, a major regulator
of EMT, has been implicated in the development of CRPC. When
its upstream inhibitor FOXA1 is lost, TGF-β expression and
activity are upregulated, further facilitating the progression of
CRPC (Wang et al., 2023). Inhibitors of TGF-β receptors have been
shown to enhance the sensitivity of advanced PCa to enzalutamide
treatment (Paller et al., 2019).

Similarly, EMT significantly impacts the sensitivity of solid
tumors, including PCa, to chemotherapeutic agents, including
docetaxel, paclitaxel, and epirubicin (Dunning et al., 2011;
Teng et al., 2021). These agents are often utilized as first-line
treatments for CRPC or its lethal subtypes following ADT failure
(Falagario et al., 2023; Preisser et al., 2024). Although these
agents demonstrate effective therapeutic outcomes initially, PCa
inevitably develops resistance to them over time, similar to
ADT. While the specific molecular mechanisms remain unclear,
it is widely acknowledged that EMT influences the sensitivity
of PCa to these agents. Laboratory evidence supports this
assertion; previous studies have demonstrated that cells resistant
to chemotherapeutic agents undergo epithelial-to-mesenchymal
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transition, resulting in decreased levels of E-cadherin and
upregulation of mesenchymal markers (Du and Shim, 2016).
Inhibiting the EMT process or reintroducing E-cadherin can
restore sensitivity to chemotherapeutic agents (Ni et al., 2013;
Hanrahan et al., 2017). Additionally, transcription factors related
to EMT, including ZEB1 and SKP2, have been implicated in
chemotherapy resistance by promoting EMT in PCa cells. In
conclusion, overcoming therapy resistance, particularly by targeting
EMT and its regulatory pathways, is essential for enhancing
the efficacy of treatments for PCa and other solid tumors
(Preisser et al., 2024; Dunning et al., 2011).

EMT and cancer stem cell (CSC) phenotype
and spatial heterogeneity in PCa

Cell plasticity is regarded as a hallmark of EMT, wherein
tumor epithelial cells undergoing EMT may exhibit intermediate
morphological, transcriptional, and epigenetic characteristics.These
features encompass a spectrum of both epithelial and mesenchymal
markers, referred to as quasi-mesenchymal intermediates, and are
believed to be primary contributors to EMT-associated cell plasticity,
which has been linked to tumor stemness (Lambert and Weinberg,
2021). This notion is supported by findings that prostate tumor
cells exhibiting mesenchymal characteristics demonstrate enhanced
invasiveness and stemness (Soundararajan et al., 2018; Navas et al.,
2020). CSC hypothesis is an emerging model that elucidates various
molecular features of malignant tumors, along with their propensity
for recurrence, metastasis, and resistance to conventional therapies.
CSCs have been isolated from tumors in PCa patients and are
considered one of the primary contributors to tumor resistance
and recurrence (Batlle and Clevers, 2017). Observations indicate
that the expression levels of tumor stemness markers tend to
rise with tumor progression, and it has been shown that PCa
neuroendocrine cells (AR and PSA negative) may be associated
with CSCs (Verma et al., 2023). Notably, growing evidence suggests
that the activation of the EMT process in PCa cells is linked to
the acquisition and maintenance of stem cell properties within
PCa epithelial cells (Soundararajan et al., 2018). N-cadherin has
been demonstrated to elevate the expression of prostate cancer
stem cell markers (c-Myc, Klf4, Sox2, and Oct4) through the ErbB
signaling pathway, thereby enhancing the formation of prostate
tumorospheres. The upregulation of cancer stem cell markers is
linked to PCa cells displaying more pronounced mesenchymal
traits. Similarly, in contrast to the CD44-negative population,
mesenchymal markers, including N-cadherin and vimentin, are
highly upregulated in the CD44-positive population. Prostate tumor
cells exhibiting mesenchymal characteristics tend to demonstrate
enhanced invasiveness and stemness (Wang et al., 2016). In
summary, the interplay between EMT and CSCs underpins the
plasticity of tumor cells, contributing to their aggressive behavior
and resistance to therapies. Understanding these mechanisms
is crucial for developing strategies to target these adaptive
processes and enhance treatment outcomes for PCa (Fontana et al.,
2019). Concurrently, endothelial cell-derived IL-8 activates the
AKT/mTOR pathway via CXCR receptors, promoting the shift of
hybrid epithelial-mesenchymal (E/M) cells toward mesenchymal
phenotypes (Lu et al., 2025). Furthermore, glutamine deprivation

in the tumor core activates GCN2 kinase, which phosphorylates
eIF2α to suppress epithelial gene translation, driving mesenchymal
transition (Lu et al., 2024). In EMT-active regions, M2 macrophages
and regulatory T cells are significantly enriched compared to
normal areas, fostering an immunosuppressive niche (Han et al.,
2023). These cells secrete IL-10 and TGF-β to induce EMT in
neighboring epithelial cells and shield mesenchymal-like cells from
CD8+ T cell-mediated cytotoxicity (Denk et al., 2025). Hypoxic,
TP53-mutated EMT clones in the tumor core rely on HIF-1α
(Guan et al., 2021), while AR-V7-positive clones at the invasive
front dominate via WNT signaling activation (Tsao et al., 2021).
Such spatial heterogeneity in EMT dynamics, governed by multi-
layered regulatory networks, may offer novel therapeutic strategies
to overcome treatment resistance in Pca.

EMT and the immunosuppressive
microenvironment in PCa

The tumor microenvironment (TME) consists of various cell
types, including cancer cells, infiltrating immune cells, and stromal
cells, such as fibroblasts. Interactions among these different cell
types can influence one another, thereby inducing changes in the
TME that affect tumor progression and metastasis (Pitt et al.,
2016; Aggarwal et al., 2021). Interestingly, there is an interaction
between EMT and TME, two fundamental biological processes,
and EMT is associated with the recruitment of immunosuppressive
cell populations (tumor-associated macrophages, tumor-associated
fibroblasts, regulatory T cells, and myeloid-derived suppressor cells)
in TME (Aggarwal et al., 2021), and these immunosuppressive cell
populations have also been reported to promote EMT in tumor
cells by secreting cytokines or exosomes (Aggarwal et al., 2021),
which has been demonstrated in a variety of solid tumors, including
PCa, In PCa, N-cadherin expression is significantly associated
with immunomodulatory profiles, withN-cadherin-positive regions
exhibiting a local decrease in intraepithelial cytotoxic (CD8) T
cells and an increase in immunosuppressive regulatory T cells
(Sun et al., 2021), which is connected with the expression of
IDO1 protein and its metabolite kynurenine in predominantly N-
cadherin-positive regions (Sun et al., 2021).

Clinical correlation between EMT and
prostate cancer

Recent advances in targeting EMT transcription factors have
yielded promising clinical validation of Twist1 and Snail inhibitors
in metastatic castration-resistant prostate cancer (mCRPC)
(Taki et al., 2021). Studies demonstrate that combining Harmine
derivatives with enzalutamide reduces Twist1 mRNA levels
in mCRPC patients, correlating with prolonged radiographic
progression-free survival (rPFS) (Dellal et al., 2020; Agarwal et al.,
2023). However, while the STAT3/Snail dual-pathway inhibitor
Napabucasin upregulates E-cadherin in treated tissues (Li et al.,
2024), its use is limited by increased diarrhea incidence
(Wang S. T. et al., 2024). The histone deacetylase inhibitor
Vorinostat, combined with abiraterone, significantly extends overall
survival in mCRPC patients with high EMT scores (Tanabe et al.,
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2024). This heterogeneity aligns with genome-wide methylation
analyses, where ZEB1 and VIM demethylation strongly associates
with PSA decline (Rajamäki et al., 2021; Davies et al., 2023).
Interim analyses of TGF-β inhibitor/PD-1 antibody combinations
in high-EMT mCRPC reveal rising objective response rates, with
reduced EMT scores linked to enhanced intratumoral CD8+ T cell
infiltration (Lin et al., 2021).

Pathways associated with EMT
activation in PCa cells

Transforming growth factor beta (TGF-β)

TGF-β is a multifunctional cytokine synthesized by various
tissue cells (Massagué and Sheppard, 2023). The TGF-β signaling
pathway encompasses various multifunctional cytokines, their
corresponding receptors, and intracellular signal transduction
molecules, and is associatedwith several cellular activities, including
EMT, growth arrest, and tissue fibrosis (Massagué and Sheppard,
2023). It has been established as a primary regulatory factor for
EMT activation in PCa (Mirzaei et al., 2022). TGF-β promotes
EMT activation in PCa by inducing vimentin and fibronectin
while inhibiting E-cadherin levels, which is associated with the
upregulation of EMT transcription factors following activation of
the classical TGF-β signaling pathway (Smad-dependent pathway)
(Mirzaei et al., 2022). The expression level of this protein is typically
correlated with poorer prognosis and higher expression levels
in PCa specimens (Torrealba et al., 2020). Conversely, negative
regulators of TGF-β have been reported to exhibit decreased
expression levels with the progression of PCa. For instance, FOXA1
(a negative regulator of neuroendocrine differentiation) displays
lower expression levels in CRPC patients, which is linked to
active TGF-β-induced cellular events, including EMT, suggesting
potential activation of the EMT process in CRPC (Song et al.,
2019). Similarly, another critical regulator of TGF-β effects is
SOX5, which initiates EMT by binding to the TWIST1 promoter.
A reduction in the expression level of this molecule results in
the loss of the mesenchymal phenotype and migratory capacity
of PCa cells (Hu et al., 2018). Furthermore, TGF-β has been
shown to promote EMT activation in PCa through additional
oncogenic pathways. For instance, TGF-β can initiate the EMT
process in PCa by activating the PI3K/Akt signaling pathway,
which dissociates the E-cadherin/catenin complex from the actin
cytoskeleton (Torrealba et al., 2020; Song et al., 2019; Hu et al.,
2018). In summary, TGF-β plays a crucial role in EMT activation
in PCa through various pathways, including the Smad-dependent
pathway and other oncogenic signaling pathways such as PI3K/Akt
(Mirzaei et al., 2022; Torrealba et al., 2020; Song et al., 2019;
Hu et al., 2018; Hamidi et al., 2017). Understanding these
mechanisms is essential for developing therapeutic strategies aimed
at targeting EMT and enhancing treatment outcomes for PCa.

AR signaling pathway and ADT therapy

PCa is primarily an androgen-dependent disease. The standard
therapy for metastatic PCa involves inhibiting androgen synthesis,

lowering circulating androgen levels, and blocking the AR
(Falagario et al., 2023; Preisser et al., 2024). Previous literature
has reported several clinical trial outcomes for second-generation
ADT drugs. These drugs target the AR ligand-binding domain
and, although they initially achieve significant therapeutic effects,
they inevitably lead to resistance over time (Preisser et al., 2024;
Dunning et al., 2011). This resistance is linked to changes in
AR expression, the emergence of variant receptors, and specific
mutations (Zheng et al., 2022). Notably, the relationship between
the AR signaling pathway and EMT is intricate and not fully
understood. Previous studies have indicated that AR can induce
the expression of various proteases, including MMP2/9, and
promote cellular invasion, which is linked to EMT activation
(Li et al., 2007). Consequently, early research suggested that ADT
might inhibit EMT in PCa. However, practical studies reveal
a more complex relationship. ADT has been shown to induce
EMT genes, with PCa cells exhibiting upregulated EMT-related
genes and mesenchymal phenotypes following ADT treatment
(Chen et al., 2017). AR-negative PCa cell lines (PC3 and DU145)
demonstrate higher mesenchymal gene expression and reduced
epithelial characteristics compared to androgen-dependent PCa
cell lines (LNCaP) (Moll et al., 2022). This phenomenon may
be attributed to ADT treatment diminishing AR’s inhibition
of Sail genes, thereby promoting PCa EMT (Moll et al., 2022;
Cmero et al., 2021). However, some studies indicate that EMT
induction during ADT treatment may result from the upregulation
of the chemokine CCL2 (Lee et al., 2018). CCL2 is known to
enhance cell motility and is recognized as a paracrine regulator that
promotes tumormetastasis (sai et al., 2018). Its expression is elevated
during ADT treatment. Moreover, the emergence of AR variants
following ADT treatment can influence EMT gene expression. For
instance, AR-V7 has been demonstrated to induce mesenchymal
genes and tumor stemness, fostering metastasis (Lee et al., 2018).
Furthermore, emerging research highlights that estrogen receptor
(ER) signaling drives disease progression following AR deprivation,
with compensatory ER pathway activation playing a critical role.
Specifically, the ERα subtype promotes tumor proliferation and
bone metastasis via MAPK/ERK activation, correlating with
reduced overall survival (Erdmann et al., 2022). In contrast,
ERβ suppresses tumorigenesis by inhibiting NF-κB signaling
(Yang J. et al., 2020). AR inhibition disrupts the ERα/ERβ balance,
reshaping tumor biology (Wang et al., 2021). Post-AR suppression,
ERα upregulation drives proliferation and induces EMT through
MAPK/ERK activation (Chakraborty et al., 2023). While ERβ
overexpression inhibits localized PCa growth in animal models, this
protective effect diminishes after AR inhibition (Wang et al., 2022).
Compensatory ER signaling triggered by AR-targeted therapies
remodels tumor evolution and microenvironment adaptation via
ERα/ERβ imbalance (Liu Q. et al., 2023). In summary, androgen
deprivation therapy intricately links ER signaling to EMT in PCa.
However, modulating AR or ER to control EMT remains a key
challenge in advancing therapeutic strategies.

Inflammation and cytokines

EMT can also be induced by specific inflammatory factors and
cytokines (Wang P. et al., 2024). IL-6, a cytokine belonging to the
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chemokine family, has been found at elevated levels in metastatic
specimens from PCa patients and is associated with a mesenchymal
phenotype in PCa (Wang P. et al., 2024; Nguyen et al., 2014). This
indicates that IL-6 may act as an effective inducer of EMT in
PCa. Moreover, TNF-α, a dimeric soluble cytokine, is regarded
as a regulatory factor in EMT associated with PCa. Activation of
the AKT/GSK-3β signaling pathway in PCa stabilizes Snail, a key
mechanism driving EMT in tumor cells (Fontanella et al., 2021).
Notably, the fibroblast growth factor (FGF) family has been linked
to EMT in PCa. An in vitro study using PCa cell lines demonstrated
that FGF2 enhancesmesenchymalmarkers while reducing epithelial
markers, thereby inducing EMT and promoting increased cellular
invasion and metastasis (Wang et al., 2013). Mechanistically, this
may result from FGF9 activating c-Jun-dependent TGF-β secretion
in prostate stromal cells, which subsequently triggers EMT in
prostate cancer cells through paracrine signaling (Wang et al.,
2013; Huang et al., 2015; Jin et al., 2004). In summary, several
cytokines and growth factors, including IL-6, TNF-α, and members
of the FGF family, play crucial roles in the activation of EMT
in PCa. Understanding the specific pathways and mechanisms
by which these factors influence EMT could provide valuable
insights for developing targeted therapies aimed atmitigating cancer
progression and metastasis.

Treatment strategies related to EMT

Therapeutic strategies targeting EMT primarily focus on
biomarkers capable of predicting disease outcomes. Recent
studies have employed metrics such as hazard ratios (HRs) and
receiver operating characteristic (ROC) curves to quantify the
clinical predictive value of EMT biomarkers, though findings vary
significantly across studies (Mazumder et al., 2022). Retrospective
analyses using Cox proportional hazards models confirm that
expression levels of core EMT transcription factors (Twist, Snail)
and adhesionmolecules (E-cadherin,N-cadherin) correlate strongly
with patient survival outcomes (Qu et al., 2021). For instance,
Twist overexpression associates with reduced progression-free
survival (Shen et al., 2022), while Snail positivity increases mortality
risk in colorectal cancer (Bao et al., 2022). Notably, prognostic
implications differ by cancer type: Vimentin predicts poor outcomes
in lung cancer (Bronte et al., 2021) but exhibits protective effects in
PCa (Choudhry et al., 2023). ROC analyses further demonstrate
that biomarker combinations like the E-cadherin/Vimentin ratio
show promising sensitivity and specificity for early metastasis
detection (Lee et al., 2020).

In PCa, epithelial plasticity is directly linked to poor clinical
prognosis (Lee et al., 2020). Genomic analyses have identified
distinct genetic signatures linked to various intermediate states
of EMT, aiding in the identification of EMT-related transcription
factors that can serve as biomarkers. For instance, a study by
Jedroszka and colleagues classified patients into several groups based
on their expression levels of AR, ESR1, and ESR2 (Zhang et al.,
2014; Jędroszka et al., 2017). After analyzing 43 genes involved
in EMT, they found that variations in gene expression could
predict more aggressive phenotypes in individuals under 50 years
old (Jędroszka et al., 2017). Similarly, CTCs exhibiting an EMT
phenotype can predict disease recurrence and metastasis (Liu et al.,

2020). Furthermore, prior studies have reported a risk scoring
model derived from EMT-related genes to predict disease outcomes,
demonstrating significant clinical benefits (Feng et al., 2022). Similar
risk scoring models have also been reported in other tumors
(He et al., 2023; Yang C. et al., 2020; Zhang Z. J. et al., 2023).
These findings suggest that future research may specifically target
patients with high expression of mesenchymal markers, exploring
personalized immunotherapy for molecular subtypes exhibiting
varying levels of EMT gene expression. As previously mentioned,
in PCa, EMT appears to be a key mediator of acquired resistance
to androgen deprivation and docetaxel therapies. EMT activation
followingADT treatment is linked to castration resistance. Targeting
or reversing the EMT process in epithelial cancer cells undergoing
ADT treatment could be a promising strategy for enhancing PCa
outcomes. Metformin, a widely used antidiabetic medication, has
demonstrated effective antitumor activity (Yu and Suissa, 2023).
Prior studies have indicated that it can reverse resistance to
enzalutamide by targeting two key pathways closely associated with
EMT regulation (TGF-β and STAT3), highlighting the feasibility
of combining EMT inhibitors with ADT therapy (Liu et al.,
2017). This is supported by several additional studies, including
those demonstrating that cabazitaxel and TGF-β receptor inhibitors
enhance sensitivity to enzalutamide and reverse the EMT process
when combined with ADT treatment (Paller et al., 2019; Song et al.,
2019). EMT activation impairs DNA repair capacity, increasing
tumor mutational burden (Moyret-Lalle et al., 2022). In PCa
metastases, EMT-high cells harbormore nonsynonymousmutations
than epithelial counterparts, with enrichment in PI3K/AKT and
WNT pathways driving clonal evolution (Therachiyil et al., 2022).
Abiraterone treatment significantly expands EMT-driven AR-V7
splice variant-positive clones, revealing co-evolution between EMT
and castration resistance (Gurioli et al., 2022). EMT reversibility
enables phenotypic switching under therapeutic pressure (Shu et al.,
2020). Animal models show transient increases in Vimentin+
cells within docetaxel-treated PCa bone metastases, which revert
to baseline post-treatment, correlating with drug concentration
gradients (Wei et al., 2024). Notably, EMT plasticity activates
SOX2/OCT4 pathways to confer cancer stem cell-like properties,
enhancing residual cell regeneration and drug tolerance (Marques-
Magalhães et al., 2025). Clinically, patients with fluctuating
EMT scores exhibit elevated recurrence risk (Kim et al., 2025).
By remodeling the extracellular matrix (ECM) and fostering
immunosuppressive microenvironments, EMT creates niches that
favor resistant clone expansion (Wang Y. et al., 2024). Moreover, the
selective estrogen receptor modulator raloxifene has been identified
as a potential treatment for PCa. In vivo studies have demonstrated
that this drug inhibits EMT by suppressing N-cadherin, SLUG,
SNAIL, vimentin, andmatrixmetalloproteinases, thereby impacting
the efficacy of ADT treatment (Di Zazzo et al., 2019).

Recent breakthroughs in detecting circulating tumor cells
(CTCs) exhibiting EMT features have significantly improved
prognostic accuracy in PCa. These advancements leverage
multimodal capture strategies and molecular profiling to enhance
detection reliability (Cai et al., 2024). Traditional CTC detection
relies on epithelial markers like EpCAM. However, EMT-induced
loss of these markers often leads to undetected mesenchymal
CTCs, limiting diagnostic sensitivity (Di Zazzo et al., 2019).
Emerging technologies address this limitation by integrating
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physical properties, functional biomarkers, and single-cell analysis,
enabling precise capture and molecular characterization of EMT-
heterogeneous CTCs (Guan et al., 2024). For example, the “Tri-
Modal Chip” combines EpCAM antibody coatings, size-based
filtration, and deformability analysis. This method improves CTC
detection rates in mCRPC and distinguishes epithelial, hybrid,
and mesenchymal CTC subtypes (Li et al., 2025). Studies indicate
that patients with higher proportions of mesenchymal CTCs
(M-CTCs) experience shorter progression-free survival (PFS)
(Du et al., 2024). The aggressive behavior of mesenchymal CTCs
correlates with their metabolic activity. New platforms now evaluate
metabolic states using JC-1 mitochondrial membrane potential
staining and lactate secretion measurements (Guder et al., 2024).
Notably, CTCs with elevated lactate secretion strongly associate
with bone metastasis risk in PCa, outperforming PSA levels as
a predictive biomarker (Bergmann et al., 2025). Furthermore,
real-time monitoring of CTC glycolytic activity via extracellular
acidification rate (ECAR) analysis provides functional evidence for
dynamic EMT progression (Luan et al., 2024).

In summary, these findings indicate that targeting the EMT
process in PCa may represent an effective therapeutic strategy.
However, a comprehensive understanding of the molecular biology
of EMT and its relationship with established molecular subtypes
of advanced PCa is essential for effectively implementing EMT-
targeted therapeutic strategies in clinical trials.

Conclusion and future directions

The era of personalized precision medicine has begun in
oncology, yet enhancing patient survival and improving prognosis
continue to pose significant challenges. Research on EMT highlights
the importance of understanding the interplay between cellular
plasticity, stemness, and treatment response. These processes are
closely associated with tumorigenesis, invasiveness, migration,
metastasis, and interactions with TME. EMT can be induced
by various drivers and effectors, which may serve as prognostic
biomarkers or targets for interventions in metastatic disease.
Furthermore, the role of EMT in cancer progression and therapeutic
resistance has been extensively investigated. In PCa, EMT is
upregulated after ADT and is correlated with the emergence
of CRPC. This implies that future translational research on the
“reprogramming” of cancer cell fate through EMT could empower
lethal PCa to overcome treatment resistance and improve patient
survival. Unfortunately, there are currently few therapeutic agents
or methods capable of effectively modulating the EMT process
to enhance the efficacy of cancer treatments. In cellular and
animal studies, targeting specific transcriptional genes has been
shown to reverse EMT and enhance tumor treatment sensitivity.

However, achieving long-term success in humans remains fraught
with considerable risks and challenges.
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