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The winding road to platelet
α-granules
Andrea L. Ambrosio and Santiago M. Di Pietro*

Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO,
United States

Platelets are anucleate cellular fragments derived from megakaryocytes
(MKs) and α-granules constitute their most numerous membrane-bound
compartments. These granules play a role in platelet aggregation to form a
hemostatic plug but also contain numerous cargo proteins with key functions
in angiogenesis, inflammation, wound healing and cancer. Human genetic
disorders that cause deficiencies in the biogenesis of platelet α-granules
manifest with prolonged bleeding. The initial studies on platelets and MKs from
these patients provided a first glimpse into the biosynthesis of α-granules as a
membrane trafficking problem. Significant progress in the field has been made
in recent years in part due to the creation of iPSC-derived megakaryocytic
cells capable of releasing functional platelets, thus overcoming the limitations
of working with primary MKs. The emerging model indicates that sorting and
recycling endosomes are key intermediate stations traversed by α-granule
cargo on their way to the α-granule. Here we describe the different trafficking
pathways used by α-granule proteins and elaborate on their commonalities.
Similar to other lysosome-related organelles, most of the proteins involved in
the biogenesis of α-granules are ubiquitously expressed and we discuss NBEAL2
as a factor highly expressed in MKs that likely diverts this machinery to make
α-granules. Importantly, understanding the trafficking pathways involved in the
making of the α-granule has an impact not only on platelet biology but may also
illuminate the broader lysosome-related organelle field.
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Introduction

Platelets are anucleate cells fundamental for normal hemostasis that contain two types
of lysosome-related organelles (LROs): α- and dense (δ-) granules (Blair and Flaumenhaft,
2009). Platelets exert their function in part by releasing the content of these granules in
a regulated fashion. (Joshi and Whiteheart, 2017; Jonnalagadda et al., 2012). Each platelet
has only 2-8 δ-granules that carry polyphosphate and small molecules such as serotonin,
adenosine diphosphate (ADP), adenosine triphosphate (ATP), calcium and zinc (Frojmovic
andMilton, 1982;Muller et al., 2009). Alpha-granules on the other hand aremore numerous,
averaging 40 per platelet, and they contain a variety of protein cargo including not only
factors involved in blood clotting (e.g., von Willebrand Factor (vWF) and Factor V (FV)),
but also in angiogenesis (e.g., Vascular Endothelial Growth Factor (VEGF), Endostatin,
Thrombospondin-1 and Platelet Factor 4 (PF4), inflammation (chemokines such as CXCL1
and Interleukin-8), wound healing (e.g., VEGF and Fibroblast Growth Factor) and cancer
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(e.g., Platelet-DerivedGrowth Factor (PDGF), VEGF andRANTES)
(Blair and Flaumenhaft, 2009; Frojmovic andMilton, 1982; Pluthero
and Kahr, 2023; Sharda and Flaumenhaft, 2018).

Platelets derive from megakaryocytes (MKs), which primarily
reside in the bone marrow, and it is in these cells that both
α- and δ-granules are synthesized and packaged into proplatelets
that are subsequently released into circulation (Patel et al., 2005;
Italiano et al., 1999; Hartwig and Italiano, 2003). Primary MKs
are not amenable for either cell biology or biochemical analyses,
which has been a major obstacle in the study of platelet granule
biogenesis. In 2014 however, the creation of an iPSC-derived
megakaryocytic cell line (imMKCL) that recapitulates the biogenesis
of platelet granules provided a new tool to the field (Nakamura et al.,
2014; Ito et al., 2018). Since then, new players and pathways
have been discovered and the sorting and recycling endosomes
in MKs have been established as key hubs of the α-granule
biosynthesis machine (Ambrosio et al., 2022; Ambrosio and
Di Pietro, 2019; Lo et al., 2020).

Platelet α-granules are round or ellipsoidal, 200–500 nm in
diameter, their lumen is acidic, with an average pH of 5.2,
and they contain a heterogeneous population of protein cargo
(Italiano et al., 2008; Sehgal and Storrie, 2007; Yao and Kahr,
2025; Pokrovskaya et al., 2020). Both luminal and transmembrane
α-granule proteins are either synthesized by the MK, such as
P-Selectin, PF4 and vWF, or endocytosed like Fibrinogen, FV,
immunoglobulins and albumin (Blair and Flaumenhaft, 2009;
Cramer et al., 1989). An endocytic pathway to α-granules is
also present in platelets (Behnke, 1992), demonstrated by the
increase in accumulation of some endocytosed α-granule proteins
as platelets age (Heilmann et al., 1994).

Here,weelaborateontheestablishedknowledgeoftheintracellular
trafficking pathways and machinery used by α-granule proteins to
reach the α-granule. We describe mutations in membrane trafficking
proteins that underlie platelet α-granule biogenesis phenotypes
associated with human genetic disorders manifesting with prolonged
bleeding. We also discuss how the ubiquitous sorting endosomal
retrieval and recyclingmachinery is repurposed inMKs to synthesize
α-granules, an emergent feature for cells specialized in the biogenesis
of LROs. And finally, we comment on how the field is utilizing
the knowledge gained about α-granules and their biogenesis to start
engineering designer platelets with potential clinical uses.

Transport to α-granules of plasma
proteins taken up by megakaryocytes

The first evidence that indicated α-granules originate from
the endolysosomal system came from electron microscopy images
following the path and kinetics of gold-labeled bovine serum
albumin (BSA) taken up by cultured primary MKs (Heijnen et al.,
1998). The authors visualized BSA first populating endosomes,
followed by multi-vesicular bodies (MVBs) and finally reaching
α-granules. Interestingly, they noticed BSA first in MVBs with
typical morphology (MVBI) and then a special type of MVB
that contained not only internal vesicles but also electron-dense
material (MVBII), which is considered an intermediate maturation
compartment between MVBI and the α-granule. Like albumin,
immunoglobulin G and other luminal α-granule proteins reflect the

composition and concentration of plasma, indicating they are likely
acquired by fluid-phase endocytosis (George, 1990; Handagama and
Bainton, 1989; Handagama et al., 1989).

Fibrinogen is endocytosed, both in MKs and platelets, bound
to its receptor integrin αIIbβ3 with evidence for this process
to be both clathrin dependent or independent (Behnke, 1992;
Handagama et al., 1993; Gao et al., 2018). The intracellular traffic of
αIIbβ3 is regulated by Arf6 and, consistently, the uptake and storage
of Fibrinogen is decreased ∼50% in platelets from Arf6 deficient
mice (Huang et al., 2016). Additionally, αIIbβ3 recycles from
endosomes back to the plasma membrane. In particular, integrin
β3 contains a sorting signal in its cytosolic domain that is bound
by the endosomal adaptor SNX17 and this suggests that, similar to
other integrins, αIIbβ3 is a cargo of the Commander endosomal
retrieval and recycling pathway (see “The α-granule biogenesis
machinery” section for details) (Tseng et al., 2014; Ghai et al., 2013;
Butkovic et al., 2024; McNally et al., 2017).

Another well studied endocytosed protein present in α-granules
is FV. Unlike Fibrinogen, FV cannot be endocytosed by platelets
but only by megakaryocytes during a specific stage of their
differentiation (Bouchard et al., 2005). The endocytosis of FV
from plasma is clathrin- and Ca2+-dependent and involves LRP-1
and an unidentified, specific FV receptor (Bouchard et al., 2008).
It has been shown Galectin-8 also mediates the uptake of FV.
Galectin-8 binds FV and it has been proposed it transfers FV
to LRP-1 or cross-links FV to integrins (Zappelli et al., 2012).
Consistently, Galectin-8 has been shown to bind both LRP-1 and
αIIbβ3 and exert its function by protein-sugar and protein-protein
interactions (Zick, 2022; Levy et al., 2006). Remarkably, LRP-1 also
contains a SNX17 sorting signal in its cytosolic domain and it has
been shown to be a cargo of the Commander pathway in other
cell types (Butkovic et al., 2024).

Transport to α-granules of proteins
synthesized by megakaryocytes

Alpha-granule proteins, either soluble or transmembrane,
traverse the endoplasmic reticulum (ER) and Golgi apparatus where
they are post-translationally modified, however their topology, size
and individual characteristics are unlikely satisfied by a single route
to the α-granule (Blair and Flaumenhaft, 2009; Yao and Kahr, 2025).
Also, there is no known universal sorting signal associated with
α-granule proteins that would mediate transport to α-granules.
Immunoelectron microscopy images of Golgi-associated vesicles
containing α-granule proteins led to the conclusion that α-granule
cargo was delivered from the Golgi directly to MVBs (Blair
and Flaumenhaft, 2009; Cramer et al., 1989). However, live cell
fluorescence microscopy analysis of imMKCL cells showed that
newly synthesized α-granule proteins traffic through endosomes
before reaching MVBs (Ambrosio et al., 2022; Ambrosio and
Di Pietro, 2019). In particular, after leaving the Golgi, the luminal α-
granule protein PF4 traverses the Rab5 sorting endosome followed
by the Rab11 recycling endosome before reaching a Rab7 MVB and
finally arriving at α-granules (Ambrosio and Di Pietro, 2019).

Despite the recent advances described above, the traffic of
luminal, MK-made proteins to the α-granule is not completely
understood. Nevertheless, evidence obtained from several groups
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studying various cargoes suggests these proteins must be actively
retained by MKs (Chanzu et al., 2021; Lykins et al., 2025; Lo et al.,
2018). However, how these luminal cargoes are linked to the
cytosolic α-granule biogenesis machinery remains unknown. The
current consensus idea is that α-granule luminal proteins either
concentrate on electrostatic “sponges” or self-aggregate to reach the
α-granule (Chanzu et al., 2021; Lykins et al., 2025; Cramer et al.,
1985; Blagoveshchenskaya et al., 2002; Wagner et al., 1991). The
proteoglycan serglycin (SG) is an example of an electrostatic
“sponge”. Binding to SG is required for the packaging of small
positively charged chemokines into α-granules which is evident
by the reduction of PF4, PDGF, and β-Thromboglobulin in SG
deficient mouse platelets (Chanzu et al., 2021; Lykins et al., 2025;
Woulfe et al., 2008). Also, Thrombospondin-1, that contains a
positively charged heparin-binding domain, has been shown to
highly colocalize with SG by structured illumination microscopy of
human platelets (Pluthero andKahr, 2023). SG is a small polypeptide
(18 kDa) produced in both hematopoietic and non-hematopoietic
cells and decorated with tissue-specific glycosaminoglycan chains
with different sulfation patterns (Kolset and Gallagher, 1990;
Schick et al., 2001; Kolset and Pejler, 2011). It can accommodate
several PF4 molecules that interact electrostatically with its sulfated
glycans chains (Lord et al., 2017).

Supporting the importance of the electrostatic “sponge”
mechanism, it has been shown SG deficient MK are unable
to retain PF4, which is then secreted to the interstitial fluid
of the bone marrow altering bone marrow morphology and
affecting the homeostasis of the hematopoietic stem cell niche
(Chanzu et al., 2021; Lykins et al., 2025). Importantly, although
at significantly lower levels than SG deficient MK, wild type
MK also release PF4 in the bone marrow (Chanzu et al., 2021;
Bruns et al., 2014; Lambert et al., 2007). Intramedullary PF4
has a negative paracrine effect on megakaryopoiesis and it is
endocytosed and stored in α-granules in, at least in part, an LRP-
1-dependent pathway (Bruns et al., 2014; Lambert et al., 2009;
Lambert et al., 2015). Additionally, a hydrophilic loop present
in PF4 and other chemokines has been proposed to target these
molecules to the α-granule but no receptor or mechanism has been
elucidated (El Golli et al., 2005).

An example of self-aggregation as a proposed mechanism
aiding α-granule targeting comes from vWF. This large, multimeric
glycoprotein is found in eccentric internal structures within α-
granules that resemble tubules formed by vWF in another LRO:
the Weibel-Palade body (WPB) in endothelial cells (Cramer et al.,
1985; Huang et al., 2008). The heterologous expression of vWF
can induce the formation of storage organelles in cells that contain
a regulated secretory pathway, potentially through an aggregation
event that involves its propolypeptide (Blagoveshchenskaya et al.,
2002; Wagner et al., 1991). Although, the existence of a putative
targeting sequence within its propolypeptide has not been discarded
(Wagner et al., 1991). Multimerin, a FV binding protein, is another
large glycoprotein proposed to be sorted by homoaggregation
(Hayward et al., 1999). Similar to vWF, in resting platelets
Multimerin accumulates in the peripheral, electron-lucent zone of
α-granules complexed to FV (Hayward et al., 1995).

Several of the transmembrane proteins present on the α-granule
limiting membrane are also expressed on the plasma membrane
of both MK and platelets (Berger et al., 1996). This is the case

of integrins such as αIIbβ3, α2β1 or α6β1, the Thrombospondin-
1 receptor CD36, the tetraspanin CD9, the adhesion molecule
PECAM1, and GPIb-IX-V, the receptor for vWF (Berger et al.,
1996; Cramer et al., 1990; Maynard et al., 2010; Berger et al.,
1993; Cramer et al., 1994). In some instances, these proteins
are known to be the endocytic receptors for luminal α-granule
components, e.g., αIIbβ3 is the receptor for extracellular Fibrinogen
(Handagama et al., 1993), and it has been speculated they use the
same endocytic pathway as plasma proteins to reach the α-granule
(Berger et al., 1996). Interestingly, many of these plasma membrane
proteins are known integrin β3 and β1 interactors (Miao et al., 2001;
Berditchevski, 2001; Jackson, 2003), which suggests they coexist on
the same plasma membrane domains and they probably use the
same endocytic carriers. On the other hand, other transmembrane
proteins like CD40 ligand (CD40L) and P-Selectin, which are also
known to bind integrins (Hassan et al., 2022; Andre et al., 2002a;
Takada et al., 2023), are stored in α-granules and relocate to the
plasma membrane upon platelet activation and granule fusion with
the plasma membrane (Andre et al., 2002b).

The transport of P-Selectin to both the α-granule and WPB in
endothelial cells, has been studied by several groups (Ambrosio et al.,
2022; Lo et al., 2020;Harrison-Lavoie et al., 2006;Hartwell et al., 1998;
Modderman et al., 1998). P-Selectin is a single pass transmembrane
protein that contains several sorting signals in its cytosolic domain,
including signals that mediate endocytosis and binding to the
endosomal adaptor SNX17 (Ghai et al., 2013; Modderman et al.,
1998; Blagoveshchenskaya et al., 1999). In MKs, P-Selectin recycles
from endosomes to the plasma membrane before being stored in
α-granules in a process that depends on its cytosolic domain and
the Commander retrieval and recycling pathway (Ambrosio et al.,
2022). Interestingly, in endothelial cells, a pathway from the plasma
membrane to WPB has also been described (Harrison-Lavoie et al.,
2006). However, the complete removal of P-Selectin cytosolic domain
does not impede its localization to α-granules, demonstrated by
experiments using platelets of transgenic mice expressing a truncated
version of P-Selecting missing its cytosolic domain. When activated,
these platelets expose the same amount of plasma membrane P-
Selectin and show a similar level of platelet-leukocyte interaction
as wild-type platelets (Hartwell et al., 1998). Similarly, a P-Selectin
moleculemissing its cytosolic domain is able to reachWPB in human
umbilical vein endothelial cells (HUVEC) (Harrison-Lavoie et al.,
2006). These pieces of evidence indicate the P-Selectin extracellular
domain (equivalent to the α-granule lumen) contains determinants
for α-granule/WPB localization.

The α-granule biogenesis machinery

Similar to other LROs like melanosomes or δ-granules, most of
the known proteins involved in making α-granules are ubiquitously
expressed and involved in essential membrane trafficking pathways
(Sharda and Flaumenhaft, 2018; Bultema et al., 2012; Ambrosio
and Di Pietro, 2017; Ambrosio et al., 2012). The discovery that
mutations in VPS33B or VPS16B (VIPAS39, VIPAR, SPE-39) are
responsible for arthrogryposis, renal dysfunction, and cholestasis
(ARC) syndrome provided the first evidence that the biogenesis of α-
granules depends on membrane trafficking machinery (Urban et al.,
2012; Lo et al., 2005; Gissen et al., 2004). Patients with this autosomal

Frontiers in Cell and Developmental Biology 03 frontiersin.org

https://doi.org/10.3389/fcell.2025.1584059
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Ambrosio and Di Pietro 10.3389/fcell.2025.1584059

recessive multisystem disorder present with abnormal bleeding due
to α-granule deficiency among other severe clinical symptoms (Yao
and Kahr, 2025).

VPS33B belongs to Sec1/Munc18 (SM) protein family that
regulate soluble N-ethylmaleimide–sensitive factor attachment
protein receptor (SNARE) function (Lo et al., 2005). Members of the
SM family contribute to the efficiency and accuracy of membrane
fusion events mediated by SNARE proteins by acting as templates of
these reactions (Baker and Hughson, 2016). VPS33B and VPS16B
form a stable complex that does not contain other proteins, in
contrast to paralogs VPS33A and VPS16A, which associate with
each other and additional proteins into tethering complexes known
as HOPS and CORVET (Ambrosio and Di Pietro, 2019; Liu et al.,
2023;Hunter et al., 2018; Shvarev et al., 2022).However, VPS33B and
VPS16B have been proposed to associate with a 2:3 stoichiometry
that would allow simultaneous interaction with two SNARE bundles
or SNAREpins (Liu et al., 2023).

VPS33B deficiency in imMKCL cells results in degradation
of α-granule proteins in lysosomes, demonstrating the VPS16B-
VPS33B complex role is to ensure the accuracy of α-granule protein
transport (Ambrosio andDi Pietro, 2019).VPS33B localizes to sorting
endosomes where it binds the SNARE protein Syntaxin 12 (Stx12)
and the coiled-coil protein CCDC22, one of the components of
the Commander complex (Ambrosio and Di Pietro, 2019). The
16 subunit Commander complex is composed of the Retriever
sub-complex (VPS26C, VPS35L and VPS29), the dodecameric
COMMD/CCDC22/CCDC93 (CCC) sub-complex, and DENND10
(Butkovic et al., 2024). In non-specialized cell types, Commander
engages SNX17 and its bound transmembrane protein cargoes,
rescuing them from a late endosome/lysosome degradative pathway
and instead recycling these proteins to the plasma membrane
(Butkovic et al., 2024; McNally et al., 2017). This is also true in MKs
but there may be an additional MK-specific Commander function
mediating transport to MVBII/α-granules as seen for another LRO:
the melanosome (Bajpai et al., 2023). The FERM domain of SNX17
recognizes transmembrane proteins that contain a ØxNxx[Y/F]
sorting signal in their cytosolic domain (where Ø is a hydrophobic
residue and x is any residue) such as integrins β1 and β3, P-
Selectin and LRP-1 (Ghai et al., 2013). Accordingly, a dominant
negative version of SNX17 causes P-Selectin retention in endosomes
(Ambrosio et al., 2022). VPS33B interactors Stx12 and COMMD3,
a member of the CCC complex, are needed for normal α-granule
biogenesis. Also important, Stx12 and the CCDC22 subunit of CCC
compete for binding to VPS33B, suggesting a hand-off mechanism
in which the fusion of vesicles containing α-granule cargo with
endosomalcompartments iscoupledwith theretrievalmachinery thus
ensuringcargoproteinsescapelysosomaldegradation(Ambrosioetal.,
2022). The WASH complex is required for endosomal deposition
of F-actin and cargo trafficking and is a crucial component of the
Commander pathway (Simonetti and Cullen, 2019). In agreement,
it was recently reported that MK- and platelet-specific WASH
deficient mice have a selective reduction of αIIbβ3 expression with
a concomitant αIIbβ3 mislocalization to internal membranes and a
delay in Fibrinogen uptake (Schurr et al., 2023).

NBEAL2 is the only other known protein that when mutated
causes α-granule biogenesis defects both in mice and humans.
Mutations in NBEAL2 were identified in Gray Platelet Syndrome
(GPS) patients, whose platelets appear gray on electron microscopy

images due to the absence of α-granules (Albers et al., 2011; Gunay-
Aygun et al., 2011; Kahr et al., 2011). In contrast with VPS33B
and VPS16B, NBEAL2 is mainly expressed in hematopoietic
cells and therefore GPS symptoms affect the hematopoietic
system and include thrombocytopenia, excessive bleeding and
myelofibrosis (Yao and Kahr, 2025).

NBEAL2 is a multidomain, large, cytosolic protein and belongs
to a group of 9 Beige and Chediak-Higashi syndrome (BEACH)
domain containing proteins (Pereira and Gershlick, 2024). Members
of this group have been associated with processes that involve
membrane trafficking such as regulation of vesicles fusion and fission,
autophagy and antigen cross-presentation (Cullinane et al., 2013;
Simonsen et al., 2004; Theisen et al., 2018). Alphafold modelling of
these proteins predicts they share an alpha-solenoid/beta-propeller
molecular structure which indicates they may have a protocoatomer
origin and function as membrane coat proteins (Pankiv et al.,
2024). Generally, coat proteins are master membrane trafficking
regulators involved in cargo selection and concentration, membrane
deformation, differentiation of subdomains within organelles and
association of carriers with both the cytoskeleton and the acceptor
organelle (Bonifacino and Lippincott-Schwartz, 2003). Consistently,
pulldown experiments show NBEAL2 binds P-Selectin using both
human platelets extracts and over-expressed recombinant proteins in
non-specialized cells (Lo et al., 2020; Lo et al., 2018). Also, NBEAL2
has been reported to associate with the ER protein SEC22B and
deletion of this ER protein from imMKCL cells results in failure of α-
granule formation (Lo et al., 2020). Additionally, a proximity ligation
screening identifiedDock7, Sec16a, andVac14 asNBEAL2 interactors
(Mayer et al., 2018). Immunofluorescence microscopy of primary
MKs showNBEAL2 colocalizeswith P-Selectin and SEC22B, pointing
towards a role of ER contact sites in α-granule biogenesis (Lo et al.,
2020). HeLa cells stably expressing recombinant NBEAL2 show it
associates predominantly with Rab11 and Rab38 compartments,
suggesting endosomal localization (Pankiv et al., 2024).

NBEAL2 deficient mice MKs do not retain soluble α-granule
cargo, either endocytosed (Fibrinogen) or MK-made (PF4)
(Lykins et al., 2025; Lo et al., 2018). The release by MK of α-
granule proteins, such as growth factors and cytokines, into
the bone marrow explains the myelofibrosis presented in GPS
patients (Yao and Kahr, 2025). P-Selectin on the other hand, is
not completely depleted from NBEAL2 deficient mouse platelets,
indicating NBEAL2 functions downstream VPS16B/VPS33B in the
α-granule biogenesis pathway (Kahr et al., 2013).

Current model for the transport of
α-granule proteins in megakaryocytes

Proteins stored in α-granules are made by the MK or by other
cells, are soluble or transmembrane, range in size from very large
to very small, and perform many different functions in several
different pathways (Blair and Flaumenhaft, 2009). However, they
all converge in α-granules, which suggests they contain common
trafficking labels that target them to this organelle. Most of the
known trafficking machinery involved in the α-granule biogenesis
pathways are proteins ubiquitously expressed (Ambrosio et al.,
2022; Ambrosio and Di Pietro, 2019). Not only that, in MKs these
proteins both perform essential cargo sorting functions and make
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FIGURE 1
Model for transport of α-granule proteins in megakaryocytes. All MK-synthesized α-granule proteins traverse the ER and the Golgi. (1) Presumably,
luminal α-granule proteins homoaggregate and/or concentrate in subdomains of the Golgi apparatus where they are packaged in carriers destined to
sorting endosomes. Transmembrane α-granule proteins may also be included in these vesicles. Alternatively, (2) transmembrane proteins enter a
default secretory pathway to the plasma membrane and, like luminal α-granule cargo, (3) reach the sorting endosome by endocytosis. (4) We speculate
α-granule transmembrane proteins containing similar sorting signals are incorporated in plasma membrane patches and endocytosed in the same
transport carriers. (5) Normal fusion of vesicles containing α-granule proteins with endosomes requires the SNARE protein Stx12 and the
VPS33B-VPS16B complex. The sorting endosome is the main hub for the transport of α-granule proteins. (6) The endosomal retrieval and recycling
Commander complex is responsible for both corralling α-granule cargo away from a degradative fate in lysosomes and the recycling of
transmembrane proteins containing a sorting signal in their cytosolic domain that is recognized by SNX17. Sorting endosomes are also the precursor
organelle of lysosomes and δ-granules (not depicted), therefore α-granule cargo must be segregated in a process potentially mediated by NBEAL2. (7,
8) We hypothesize NBEAL2 facilitates cargo transfer by binding the cytosolic domain of transmembrane proteins to generate cargo protein carriers
destined for α-granules. These tubules and vesicles are Rab4/Rab11-labeled compartments, recycling endosomes that have been repurposed in these
cells presumably to enrich and refine the proteins that reach the α-granule. (9) α-granule proteins reach MVBs providing the content for MVBI,
containing vesicles but lacking electron dense luminal material, to mature into MVBII, containing both vesicles and electron dense luminal material.
The MVBI-MVBII transition is not depicted for simplicity. (10) The maturation of MVBII is the final step in the biogenesis of α-granules. α-G: α-granule;
MVB: multi-vesicular body.

α-granules, pointing towards the existence of a MK-specific factor
that coordinates these two processes. NBEAL2 is well positioned
to perform this task. It is highly expressed in hematopoietic cells
and RNAseq of differentiated imMKCL cells shows its upregulation
compared to undifferentiated cells (Ambrosio et al., 2022; Yao
and Kahr, 2025). Consistently, GPS patients present with mostly
hematopoietic phenotypes (Yao andKahr, 2025). It has been recently
proposed that NBEAL2 functions as an endosomal membrane coat
protein (Pereira and Gershlick, 2024; Pankiv et al., 2024). Several
reports support this idea. First, in agreementwith the cargo selection
and concentration function of coat proteins, NBEAL2 binds P-
Selectin (Lo et al., 2020; Lo et al., 2018). Second, NBEAL2 deficient
MKs secrete luminal α-granule cargo (Lykins et al., 2025; Lo et al.,
2018). We speculate NBEAL2 may specify endosomal subdomains
where α-granule cargo is both retrieved to avoid secretion and
directed towards α-granules (Figure 1).

The high volume of MK-synthesized α-granule cargo in
itself is probably a driving force for the creation of α-granules.

The luminal aggregation of very large multimeric proteins like
vWF or Multimerin and the protein clusters generated by the
electrostatic “sponge” SG could aid in the formation of specialized
endosomal subdomain (Chanzu et al., 2021; Lykins et al., 2025;
Blagoveshchenskaya et al., 2002; Wagner et al., 1991; Hayward et al.,
1999; Hayward et al., 1995). But how do these luminal, high-
protein concentration domains communicate with the trafficking
machinery on the cytosolic side of the membrane? A common
denominator across all different α-granule proteins’ types is their
direct or indirect association with integrins (Miao et al., 2001;
Berditchevski, 2001; Jackson, 2003; Hassan et al., 2022; Andre et al.,
2002a; Takada et al., 2023). Several integrins are present on
the α-granule limiting membrane and their luminal/extracellular
domains interact with a host of other α-granule cargo, both soluble
and transmembrane (Cramer et al., 1990; Maynard et al., 2010).
Interestingly, integrins β1 and β3 share some of the same sorting
signals in their cytosolic domains as P-Selectin and LRP-1: a
receptor involved in the trafficking of FV and PF4 known to interact
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with integrins (Ghai et al., 2013; Hu et al., 2007; Rabiej et al.,
2016). In agreement, a recent report indicates the luminal domain
of P-Selectin binds integrins (Takada et al., 2023). An integrin-
piggyback mechanism could explain the fact that the cytosolic
domain of P-Selectin is not required to grant this protein α-granule
localization (Hartwell et al., 1998).

We propose a model in which α-granule proteins must traverse
the sorting endosome (Figure 1). MK-synthesized luminal proteins
likely concentrate and leave the Golgi in sorting endosome-targeted
carriers (Figure 1, step 1) while MK-made transmembrane proteins
have the option of reaching the sorting endosome directly or
by endocytosis from the plasma membrane (Figure 1, steps 1–4).
Similarly, luminal α-granule cargo taken up by megakaryocytes is
endocytosed in a receptor dependent or independent way. Several
proteins present on the limiting membrane of the α-granule contain
the same sorting signals in their cytosolic domains and their
extracellular domains interact with integrins, which allows us to
speculate they localize to the same plasma membrane patches and
are endocytosed in the same transport carriers (Figure 1, steps 3
and 4). To avoid lysosomal degradation, α-granule proteins require a
VPS16B/VPS33B-mediatedmembrane fusion step (Figure 1, step 5)
and the retrieval fromadegradative fate by theCommander complex
(Figure 1, step 6) (Ambrosio et al., 2022; Ambrosio and Di Pietro,
2019). This complex is also responsible for the recycling to the
plasma membrane of transmembrane proteins containing a sorting
signal in their cytosolic domain that is recognized by SNX17, such
as the α-granule proteins integrins β1 and β3, P-Selectin, and the FV
and PF4 endocytic receptor LRP-1. We hypothesize NBEAL2 may
be instrumental in concentrating both luminal and transmembrane
α-granule cargo in Rab4/Rab11 endosomal subdomains redirecting
the recycling machinery towards the α-granule biogenesis pathway
(Figure 1, steps 7–9) instead of the conventional route to the cell
surface. In this way α-granule proteins reach MVBs (Figure 1,
step 9). We theorize MVBIIs do not necessarily originate from
conventionalMVBs.They contain dense proteinaceousmaterial and
intra-luminal vesicles (ILVs) decorated with CD63, P-Selectin and
αIIbβ3 that resemble more ILVs found in WPBs than conventional
MVBs destined for lysosomal degradation (Heijnen et al., 1998;
Streetley et al., 2019; Heijnen, 2019). Finally, these MVBIIs mature
into α-granules (Figure 1, step 10).

Learning about the biogenesis of α-granules not only has an
impact on the understanding of hematopoietic and cardiovascular
diseases but also on the ability to manipulate the content of platelet
α-granules with potential clinical applications. Great progress has
been made in the generation of MKs and platelets from induced
pluripotent stem cells (iPSCs) (Nakamura et al., 2014; Ito et al.,
2018; Borger et al., 2016; Feng et al., 2014; Liu et al., 2015).
Recently, a patient suffering from alloimmune platelet transfusion
refractoriness was successfully transfused with tailored platelets

generated using her own iPSCs (Sugimoto et al., 2022). Excitingly,
it has been shown that the content of in vitro grown MK α-granules
can be modified by adding proteins to the culture medium that
are then endocytosed by the MKs (Zhang and Newman, 2019;
Poncz et al., 2024). Moreover, platelets derived from these MKs
effectively release these ectopic proteins, opening the door to the use
of designer platelets as a newmethod for the delivery of therapeutics
in human disease (Poncz et al., 2024).
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