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Background: In conjunction with age, aqueous humor (AH) proteomics can
affect the occurrence and development of age-related eye diseases, which are
poorly understood.

Objective: We characterized the proteomic changes in AH throughout the
aging process to better understand the aging mechanisms of the intraocular
environment.

Methods:We analyzed the AH proteomes of 33 older and 19 younger individuals
using liquid chromatography–tandem mass spectrometry, from which we
clustered similar expression trajectories of AH proteomics using local regression
analysis. Aging proteins (APs) and their functional enrichment were evaluated
using various statistical and bioinformatics methods, while aging modulators
were predicted using multiple machine-learning models.

Results: AH proteomic expression patterns exhibited various types of linear
and nonlinear changes across the age groups. A set of 179 proteins
identified as significant APs were enriched in various eye processes, such
as detoxification, eye development, negative regulation of hydrolase activity,
and humoral immune response. According to AH proteomics, hallmarks of
aging include oxidative damage, defective extracellular matrices, and loss
of proteostasis. A total of 11 APs were considered senescence signatures
for predicting AH age with strong predictive ability. Furthermore, 22 APs
were classified as modulators that may affect the aging process in the eye.
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Conclusion: These findings establish a framework for age-related changes in
the AH proteome and provide potential senescence biomarkers and therapeutic
targets for age-related eye diseases.
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1 Introduction

Aging is an inherent biological process that affects most
living organisms and leads to a gradual decrease in physiological
functions over time, making it a significant risk factor for many
chronic diseases (Campisi et al., 2019). Numerous studies have
identified 12 hallmarks of aging, based on blood, brain, and
other tissue samples, including cellular senescence, disabled
macroautophagy, deregulated nutrient sensing, altered intercellular
communication, chronic inflammation, genomic instability,
telomere attrition, epigenetic alterations, loss of proteostasis,
mitochondrial dysfunction, stem cell exhaustion, and dysbiosis
(López-Otín et al., 2023). Age-related ocular diseases, such as
age-related cataracts (ARCs), age-related macular degeneration,
glaucoma, diabetic retinopathy, and retinal vein occlusion, are the
result of numerous physiological and pathological processes that
occur in the eye due to aging (Grossniklaus et al., 2013).

Proteomic studies of aqueous humor (AH) have greatly
contributed to the understanding of the pathological changes in
common eye diseases, including high myopia, cataracts, age-related
macular degeneration, glaucoma, and diabetic retinopathy (Ji et al.,
2015; Liu et al., 2021; Rinsky et al., 2021; Chiang et al., 2012).
However, the majority of these studies did not include young
individuals as healthy controls, thereby neglecting the effects of
aging onAHand potentially introducing bias as little is known about
the molecular changes that occur in the AH with age. To overcome
these limitations, we compared the proteomics of AH between
individuals across a wide range of ages to provide insights into
the mechanisms of aging in the intraocular microenvironment. The
application of artificial intelligence in chronic ocular diseasesmainly
includes the following aspects: disease diagnosis, clinical research,
technical evaluation, and standardization construction (Xu and
Yang, 2023; Yang et al., 2023; Ren et al., 2023). Proteomics supplies
abundant biological data for machine learning (ML), which, in turn,
enables powerful data analysis for proteomics. ML has been widely
used to predict chronological age, protection, and risk factors in the
plasma proteome to identify potential disease markers and effective
anti-aging treatments for age-related diseases (Oh et al., 2023).
This reciprocal relationship has been particularly transformative in
ophthalmology. However, few studies have investigated whether the
AH proteome contributes to the protective or deteriorating effects
that occur during intraocular aging.

In this study, we compared the characteristics of the AH
proteome among individuals across awide range of ages (19–91 years)
using liquid chromatography–tandem mass spectrometry in data-
independent acquisition (DIA) mode.The DIAmode enables robust,
high-coverage protein quantification from trace clinical specimens
(e.g., single cells or microliter biofluids) through systematic MS/MS
fragmentation and computational library matching, overcoming

sensitivity limitations of traditional data-dependent approaches.
Functionally annotated aging proteins (APs) were enriched in
processes involving oxidative damage, defective extracellular matrix
(ECM) organization, and loss of proteostasis. Furthermore, AH
senescence signatures and proteome agingmodulatorswere identified
using multiple ML models. The results of this study not only
revealed the common aging proteome patterns of AH but also
enhanced our understanding of potential aging mechanisms within
the intraocular microenvironment.

2 Materials and methods

2.1 Participants

A total of 86 participants, comprising 48 cortical cataract
patients (age ≥50 years) and 38 young mild-to-moderate myopia
donors (age <50 years; −6.0D <refractive error< −3.0D), were
recruited from the Shenzhen Eye Hospital, China, from September
2021 to September 2023. All the subjects underwent a thorough
ophthalmic evaluation, fundus examination, best-corrected visual
acuity (BCVA) testing, intra-ocular pressure measurement, axial
length (AL) assessment, corneal endothelial cell count, and optical
coherence tomography. The inclusion criteria for the patient with
cataracts were as follows: (1) age ≥50 years, (2) BCVA<0.3 LogMAR,
and (3) moderate-to-severe lens opacity. The inclusion criteria
for myopic patients with the clear lens setting, designated as the
young group, were as follows: (1) age <50 years, (2) mild-to-
moderate myopia and BCVA ≥0 LogMAR, and (3) clear lens.
Exclusion criteria were (1) oculopathies, except for cataract and
ametropia, such as diabetes cataract, keratitis, glaucoma, uveitis,
and pseudoexfoliation syndrome; (2) any ocular traumas or
ocular procedures; and (3) systemic diseases, such as hypercapnia,
hyperuricemia, hyperthyroidism, and rheumatic disease. Finally, 33
ARC patients were set as the older group, and 19 mild-to-moderate
myopia donors were set as the young group. All procedures
performed in studies involving human participants were followed
the ethical standards of the local Ethics Committee of Shenzhen
Eye Hospital and the 1964 Helsinki Declaration and its later
amendments or comparable ethical standards. Written informed
consent was obtained from all study participants (reference code:
SYLS 20200618-11 and date of approval: 28 June 2020). The clinical
trial was registered at www.chictr.org as # ChiCTR2100042651.

2.2 Collection of the AH sample

AH samples were obtained from ARC patients undergoing
cataract surgery and myopic patients with clear lenses undergoing
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posterior chamber phakic intraocular lens implantation surgery.
A volume of 100–150 μL of AH was collected. Immediately
following collection, AH samples were aliquoted into pre-
chilled 1.5-mL LoBind microcentrifuge tubes (Eppendorf, Cat#
22431081). A 100 μL aliquot from each sample was used for protein
extraction.

2.3 Extraction of the peptides derived from
AH

AH protein extraction was performed as previously described
with modifications (Lin et al., 2019). In brief, AH samples
were homogenized in ice-cold lysis buffer containing 2% (w/v)
RapiGest SF surfactant (Waters Corporation), 100 mM ammonium
bicarbonate (NH4HCO3), 2 mM ethylenediaminetetraacetic acid,
and 1 mM phenylmethylsulfonyl fluoride (pH 8.0). The suspension
was subjected to pulsed ultrasonication (50 Hz, 3 s on/5 s off
cycles) for 2 min at 4°C using a VCX130 probe sonicator (Sonics
& Materials Inc., Newtown, CT, United States), followed by
centrifugation at 20,000 × g for 10 min at 4°C. The supernatant
was collected for protein quantification using the Bradford assay
(Cat# P0006, Beyotime Biotechnology Co., Ltd.), with bovine serum
albumin as the standard. Aliquots containing 10 μg of protein
were reduced with 10 mM dithiothreitol at 56°C for 30 min and
alkylated with 55 mM iodoacetamide in the dark at 25°C for 45 min.
Trypsin digestion was performed at a 1:50 (w/w) trypsin-to-protein
ratio in 100 mM NH4HCO3 at 37°C for 16 h. Resulting peptides
were desalted using stage-tip columns packed with OLIGO R3
Reversed-Phase Resin (30 μm, nest group) and vacuum-dried for
LC-MS/MS analysis.

2.4 Quantitative proteomics using DIA

The dried AH peptides were assessed by LC-MS/MS using an
Ultimate 3000 Nano-LC System coupled to the Orbitrap Fusion
LumosMass Spectrometer (Thermo Fisher Scientific, United States)
and operated in DIA mode with a duration of 120 min. The
parameters were referenced from our laboratory routine sets
(Fan et al., 2021). To generate the spectrum library for protein
identification, samples were reconstituted with mobile phase A (2%
ACN and 0.1% FA) and centrifuged at 20,000 × g for 10 min, and
the supernatant was collected for injection. Separation was carried
out using the UltiMate 3000 UHPLC System. The sample was first
enriched in the trap column and desalted, then introduced into a
tandem self-packed C18 column (150 μm internal diameter, 1.8 μm
column size, and 35 cm column length), and was separated at a flow
rate of 500 nL/min using the following effective gradient: 0–5 min,
held at 5% mobile phase B (98% ACN, 0.1% FA); 5–130 min,
mobile phase B linearly increased from 5% to 25%; 130–150 min,
mobile phase B increased from 25% to 35%; 150–160 min, mobile
phase B increased from 35% to 80%; 160–175 min, held at 80%
mobile phase B; 175–175.5 min, mobile phase B decreased from
80% to 5%; and 175.5–180 min, held at 5% mobile phase B. The
nanoliter liquid-phase separation outlet was directly connected
to the mass spectrometer. To generate the spectrum library,
the MS/MS signals were acquired in data-dependent acquisition

mode with the following parameter settings: full-scan MS spectra
(350–1,500 m/z) with a resolution of 120,000, high-energy collision
dissociation using 28% relative energy, and MS/MS scan at 15,000
resolutions (Yan et al., 2022).

2.5 Peptide analysis based on MS/MS
signals and data processing

The MS/MS signals elicited from the DDA mode were input
to a search engine, MaxQuant (v.1.6.0.1), and were searched
against human SWISS-PROT entries from the UniProtKB database
(UniProt, release 2018_02), with the following parameters:
maximum missed cleavage at 1, fixed modification at cysteine
carbamidomethylation, variable modification at methionine
oxidation and N-terminal protein acetylation, and minimal peptide
length at seven amino acids. The maximum false discovery rate
(FDR) for peptide or protein identification was set at 0.01. The
MaxQuant output was used to generate the spectral library for DIA
analysis. The MS/MS signals acquired in DIA mode were input
into Spectronaut (v.12.4, BIOGNOSYS, Switzerland) for peptide
and protein quantification using RT calibration by iRT. Based on
the target-decoy model, the false positive rate of peptides and
proteins was set to less than 0.01, thereby ensuring significant
quantitative results.

After overlaying duplicates and removing the missing match
peptide, missing values were imputed using the generalized mass
spectrum method, following an assessment of 23 commonly used
missing value imputation methods by NAguideR (Wang et al.,
2020) (https://www.omicsolution.com/wukong/NAguideR/#,
Supplementary Table S1). Protein abundances were log2-
transformed.

2.6 Principal component analysis, cluster
analysis of the AH proteome, and
functional enrichment of APs

Thepartial least squares-discriminant analysis was implemented
using the Wukong data analysis platform (https://www.
omicsolution.org/). To cluster the AH proteome based on similar
expression trajectories across aging, a local regression analysis
(LOESS function) from the R stats package (v4.2.2) with a span
of 0.75 was used, as described by Coenen et al. (2023). The Z-
scores were computed for each protein individually. To reduce
noise and variability, the following LOESS model was applied
separately to each protein: protein expression ∼ age. The hclust
function of the R stats package was applied for unsupervised
hierarchical clustering analysis. The hypergeometric test was used
to assess the enrichments of APs in the defined clusters using the
phyper function in R. The KEGG, GO, and Reactome databases
with the R packages clusterProfiler (v4.6.2) and ReactomePA
(v1.42.0) were used to identify the biological relevance of APs.
HumanBase functional protein module analysis was used for
identifying cohesive gene clusters and representing the eye-special
process of APs (Greene et al., 2015) (https://hb.flatironinstitute.
org/gene/).
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2.7 Age prediction, Δage estimation,
identification of accelerated, decelerated,
and chronological agers, and factors of the
AH proteome

The detailed methods of ML models were described by
Coenen et al. (2023) and Oh et al. (2023). In brief, 33 individuals
were randomly selected as the training set, and the remaining
individuals (n = 19) were selected as the testing set. Next, the
least absolute shrinkage and selection operator (LASSO) models
(alpha = 1, minimum lambda value as estimated after 10-fold cross
validation) using all APs as input variables were fitted to determine
whether theAP canpredict the chronological age.TheLASSOmodel
was repeated 1,000 times, and the frequency of the variable being
retained in the models was more than 500 times across all models
to identify key APs in the training set. Next, the ridge regression
model (alpha = 0) was used to obtain age predictions using only the
reduced APs described above and gender as the input in the training
set and was validated in the testing set. A novel linear model was
used to estimate the chronological age, which improved upon the
fitted ridge model (linear-model LM-predicted age ∼ chronological
age), as shown in the following equation: unbiased age prediction =
(predicted age − intercept of LM)/coefficient of LM. This unbiased
estimate of the predicted age was used to subtract the chronological
age to obtain our unbiased Δage. In addition, themean average error
(MAE) was calculated for each dataset individually as follows: MAE
= Σ(| Δage|)/number of Δage estimates. Finally, the linear models
for each AP were fitted to identify which APs were significantly
associated with Δage: protein expression ∼ age + gender + BMI+
Δage. The biological age group was treated as a category, with
decelerated agers (DAs) defined as Δage ≤−5 years, accelerated agers
(AAs) as Δage of ≥5 years, and chronological agers (CAs) as |ΔAge| <
2 years. To identify which APs were significantly associated with the
biological age group, the following linear model was fitted for each
AP: protein expression ∼ age + gender + BMI+ biological age group.

2.8 Statistical analysis

Independent-sample t-tests were used to compare age and
AL between the two groups. The Wilcoxon rank-sum test was
performed to evaluate the significance of proteins between the
two groups. Linear regression modeling was used to test the effect
of age on protein expression levels while correcting for most of
the available metadata to correct for possible confounding effects:
protein expression ∼ age + gender + BMI. The APs were the
preserved set of DEPs satisfied with significant proteins associated
with age in the linear regression modeling test. P-values were
adjusted using the FDR (Padj), and P value and Padj < 0.05 were
considered statistically significant.

3 Results

3.1 Demographic data

This study included 33 older patients with ARC (33 eyes)
and 19 younger patients as healthy controls (19 eyes). The mean

TABLE 1 Demographic and clinical features of the older and
young groups.

Basic
characteristics

Older group
(n = 33)

Young group
(n = 19)

P

Age (years ± SD) 65.55 ± 11.30 26.95 ± 5.13 < 0.05

AL (mm ± SD) 24.54 ± 2.39 25.23 ± 0.59 0.221

Lens transparency Opacified lens Clear lens

P-value from independent-sample t-tests for difference in age and axial length between the
older and control groups.
n, number of subjects; P, P-value; AL, axial length.

age of the patients in the older group (65.55 ± 11.30 years)
was significantly greater than that of the younger group (26.95
± 5.13 years; P < 0.001; Table 1). No significant difference was
observed in the mean AL between the older and younger groups
(24.54 ± 2.39 mm vs. 25.23 ± 0.59 mm; P > 0.05; Table 1). The lens
opacities of the patients with cataracts were classified according to
Lens Opacities Classification System III. The clinical features of all
subjects are listed in Supplementary Table S2.

3.2 Principal component analysis and
expression trajectory analysis of the AH
proteome during aging

We initially utilized partial least-squares discriminant
analysis to assess the distinction between the two groups of
participants, thereby clearly identifying the older and younger
groups (Figure 1A). Following peptide-spectrum matching,
stringent protein inference (FDR <1%), and rigorous missing-
value imputation processing, our analysis yielded 634 high-
confidence proteins meeting the identification criteria of having
≥2 unique peptides per protein group (Supplementary Table S3).
The AH proteome was clustered based on trajectories with
similar expression across age groups to determine which changes
occur in the aging intraocular environment (Figure 1B). Seven
clusters with comparable expression trajectories were identified,
reflecting diverse patterns of expression changes during the
aging process, including both linear and nonlinear up- or
downregulations, indicating varying degrees of involvement in these
processes (Supplementary Table S4).

Clusters 1, 3, and 5 exhibited hypergeometric distributions
(Padj < 0.05). Analyses of functional enrichment across the GO,
KEGG, and Reactome databases revealed numerous enrichments
in terms of functions, cellular components, and pathways within
these clusters (Supplementary Table S5) as follows: Cluster
1—regulation of peptidase activity, humoral immune response, and
neutrophil degranulation; Cluster 3—neutrophil degranulation,
humoral immune response, complement activation, carbohydrate
metabolism, developmental maturation, retinal homeostasis, and
cellular detoxification; and Cluster 5—regulation of peptidase
activity, ECM organization, neutrophil degranulation, and other
processes.
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FIGURE 1
Proteomic overview of the AH and clustering analysis of the complete AH proteome based on expression trajectories across age. (A) Principal
component analysis plots for the proteomes responsive to young and older AH. (B) Heatmap of identified clusters following unsupervised analyses of
all AH proteins based on expression trajectories across age. Green color indicates a relative decrease, whereas red color indicates a relative increase
compared to the mean expression over time. (C) Expression trajectories of the seven clusters. Clusters 1, 3 and 5 exhibited linear up- or
downregulation and retained based on a hypergeometric test (Padj < 0.05). The major processes associated with clusters 1, 3 and 5 are listed.
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3.3 Identification of APs in the AH,
functional enrichment analysis of APs, and
association between APs and the degree of
lens opacity

We conducted a proteomic analysis of the composition of AH
in older and younger individuals to identify potential mechanisms
underlying AH senescence and impaired lens transparency. There
were 226 differentially expressed proteins (DEPs) in the older group
compared with the younger group, comprising 59 upregulated
and 167 downregulated DEPs (all Padj < 0.05; Figure 2A). Next, a
comparable linear regression model was used to assess 222 unique
proteins that were significantly associated with age (all Padj < 0.05;
Figure 2B), of which 45 were positively related to age, while 167 were
negatively correlated. Finally, 141 downregulated and 38 upregulated
proteins were identified as APs in the AH, which satisfied the
Wilcoxon rank-sum test and comparable linear regression model
approach (Figure 2C; Supplementary Table S6). The top 10 up- and
downregulated APs are listed in Table 2. A total of 84 APs were
detected in matched plasma samples (unpublished data).

Various processes and pathways associated with the
APs were enriched to understand their biological processes
(Supplementary Table S7). The upregulated APs were enriched in
the negative regulation of hydrolase activity, regulation of immune
effector processes, humoral immune response, and epithelial cell
proliferation. In contrast, the downregulated APs were enriched in
the ECM organization, regulation of peptidase activity, response to
oxidative stress, regulation of the apoptotic signaling pathway, and
pyruvatemetabolic process (Figure 2D).Thepathways enriched in the
KEGG and Reactome databases included neutrophil degranulation,
regulation of insulin-like growth factor (IGF) transport and uptake by
insulin-likegrowth factor-bindingprotein (IGFBP),post-translational
protein phosphorylation (PTM), visual phototransduction (VP),
signaling by transforming growth factor (TGF-β) family members,
detoxificationof reactiveoxygenspecies, complement andcoagulation
cascades, cholesterol metabolism, and longevity-regulating pathways
(Figure 2E). Several processes demonstrated a linear downregulation
pattern, such as response to oxidative stress, lysosomes, ECM
organization, and neutrophil degranulation (Figure 2F).

The primary biological characteristic of older individuals in
this study was lens opacity, with strong correlations between
the degree of lens opacity and expression levels of all up-
and downregulated APs (r = 0.68 and −0.73, respectively; P
< 0.05; Supplementary Table S8). The degree of lens opacity
was strongly correlated with 12 downregulated APs and 1
upregulated AP (0.60 < |r| < 0.80; Padj < 0.05). The remaining
APs were only mildly or moderately correlated with the degree
of lens opacity (Supplementary Table S8).

3.4 Identification of the differences in APs
and age-related pathways between AH and
plasma and module analysis of the
relationships between APs and eye
processes

A total of 568 upregulated and 177 downregulated plasma
APs were identified in previous studies (Tanaka et al., 2018;

Tanaka et al., 2020; Moaddel et al., 2021; Sathyan et al.,
2020; Arthur et al., 2021). Only 10 APs exhibited consistent
expression trends in both the AH and plasma, whereas the
expression of 33 APs showed the opposite trend (Figure 3A;
Supplementary Table S9).

Proteomic studies of various materials (plasma, serum,
urine, saliva, and other tissues) have revealed various pathways
related to biological aging, including IGF, hypoxia-inducible
factor-1 (HIF-1), and cytokine signaling metabolic pathways
(Moaddel et al., 2021). AH proteomics might provide some insights
into age-related signaling pathways, such as aging, IGF, HIF-
1, peroxisome proliferator-activated receptor (PPAR), and Wnt
signaling pathways in the intraocular environment (Figure 3B).
The expression of genes related to aging and the Wnt signaling
pathway decreased with age, whereas the expression of genes related
to the PPAR signaling pathway increased with age. The expression
trajectories of IGF and the HIF-1 signaling pathway seemed to
be stable.

Using HumanBase functional module analysis, we identified
cohesive gene clusters and process-specific functional relationship
networks involving APs that contribute to eye processes
(Greene et al., 2015). The APs were divided into four modules:
M1—cellular response to toxic substances, response to toxic
substances, and detoxification; M2—eye development, sensory
organ development, and embryo development; M3—negative
regulation of very-low-density lipoprotein particle remodeling,
regulation of very-low-density lipoprotein particle remodeling,
and negative regulation of cytokine secretion involved in the
immune response; and M4—negative regulation of autophagy,
gastrulation, and embryonic morphogenesis (Figure 3C;
Supplementary Table S10).

3.5 ML models predict the age of AH and
identify the aging modulator in AH

On average, we found strong correlations between the original
and predicted ages across all 1,000 models (rAPage = 0.875) based
on the following 11 APs: AZGP1, COL1A2, COL6A3, CRYGS,
CTBS, GSTO1, LEFTY2, LINGO1, LYZ, NPTX2, and RBP4 (>
500 LASSO regression analyses were selected; Figure 4A). The
AUCs of these APs were more than 0.724, and the receiver
operating characteristic (ROC) curves of these APs are presented in
Supplementary Figure S2.

We also tested models with sets of random proteins of similar
size from the AH to determine whether models consisting solely
of APs were superior predictors of age compared to other proteins
in the AH. Consequently, models for the 11 APs outperformed
the model that included 179 random AH proteins (Figure 4B).
To address collinearity, we repeated the age prediction analyses
using ridge regression. This reduced subset of APs demonstrated
strong predictive validity across 1,000 models (average
r = 0.92).

Next, we calculated the average predicted age using the
expression levels of the 179 random APs. We compared the
average predicted age with the chronological age of each individual
to estimate Δage while statistically controlling for chronological
age, sex, and body mass index. We observed that the ranges of
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FIGURE 2
Identification of APs in AH and enrichment function analysis of APs. (A) Volcano plot depicts the DEPs of AH identified by the Wilcoxon rank-sum test.
The top 20 DEPs were depicted (Padj < 0.05). Purple dot, |log2foldchange| ≥ 3; blue dot, 2 ≤ |log2foldchange| ≤ 3; green dot, 1 ≤ |log2foldchange| ≤ 2;
and red dot, |log2foldchange| ≤ 1. (B) Volcano plot depicts the relationship in the AH proteome across age using a comparable linear regression model
approach. The red plot represents a positive correlation between the protein and age, while the blue plot represents a negative correlation with age. (C)
The Venn diagram depicts the APs of AH. (D) Overview displaying a wide variety of significant Gene Ontology functional enrichments of the subsets
according to upregulated and downregulated APs. Dot size represents the number of proteins involved, and dot color represents significance levels as
q-value. (E) Overview displaying a wide variety of significant pathways of APs through the KEGG and Reactome enrichment analyses. (F) Expression
trajectories of the significant functional APs. n_APs, the matched number of aging pathway components in APs.

the Δage values followed an approximately normal distribution
(Shapiro–Wilk test, P = 0.38; Figure 4C). The mean Δage was
0 with a mean average error of 5.537 years. A total of 22
APs with significant correlations with age were identified as
potential aging modulators in the AH (all P < 0.05). Among
these aging modulators, 11 were positively correlated with age
(APOA1, APOA2, APOH, COL6A3, KNG1, LEAP2, LRG1, SAA4,
SPINK1, THAP4, and VTN), while the remaining modulators
(CASP14, COA3, CTBS, GOT1, HEG1, NELL2, NPTX2, OMG,
PTPRG, SIAE, and TFPI2) were negatively correlated (Figure 4D;
Supplementary Table S11). We compared AA and DA with CA
to identify the proteomic data associated with decelerated aging.
We identified ten proteins (LTBP3, NELL2, NPTX2, APOH,
AZGP1, LEAP2, MMP14, RBP4, SAA4, and SPINK1) that might
decelerate interocular aging, whereas CTBS, DNASE2, GOT1,
and OMG might accelerate interocular aging (all P < 0.05)
(Supplementary Table S12).

4 Discussion

Age-related eye diseases, including ARC, glaucoma, diabetic
retinopathy, and age-related macular degeneration, frequently
occur as part of the aging process and are becoming more
prevalent in older populations (Grossniklaus et al., 2013). AH
is regarded as a special body fluid, and AH proteins may
diffuse from the ciliary body stroma of plasma-derived proteins
and be expressed in the intraocular tissue. Alterations in the
proteome of the AH play a significant role in various pathological
processes within the intraocular environment, offering valuable
insights into the pathophysiology of age-related eye diseases
(Ji et al., 2015; Liu et al., 2021; Rinsky et al., 2021; Chiang et al.,
2012). In this study, we classified seven distinct expression
trajectories across the different age groups. Three of these clusters
corresponded to a hypergeometric distribution and exhibited a
linear expression trajectory, which may provide a strategy for
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TABLE 2 Top 10 upregulated and downregulated APs in AH across age.

Upregulated Protein Abbreviation Mean expression Log2FC P
∗

Older group Young group

1 Gamma-crystallin S CRYGS 32.28 26.98 5.30 < 0.05

2 Lipocalin 2 LCN2 14.82 12.88 1.95 < 0.05

3 C16orf46 - 14.14 12.50 1.64 < 0.05

4 Apolipoprotein A2 APOA2 20.54 18.92 1.62 < 0.05

5 Serine protease inhibitor Kazal-type 1 SPINK1 12.74 11.15 1.59 < 0.05

6 X-C motif chemokine ligand 1 XCL1 16.78 15.24 1.54 < 0.05

7 Left-right determination factor 2 LEFTY2 12.54 11.02 1.51 < 0.05

8 Transmembrane protein 198 TMEM198 17.20 15.80 1.41 < 0.05

9 Serum amyloid A-4 SAA4 15.23 13.84 1.39 < 0.05

10 THAP domain containing 4 THAP4 16.77 15.44 1.34 < 0.05

Downregulated

1 Immunoglobulin heavy variable 1–69 IGHV1-69 41.77 57.56 −15.80 < 0.05

2 Collagen type II alpha 1 chain COL2A1 20.34 26.46 −6.12 < 0.05

3 Heart development protein with EGF like domains 1 HEG1 16.02 21.23 −5.22 < 0.05

4 Dopachrome tautomerase DCT 10.17 14.30 −4.13 < 0.05

5 Protein disulfide isomerase family A member 3 PDIA3 18.91 22.33 −3.42 < 0.05

6 Peroxiredoxin 2 PRDX2 13.36 16.68 −3.32 < 0.05

7 Peroxiredoxin 1 PRDX1 10.70 13.71 −3.01 < 0.05

8 Glycoprotein nmb GPNMB 12.16 14.70 −2.54 < 0.05

9 Nucleobindin 2 NUCB2 12.26 14.64 −2.38 < 0.05

10 Glutathione S-transferase pi 1 GSTP1 13.12 15.48 −2.37 < 0.05

P
∗
, The P-value was corrected using the FDR.

slowing the aging process in intraocular tissues by focusing on
neutrophil degranulation, humoral immune response, cellular
detoxification, and carbohydrate metabolism. Several age-related
pathways previously associated with biological aging in the plasma
were found to be involved in aging processes within the eye,
including aging, IGF, HIF-1, PPAR, and Wnt signaling pathways
(Moaddel et al., 2021). The composition and expression levels of
proteins in AH differ from those in the plasma because of the
blood–aqueous barrier (Freddo, 2013). We found that only 10 APs
exhibited consistent expression trends in both the AH and plasma,
while 33 APs showed contrasting expression trends (Figure 3A)
(Tanaka et al., 2018; Tanaka et al., 2020; Moaddel et al., 2021;
Sathyan et al., 2020; Arthur et al., 2021). Therefore, it is inaccurate
to assume that APs in the plasma are functionally equivalent

to those in the AH as APs in the AH may play roles in eye-
specific processes, such as detoxification, eye development, negative
regulation of very-low-density lipoprotein particle remodeling,
and negative regulation of autophagy (Figure 3B). According to
the CellAge database, 13 APs, namely, ABI3BP, CTSD, GRN,
HSPB1, HYOU1, NOTCH1, NRSN2, SOD1, TGFB2, TPP1, TXN,
WIF1, and LCN2, have been proven to exacerbate deterioration
due to aging in several functional experimental cell lines
(Tacutu et al., 2018).

The AH contains a wide variety of APs in low quantities,
which contribute to the aging process in the eyes through three
aging-related mechanisms, namely, oxidative damage, defective
ECM organization, and loss of proteostasis. The AH serves as a
significant source of antioxidants that directly supplement adjacent
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FIGURE 3
Comparison of APs and aging related pathways in AH and plasma and process-specific functional analysis of APs on eye. (A) The Venn diagram depicts
the results of the integration across the AH APs of our study and plasma APs from previous studies (Tanaka et al., 2020; Tanaka et al., 2018;
Moaddel et al., 2021; Sathyan et al., 2020; Arthur et al., 2021). (B) Expression trajectories of the aging-related pathways in AH. (C) The network of APs
contributed to the eye-specific processes in four modules. n_all, the matched number of aging pathway components in all AH proteomics. n_APs, the
matched number of aging pathway components in APs.

tissues such as the lens, corneal endothelial cells, and the trabecular
meshwork (Liu et al., 2021; Hsueh et al., 2022). We found that the
antioxidant system in AH exhibited a significant imbalance in older
individuals, with multiple antioxidant factors, including GSTO1,
GSTP1, PRDX1, PRDX2, PRDX6, SOD1, and TXN, simultaneously
decreasing. The reduced expression of these antioxidant factors
may impede the efficient removal of active oxygen compounds,
such as hydrogen peroxide and superoxide, potentially worsening
the cellular damage produced by free radicals. This imbalance has
the potential to disrupt the cellular redox balance, hindering the
detoxification of oxidative stress substances, which, consequently,
may compromise the functionality and structural integrity
of proteins within the cells, thereby obstructing the effective
conversion and elimination of harmful substances inside the cells.
The antioxidant activity of AH in older individuals noticeably
decreases with physiological aging; therefore, the restoration of
these antioxidant factors may serve as an anti-aging therapy for
age-related diseases.

TheECMorganization provides amicroenvironment for various
cell types, imparts cellular structural and mechanical support, and

regulates cellular homeostasis and signaling (Selman and Pardo,
2021; López-Otín et al., 2023). Therefore, changes in the ECM
organization affect the permeability of nutrients and metabolites
to the lens, decrease corneal biomechanical stability, alter the
corneal shape, and impede the outflow of AH (Pouw et al.,
2021; Wederell and de Iongh, 2006). We found that 19 types of
ECM organization were significantly altered in the AH of older
individuals, resulting in the disruption of multiple aspects of
intraocular cell homeostasis and normal functioning. Additionally,
the decrease in proteostasis due to age involves reduced translation,
impaired unfolded protein response, endoplasmic reticulum stress
response, compromised chaperone function, and impaired function
of the ubiquitin–proteasome system and autophagy–lysosome
pathway (Weinberg et al., 2022). In the AH of older individuals,
hydrolase activity is disrupted and lysosomal constituents decrease,
which may be involved in the pathological mechanisms of lens
development and homeostasis, glaucoma, and age-related macular
degeneration (Weinberg et al., 2022). The molecular chaperones
HSPA6, HSPA8, and HSPB1, whose expression decreased in the
AH of older individuals, impeded the ability of eye cells to

Frontiers in Cell and Developmental Biology 09 frontiersin.org

https://doi.org/10.3389/fcell.2025.1583330
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Huang et al. 10.3389/fcell.2025.1583330

FIGURE 4
Evaluating the efficacy of APs to predict AH age and identify the components affecting aging processes in AH. (A) Relationship between the predicted
and chronological age across 1,000 models (r average = 0.875). (B) Distributions of the 1,000 correlations between the original and predicted ages
obtained from models using all 179 APs and 179 random proteins of AH. (C) Identification of chronological agers (CAs, green), decelerated agers (DAs,
red), and accelerated agers (AA, blue) based on the average Δage estimates using 179 APs. (D) Graphical summary of the aging modulators in AH (all P
< 0.05).

respond to stress as they influence protein quality control in the
intraocular tissues under stress (Weinberg et al., 2022; Fu et al.,
2023). Antioxidation, ECM organization repair, andmaintenance of
protein homeostasis emerge as key therapeutic directions for age-
related eye diseases. With the ongoing advancements in artificial
intelligence, ML plays a role in predicting disease markers and
therapeutic targets after analyzing omics data (Oh et al., 2023). To
investigate the APs involved in the aging process, we established a
model using LASSO regression, which was subsequently validated
using ridge regression. A group of 11 APs (AZGP1, COL1A2,
COL6A3, CRYGS, CTBS, GSTO1, LEFTY2, LINGO1, LYZ, NPTX2,
and RBP4) were identified as senescence biomarkers of AH,
possessing a stronger predictive ability than random AH proteins.
The early risk stratification of age-related eye diseases can be
achieved through the detection of these senescence biomarkers in
AH. Among the aforementioned senescence biomarkers, COL1A2,
COL6A3, CRYGS, LINGO1, LYZ, NPTX2, and RBP4 are known
to be associated with age-related diseases such as ARC, dermal
aging, and Alzheimer’s and Parkinson’s diseases (Hooi et al.,
2012; Quan et al., 2021; Savić et al., 2023; de Laat et al.,
2015; Sassi et al., 2016; Xiao et al., 2017; Goodman, 2006).

Additionally, 22 APs were identified as potential modulators
of aging in the AH, indicating their potential contribution to
maintaining the balance of intraocular aging across different age
groups. These 22 modulators represent promising therapeutic
targets for retarding intraocular aging and need further intensive
investigation to confirm.

This study had some limitations. First, the sample size in our
studywas insufficient due to the ethical limitations of usingAH from
healthy individuals. Second, there were no suitable AH proteome
data to confirm our results at the time of our analysis. Third,
the findings were not further validated using additional detection
methods such as Western blot, ELISA, and MRM. Future research
could incorporate these techniques to more rigorously confirm our
observations and enhance the reliability of the conclusions drawn
from our analysis. In summary, the proteomic analysis of AH
provides an alternative approach to understanding the pathological
mechanisms associated with aging. The results of this analysis
provide novel insights into the senescence signature of AH, classify
different senescence biomarkers in AH and plasma, and reveal
new potential treatments for slowing the aging process of the
eye using ML.
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