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Network analysis of master
regulators associated with
invasive phenotypes in multiple
myeloma
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2Department of Clinical Laboratory, China-Japan Union Hospital of Jilin University, Changchun, China

To elucidate the role of transcriptional regulators (TRs) associated with
invasiveness in multiple myeloma (MM), we conducted a systematic network
analysis to identify key master regulators (MRs) that govern MM invasiveness.
We employed a consensus clustering method based on a 24-gene signature to
classify MM patients into high invasiveness (INV-H) and low invasiveness (INV-
L) groups. Subsequently, we identified TRs specific to the INV-H and INV-L
phenotypes as MRs using a network-based approach, and we validated the MR
activities that correlated with the INV-H phenotype across multiple independent
datasets. We evaluated the effect of MRs on patient outcomes in relation to
the prognosis of MM. By utilizing siRNA to disrupt ERG expression in U266 and
RPMI8226 cell lines, we evaluated the effects of the master regulator ERG on
the proliferation, apoptosis, invasion, and migration of myeloma cell lines, and
we confirmed the expression of ERG in patients with extramedullary MM. We
assessed invasiveness using a 24-gene signature, categorizing patients into INV-
H and INV-L groups. Our network identified MRs linked to MM invasiveness and
revealed enriched signaling pathways. High ERG expression correlatedwith poor
prognosis. ERG silencing reduced cell invasiveness, migration, and apoptosis,
while promoting proliferation. Elevated ERG was found in extramedullary
MM, and potential drug candidates, including Idarubicin, were identified for
treatment. This study provides a comprehensive analysis of master regulators
in EMM, contributing to targeted therapeutic strategies. We identified ERG as a
marker for extramedullary invasion inMM, suggesting it as a potential therapeutic
target for future interventions.
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Introduction

Extramedullary multiple myeloma (EMM) is a hematologic malignancy characterized
by the abnormal proliferation of plasma cells in tissues or organs outside the bone
marrow (Bansal et al., 2021). Compared to bone marrow-based multiple myeloma
(MM), the treatment of EMM is more challenging, and the prognosis is generally poor
(Bladé et al., 2022). The mechanisms underlying the development of EMM are not yet
fully understood (Zanwar et al., 2023), but studies suggest that its progression is closely
related to gene mutations and chromosomal abnormalities, such as 17p deletion and t
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(4; 14) translocation. Further, disease progression in EMM patients
is often accompanied by complications such as hypercalcemia,
renal dysfunction, and anemia, which severely impact the
patients’ quality of life and survival (Bhutani et al., 2020).
The diagnosis of EMM relies on imaging techniques (e.g., CT,
MRI), hematological tests, and bone marrow biopsy. Imaging
helps identify the distribution of tumors in soft tissues or
extra-bone organs, while bone marrow biopsy allows for direct
observation of tumor cells in the bone marrow. Treatment typically
involves a combination of chemotherapy, targeted therapy, and
immunotherapy (Bladé et al., 2011).

The pathogenesis of EMM remains incompletely understood;
however, it is closely associated with high-risk genetic abnormalities
and alterations in the tumor microenvironment (Gong et al.,
2024). The prognosis for patients with EMM is poor, conventional
treatments exhibit limited efficacy (Strauss et al., 2023). The median
overall survival (OS) for patients with primary extramedullary
invasion is 43.6 months, whereas the median OS for those
with secondary extramedullary invasion is only 8.4 months
(Zhang et al., 2022). Further, patients presenting with more
than one extramedullary lesion demonstrate a significantly
worse prognosis, with 3-year survival rates of 28.1% and 59.2%,
respectively (Zanwar et al., 2023). The type and number of
extramedullary lesions have a substantial impact on prognosis, as
studies indicate that patients with multiple extramedullary lesions
experience a markedly poorer outcome.

In this study, we employed a consensus clustering method
based on a 24-gene signature to categorize MM patients into INV-
H and INV-L groups. Utilizing network methods, we identified
transcriptional regulators (TRs) specific to these two phenotypes and
validated their association with the INV-H phenotype acrossmultiple
independent datasets. Further prognostic analysis indicated that high
expression of ERG was closely correlated with poor prognosis in
MM. We assessed the function of ERG in U266 and RPMI8226
myeloma cell lines using siRNA interference and discovered that the
inhibition of ERG significantly reduced the invasion and migration
capabilities of the cells. Additionally, ERG was found to promote the
proliferation of MM cells while inhibiting apoptosis. Additionally, we
identified potential newdrug candidates, including Idarubicin, for the
treatment of EMM. Notably, we observed high expression of ERG in
extramedullary MM samples, suggesting that ERGmay play a critical
role in the invasiveness and prognosis of MM.

Materials and methods

Data collection and preprocessing

This study utilized two datasets from the GEO database:
GSE39754 and 2GSE7213. GSE39754 contains gene expression
profiles from 170 newly diagnosed MM patients. Although explicit
annotation for EMM or invasive subtypes is not provided, we
stratified patients into high- and low-invasiveness groups based on
the expression profiles of curated invasion-associated genes, to serve

Abbreviations: EMM, Invasiveness, Master regulators; ERG, Idarubicin.

as a surrogatemarker for invasive potential. To ensure comparability
of gene expression levels across different samples, we performed log2
normalization for subsequent analysis. The normalization process
ensured that gene expression levels between different samples could
be fairly compared. Additionally, we plotted box plots to verify that
the normalized data had good distribution characteristics. For the
GSE72213 dataset, which contains 29 samples including both MM
patients and healthy controls, it was primarily used for weighted
gene co-expression network analysis (WGCNA) to identify gene
modules significantly associated with MM phenotype status. To
ensure consistency and accuracy in data analysis, we used the
normalized data for all subsequent analyses.

Cancer invasiveness clustering

To investigate the heterogeneity of invasiveness phenotypes
among MM patients, we utilized a previously published 24-
gene invasiveness-related signature derived from a comprehensive
pan-cancer multi-omics analysis (Bi et al., 2021). This signature
includes COL11A1, POSTN, EPYC, ASPN, COL10A1, THBS2, FAP,
LOX, SFRP4, INHBA, MFAP5, GREM1, COMP, VCAN, COL5A2,
COL5A1, TIMP3, GAS1, TNFAIP6, ADAM12, FBN1, SULF1,
COL1A1, and DCN, which represent core molecular determinants
of cancer invasiveness. An expression matrix of these genes was
constructed from the GSE39754 dataset, and consensus clustering
was applied to stratify MM patients into distinct invasiveness
subtypes based on their expression patterns. These genes were
subjected to RNA sequencing data screening, normalization,
and log2 transformation to ensure normal distribution and
comparability of the data. Next, we performed unsupervised
consensus clustering using the ConsensusClusterPlus R package,
calculating the distances between samples using Euclidean distance
and clustering the samples using the hierarchical clustering
algorithm (ward. D2). To ensure the stability and reliability of the
clustering results, we set the maximum number of clusters to 6 and
performed 5000 resampling. Finally, the samples were divided into
three subgroups: INV-H, INV-M, and INV-L, representing different
invasiveness phenotypes. While three subtypes were identified, we
focused on the comparison between INV-H and INV-L to highlight
the most divergent transcriptional patterns related to invasion.

Inferring gene regulatory networks

Tounderstand the regulatorymechanismsbehindgeneexpression
patterns, identify potential master regulators (MRs), and explore
their roles in disease progression, constructing and analyzing gene
regulatory networks (GRNs) is a crucial step. We employed two
advancedmachine learning techniques RGBM andARACNE to infer
high-qualityGRNs.RGBMisafeatureselection-basedmethodthatcan
captureboth linearandnonlinear interactionsbetween transcriptional
regulators (TRs) and target genes, while ARACNE (Lachmann et al.,
2016) is based on mutual information theory, preventing indirect
transmission of interactions and providing statistical significance for
TR-target gene interactions. These two methods were implemented
using the RGBM (Mall et al., 2018) (v1.0.10) and corto (v1.1.11)
packages in R, and transcriptional regulators with a target gene size
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smaller than10wereremoved fromthe inferredGRNs.Qualitycontrol
steps ensured that the inferredGRNswerehighly accurate and reliable.
These GRNs, constructed based on the GSE39754 dataset, provided a
robust framework for downstreammaster regulator analysis.

Scoring TR activities

For each sample, the activity of the transcriptional regulator
(TR) is estimated based on the collective mRNA levels of its
target genes (Paull et al., 2021). To estimate the activity of TRs in each
sample, we combined two methods: RGBM and VIPER.The RGBM
method calculates the Pearson correlation coefficient between TRs
and their target genes, classifying the target genes into activation
targets and repression targets, and computes the TR activity score
using the following formula:

Act(TR, i)C = 1
u

u

∑
k=1

tpki −
1
v

v

∑
j=1

tnji

The VIPER method uses a probabilistic framework to directly
integrate the regulatory patterns of target genes and the confidence
of interactions, calculating the enrichment score (NES) of TR
regulons. The higher the NES score, the more enriched the TR
regulon is in the sample, indicating higher TR activity [[6,7]]. The
effective combination of both methods provides strong support for
identifying differentially activated TRs (MRs). To further validate
the TR activity scores, we applied the same scoring method in the
independent dataset GSE72213 and experimentally validated the
activity patterns of key TRs.

Gene set enrichment analysis and MR
selection

To identify key master regulators (MRs) specific to INV-H
and INV-L, we used three different gene set enrichment/activity
estimation techniques: FGSEA, GSVA, and VIPER, in combination
with two GRN inference techniques: RGBM and ARACNE.
To ensure robustness, four MRA strategies were applied: (1)
RGBM + FGSEA, (2) RGBM + GSVA, (3) ARACNE + VIPER,
and (4) ARACNE + GSVA. Only master regulators (MRs)
identified by all four methods were retained as consensus MRs for
downstream analysis of INV-H and INV-L phenotypes (Califano
and Alvarez, 2017; Lim et al., 2009). To further explore the functions
and biological significance of theseMRs, we performed downstream
pathway enrichment analysis on 126 INV-H-specific MRs using the
ConsensusPathDB framework. Similarly, we conducted enrichment
analysis on the 10 INV-L-specific MRs.

Immune cell infiltration assessment

To investigate the potential role of the ERG gene in the tumor
microenvironment, we employed the CIBERSORT algorithm to
infer the immune cell composition in samples from the GSE72213
dataset. CIBERSORT is a deconvolution method based on RNA-
seq data that accurately estimates the relative abundance of 22

immune cell types within a sample. All data were normalized
to ensure comparability across different samples. Furthermore, to
assess the correlation between ERG gene expression levels and
the extent of immune cell infiltration, we calculated the Spearman
rank correlation coefficient (Spearman R) between ERG expression
values and the infiltration proportions of various immune cell types.
Spearman rank correlation analysis was conducted to determine the
relationships between ERG gene expression and various immune
cells, with significant correlations defined as those with P < 0.05.

Culture of U266 and RPMI8226 cell lines

Both U266 and RPMI8226 cell lines were cultured in RPMI-
1640 medium supplemented with 10% fetal bovine serum and
1% penicillin-streptomycin solution. Cells were cultured at 37°C
with 5% CO2 in a constant temperature incubator, with regular
observation of cell growth. When cell density reached 80%–90%,
cells were passaged using 0.25% trypsin, and the cell suspension was
transferred to a new culture flask for further culturing.

siRNA-ERG interference in U266 and
RPMI8226 cells

Based on the ERG gene sequence, specific siRNAs targeting the
gene were selected, designed, and synthesized. The sequences of
the siRNA were:

F: CGGAGUCAUCUCUGUACAATT.
R: UUGUACAGAGAUGACUCCGTT.
U266 or RPMI8226 cells were seeded in 6-well plates and

cultured to 80% confluence. Transfection was performed with
Lipofectamine 2000, using siRNAmixed with the reagent in serum-
free medium. After gentle mixing, the mixture was added to the
cells and cultured for 48 h. Target gene expression was assessed by
Western blot to confirm siRNA interference.

Transwell invasion and migration assay

The invasion and migration abilities of U266 and RPMI-8226
cells were evaluated using the Transwell assay. For invasion, 1 ×
105 RPMI-8226 cells were seeded in the upper chamber coated
with Matrigel and cultured in serum-free medium, while the lower
chamber contained medium with 10% FBS. After 24 h, cells were
counted under a microscope, and the number of invaded cells
was calculated. For migration, cells from the logarithmic growth
phase of both the control and siRNA-ERG knockdown groups were
resuspended in serum-free medium, with 1 × 105 cells added to the
upper chamber. The lower chamber contained medium with 10%
FBS, and after 24 h, cells in the lower chamber were counted.

CCK8 proliferation assay

U266-ctrl, U266-siRNA-ERG, RPMI8226-ctrl, and RPMI8226-
siRNA-ERG cells were seeded in 96-well plates at 5000 cells per well
and cultured at 37°C, 5% CO2 until logarithmic growth. 10 μL of
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CCK-8 reagentwas added to eachwell, and the plateswere incubated
for 4 h. The WST-8 reaction produced an orange-yellow formazan
product, with color intensity reflecting cell viability. Absorbance
(OD) was measured at 450 nm using a microplate reader. OD values
correlated with cell viability or proliferation, and comparisons were
made to assess changes in proliferation.

Annexin V/7AAD apoptosis assay

U266-ctrl, U266-siRNA-ERG, RPMI8226-ctrl, and RPMI8226-
siRNA-ERGcells were seeded in 6-well plates at 5 × 105 cells perwell.
1 × 106 cells were transferred to a new tube, and Annexin V-FITC
and 7AAD staining solutions were added (5 μL of each, along with
Binding Buffer). The cells were incubated in the dark for 10 min at
room temperature, then diluted with PBS. Fluorescence intensity
was analyzed by flow cytometry.

IHC detection of ERG expression in EMM
tumor tissues

EMMtumor tissue samplesfixed in4%formaldehyde for24 h, and
embedded in paraffin. Perform IHC staining procedure use anti-ERG
primary antibody,Then secondary antibody for 30 min.DAB staining
revealed ERG expression. Slides were analyzed microscopically based
on staining intensity and positive cell percentage.

ERG drug docking

In an effort to improve the prognosis and overall survival rate of
the disease, we attempted to investigate the interaction between 3015
drugs of Food and Drug Administration (FDA) database and ERG.
The molecular docking program AutoDock Tools (Morris et al.,
2009) and AutoDock vina (Trott and Olson, 2010) was used for
the automated molecular docking simulations. The 3D structure of
ERG (P11308) protein was obtained fromUniprot database (https://
www.uniprot.org/). We have used Discovery Studio Visualizer to
visualize and analyze the interactions. Prior to molecular docking
calculations, water molecules and the ligand in the protein structure
were removed, and hydrogens and Gasteiger charges were added.
Ten docking poses were obtained formolecular docking calculation.

Result

Identification of invasive features in
extramedullary MM

To explore gene expression differences among various
invasive phenotypes, we analyzed the expression profiles of a
previously reported 24-gene invasiveness signature within the
GSE39754 dataset. Figure 1 provides an overview of the entire
processing pipeline. We constructed an expression heatmap
(Figure 2A) to illustrate the expression variations of these genes
across different invasive samples. To validate the robustness and
reliability of the clustering results and to accurately differentiate

among the invasive phenotypes, we employed an unsupervised
consensus clustering method, which ultimately categorized
the samples into three groups: “high invasiveness” (INV-H),
“moderate invasiveness” (INV-M), and “low invasiveness” (INV-L)
(Figure 2A; Supplementary Figure 1). We also presented the RNA-
Seq expression matrix (Figure 2B) and the transcription factor
activity matrix (Figure 2C). The master regulatory factors (MRs)
extracted from the activitymatrix exhibited a distinct block diagonal
structure (Figure 2D), indicating that certain MRs are more active
in INV-H samples, whereas their activity is diminished in INV-L
samples. This finding suggests significant differences in the activity
patterns of MRs across the various invasive phenotypes.

We performed multilayer enrichment analysis using FGSEA to
examine gene set enrichment across invasive phenotypes. The top 20
gene sets with the highest and lowest enrichment scores were selected
(Figure 2E). Additionally, we analyzed the distribution of 24 invasion-
related genes across high, low, andmoderate INV groups, providing a
detailed gene expression profile for each phenotype (Figure 2F).

Activity analysis of MRs

Toquantifyandvisualize theactivitydifferencesamongtheseMRs,
we employed a volcano plot to illustrate the normalized enrichment
scores (NES) of the common MRs. The x-axis represents the NES of
transcriptional regulators, while the y-axis indicates the enrichment
significance in the context ofMMcancer (Figure 3A). Transcriptional
regulators positioned above the “red” line are classified as MRs,
signifying enhanced activity in specific samples. Furthermore, to gain
deeper insights into the distribution of these MRs across various
invasive phenotypes, we presented the classification results of these
MRs in tumor samples exhibiting different levels of invasiveness
(Supplementary Figure 2).We also illustrated the activity distribution
of the top MRs in samples categorized as INV-H and INV-L
(Figure 3D). Further, we validated the activity of master regulators
specific to INV-H and INV-L in MM (Supplementary Figure 3). The
findings reveal that these MRs display significantly distinct activity
patterns across various invasive phenotypes, suggesting their potential
roles at different stages of tumor progression.

To illustrate MR expression across invasive phenotypes, we
plotted MR expression in INV-H and INV-L samples (Figure 3B)
and created a volcano plot to identify significantly differentially
expressed MRs (Figure 3C). This analysis revealed distinct MR
activity and expression patterns across phenotypes, suggesting
potential biomarkers or therapeutic targets. We identified 136
significantMRs,with 126 showing higher activity in INV-H samples.
GO and pathway enrichment analysis revealed that INV-H MRs
were enriched in inflammation and immune response pathways
(Figures 4A,B), while INV-L pathways involved melanogenesis and
insulin resistance (Figure 4C). These results highlight potential
therapeutic targets for highly invasive cancers.

Validation of MRs activity patterns

To comprehensively validate the activity patterns of MRs, we
utilized an independent dataset, GSE72213. Initially, we constructed
a protein interaction network for the 136 significant MRs obtained
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FIGURE 1
Flowchart of this study. In clustering and GRN inference, the samples were labeled as INV-H, INV-M, and INV-L based on the features of 24
invasion-related genes.

from GSE39754. Using the MCODE clustering algorithm, we
extracted the most densely connected subnetwork, consisting of 42
genes (Figure 5E). We subsequently applied WGCNA to identify
gene modules significantly associated with the MM phenotype.
After excluding outlier samples, we selected the module with the
highest module-phenotype correlation (ME2, r = 0.815), which
revealed 15 genes significantly related to the MM phenotype.
Among these, we focused on genes with a p-value less than 5e-
5, determined by a two-sample t-test, to ensure high significance
(P < 5e-5 is commonly employed in large-scale genomic studies
to control false positive rates and enhance the robustness of
results). Ultimately, we identified four key genes: ERG, E2F2,
DAB2, and PPARG (Figures 5A–D). A random forest analysis was
conducted to assess the predictive importance of these genes,
and following 10-fold cross-validation, ERG emerged as the most
significant gene (Supplementary Figure 4), highlighting its potential
as a core gene with clinical relevance. To further validate feature
importance, we applied SHAP analysis, which confirmed ERG as the
top contributorwith the highest average SHAPvalue (0.024), thereby
reinforcing its robustness as a predictive biomarker.

The impact of ERG on EMM prognosis

To further validate the prognostic value of ERG, we utilized the
Kaplan-Meier Plotter database to examine the relationship between
ERG expression and the survival of MM patients. Our results

indicated that patients exhibiting high ERG expression experienced
significantly shorter survival times (Figures 6A–H).This finding not
only corroborates the prognostic significance of ERG in MM but
also suggests that ERG may serve as a potential therapeutic target,
aligning with the outcomes of our prior analyses. Furthermore, we
investigated the prognostic implications of 23 additional MRs and
discovered that elevated expression levels of genes such as ANXA3,
ARRB1, PADI4, CD36, ORW1, ITGB1, and NOTCH3 were also
linked to poor prognosis (Figures 6A–H).

Correlation analysis of ERG gene and
immune cell infiltration

To explore the potential immune regulatory role of the ERG
gene in the tumor microenvironment, we analyzed the correlation
between ERG expression levels and the infiltration levels of 22
immune cell types (Figure 7A).The results demonstrated significant
correlations between ERG expression and the infiltration levels of
various immune cells (P < 0.05), including memory B cells, naïve
B cells, CD8+ T cells, naïve CD4+ T cells, resting memory CD4+ T
cells, and follicular helper T cells, among others. Specifically, ERG
expression levels were negatively correlated with CD8+ T cells (R =
−0.812, P = 9.17 × 10−8), M1 macrophages (R = −0.822, P = 4.69
× 10−8), follicular helper T cells (R = −0.708, P = 1.73 × 10−5),
naïve CD4+ T cells (R = −0.709, P = 1.69 × 10−5), and Treg cells
(R = −0.585, P = 8.59 × 10−4), suggesting that high ERG expression
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FIGURE 2
Screening and Clustering of Invasion Gene Set. (A) Unsupervised consensus clustering results and heatmap of 24 invasion-related genes. (B) Heatmap
of gene expression matrix from the GEO dataset. (C) Transcription factor regulatory activity matrix. The transcription factors here include all those with
a regulon size greater than or equal to 10. (D) Activity matrix of key regulatory factors (MRs), with the top 5% highly variable genes filtered based on
expression variability (IQR). (E) Enrichment results of top MRs. Multi-level enrichment analysis was conducted using the fgseaMultilevel function,
selecting the top 20 gene sets with the highest and lowest enrichment scores. (F) Expression values of 24 invasion-related genes in high, medium, and
low groups of samples.
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FIGURE 3
Clustering of INV Gene Set. (A) Volcano plot of the most significantly different transcription factors (TFs). Shows statistical significance and effect size
for each gene in the gene expression data. The x-axis represents the log-transformed P-values, and the y-axis represents the NES score. (B) Heatmap
to show the median activity of multiple MRs in MM. (C) Scatter plot showing the average activity of different MRs in two phenotypes (INV High and INV
Low) and distinguishing significance by color and size. (D) Activity values of multiple MRs in MM, grouped by phenotype (INV High and INV Low).
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FIGURE 4
Enrichment Analysis of INV Gene Set. (A) Downstream GO term enrichment and pathway enrichment for INV-high-specific MRs. (B) Downstream GO
term enrichment and pathway enrichment for INV-low-specific MRs. (C) Pathways enriched in the INV High phenotype and their associated statistical
information. (D) Sankey diagram showing the relationships between INV-high-specific MRs and pathways. The larger the node area, the more enriched
the connected MRs or pathways.
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FIGURE 5
Validation of INV Gene Set. (A) Hierarchical clustering of GSE72213 dataset samples for outlier detection. Euclidean distance and average linkage were
used to construct the sample dendrogram. A height threshold of 20 (red line) was applied, and seven outlier samples falling outside the main cluster
were removed before WGCNA. (B) Final module color map after soft-threshold selection and module identification. (C, D) Soft-threshold selection for
module identification. (E) Protein-protein interaction network of 136 significant MRs. Orange nodes are the highest-scoring MRs based on MOCDE
clustering, and blue nodes are MRs outside the clustering.

may inhibit the infiltration of these immune cells. Additionally, ERG
expression was also negatively correlated with M0 macrophages (R
= −0.545, P = 0.002), NK cells (R = −0.499, P = 0.006), memory
B cells (R = −0.479, P = 0.009), and naïve B cells (R = −0.501, P
= 0.006), indicating that ERG may play a crucial role in regulating
the polarization and differentiation of immune cells. Conversely,
ERG expression levels were significantly positively correlated with
certain immune cells, including γδT cells (R = 0.733, P = 6.16 ×
10−6), neutrophils (R = 0.732, P = 6.51 × 10−6), resting NK cells
(R = 0.636, P = 2.10 × 10−4), and activated mast cells (R = 0.268,
P = 0.160). These results suggest that ERG may play a role in
promoting the recruitment and activation of specific innate immune
cells (Figure 7B; Supplementary Figure 5).

The impact of ERG on MM cell function

Literature research has demonstrated that the expression and
function of the ERG gene hold significant clinical implications in
MM. The ERG gene is a member of the ETS transcription factor
family and plays a crucial role in hematopoiesis and angiogenesis.
Previous studies have indicated that ERG promotes tumor initiation
and progression in prostate cancer, lung cancer, and acute myeloid
leukemia (AML); however, its specific effects in MM remain
inadequately understood. To investigate this, we employed siRNA
to interfere with ERG expression in the U266 and RPMI8226 cell
lines, validating the interference efficiency throughWestern blotting
(Figure 8A). The experimental results indicated that reducing
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FIGURE 6
Impact of ERG on MM prognosis. (A-H) High expression of eight regulatory factors indicates poor prognosis in MM.

ERG protein expression diminished the invasion and migration
capabilities of the myeloma cell lines (Figure 8B). Furthermore,
using Annexin V/PI staining to evaluate the impact of ERG on
MM,we observed that low ERG expression enhanced both early and
late apoptosis in U266 and RPMI8226 cells (Figures 8C,D). CCK8
assays further revealed that decreased ERG expression inhibited
the proliferation of these cell lines (Figure 8E). Additionally, we
identified a population of ERG-high-expressing cells in EMM
tissue samples (Figure 8F), underscoring the significant role of ERG
in extramedullary invasion and the development of MM.

Drug screening based on ERG as a target

From a functional perspective, the ERG protein may serve as
an excellent target for screening novel drug candidates for MM.
To investigate this, the receptor-ligand interactions between the
ERG protein and each of the 3,015 compounds were analyzed
using molecular docking. This approach led to the identification
of the top five drugs that interact with the amino acid residues of
the ERG protein and exhibit the lowest docked binding affinities
(Supplementary Table 1). Interestingly, the interactions between
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FIGURE 7
Correlation between ERG gene and Immune cell infiltration. (A) correlation between ERG expression and infiltration of 22 immune cell types in the
tumor microenvironment. (B) Curve of the correlation between ERG and immune cells.
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FIGURE 8
ERG effect on MM function. (A)WB detection of interference efficiency after ERG was knocked down with siRNA in U266 and RPMI8226 cells. (B) Effect
of ERG expression on invasion and migration of U266 and RPMI8226 cells. (C) Annexin V/7AAD detection of cell apoptosis. (D) Statistical chart of early
and late apoptosis. (E) CCK8 assay for cell proliferation. (F, G) Expression of ERG in EMM patient tissues.
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FIGURE 9
The 3D and 2D interaction diagram of ERG protein with three compounds. (A–C) Visualization of molecular docking of ERG protein with Idarubicin (A),
Mitonafide (B), and Homidium bromide (C) binding pockets, respectively.

the top three compounds(Idarubicin, Mitonafide, and Homidium
bromide) and the ERG protein demonstrated relatively higher
binding affinities. Specific residues were found to form hydrogen
bonds with these three compounds: Trp142 and His202 with

Idarubicin (Figure 9A), Val125, Leu203, and Ser205withMitonafide
(Figure 9B), and Val127 and Ala129 with Homidium bromide
(Figure 9C). From a physicochemical properties’ standpoint,
idarubicin exhibited a superior performance profile compared
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to Mitonafide and Homidium bromide (Supplementary Table 2).
Therefore, Idarubicin (C26H27NO9) appears to be the most relevant
structure among the small molecule drugs screened and represents
a promising candidate for the treatment of MM.

Discussion

EMM is an aggressive disease with a poor prognosis,
facing challenges such as drug resistance and the absence of a
standardized treatment regimen. Current treatment strategies
typically include intensified induction combination therapy,
autologous hematopoietic stem cell transplantation (ASCT), and
dual-drug maintenance therapy (Tian et al., 2018). Novel drugs,
including immunomodulatory agents, proteasome inhibitors,
and immunotherapy, have demonstrated promising effects in
enhancing prognosis, while molecular-targeted therapies and liquid
biopsy techniques present new avenues for early diagnosis and
treatment monitoring (Deng et al., 2021; Shi et al., 2024). Patients’
survival is influenced by various factors, including disease type,
treatment response, age, and molecular genetic alterations. Genetic
abnormalities, such as KRAS and NRAS mutations, long with
chromosomal abnormalities, are closely associated with more
aggressive disease and poor treatment responses (Shirazi et al.,
2020).Therefore, understanding themechanisms of invasion and the
genetic characteristics of EMD is crucial for developing personalized
treatment strategies.

Transcription factors play a crucial role in tumor invasion by
regulating the expression of genes associated with cell proliferation,
migration, invasion, angiogenesis, and immune evasion, thereby
promoting malignant transformation and tumor progression
(Li et al., 2019). These transcription factors modulate the activity
of downstream signaling pathways includingWnt/β-catenin, Notch,
HIF-1, and NF-κB, which facilitate the invasiveness and metastasis
of tumor cells (Matthe et al., 2016). For example, transcription
factors such as Twist, Slug, and Snail regulate epithelial-
mesenchymal transition (EMT), enabling tumor cells to acquire
enhance migration and invasion capabilities, thus promoting tumor
metastasis. HIF-1 (hypoxia-inducible factor-1) plays a critical
role in the tumor microenvironment under hypoxic conditions
(Martin et al., 2011), assisting tumors in surviving and expanding
by regulating angiogenesis factors like VEGF. Additionally, NF-κB
enhances tumor invasiveness by promoting inflammatory responses
and immune evasion. Aberrant expression of transcription factors
is prevalent in various tumors; they not only act as key drivers of
tumor initiation and progression but may also serve as potential
therapeutic targets, contributing to the development of novel cancer
treatment strategies (Jovanović et al., 2018).

Studies on the ERG gene in MM indicate that its expression
is closely associated with the progression and prognosis of the
disease. While Knief et al. reported ERG expression in MM as a
diagnostic pitfall when distinguishing it from other ERG-positive
tumors, such as prostate cancer, their study did not evaluate its
prognostic significance (Knief et al., 2017). However, other findings
support a functional role for ERG in MM pathogenesis. For
example, miR-1179 has been shown to inhibit ERG expression and
suppress the growth and proliferation of MM cells, implying that
ERG overexpression may contribute to MM cell proliferation and

invasion. Further, the expression of the ERG gene could serve as a
potential diagnostic marker, as it is also highly expressed in other
hematologic malignancies such as AML (Mullen et al., 2022). The
aberrant expression of ERG is not limited toMM; it is also implicated
in other hematologic malignancies, including acute lymphoblastic
leukemia (ALL) and lymphoma (Yamashita et al., 2024).

In clinical practice, ERG gene testing is used to assess the
prognosis of MM patients. In clinical practice, ERG gene testing is
utilized to evaluate the prognosis of patients with MM. Research
indicates that elevated expression of the ERG gene correlates with
poor survival rates, suggesting that ERG may serve as a valuable
prognostic biomarker (Culig, 2014). Targeted therapies aimed at
the ERG gene are currently under development, with the goal of
enhancing treatment outcomes for MM by inhibiting ERG gene
activity. While the role of ERG in the pathogenesis of MM has been
clarified, its expression patterns in other hematologic malignancies
are intricate, necessitating careful differentiation of expression
profiles in various disease contexts for practical application. Overall,
investigations into the ERG gene in MM provide promising avenues
for future diagnostic and therapeutic strategies (Donovan et al.,
2019); however, additional studies are required to elucidate its role
and clinical relevance.

The ERG protein presents a promising target for drug discovery
in the treatment of MM. A recent study utilized molecular docking
to examine the receptor-ligand interactions between the ERG
protein and 3,015 different compounds, leading to the identification
of several potential drug candidates (Pinzi and Rastelli, 2019;
Crampon et al., 2022). Among the compounds tested, the top
three—Idarubicin, Mitonafide, and Homidium bromide—showed
strong interactions with key amino acid residues of the ERG protein.
Idarubicin, in particular, demonstrated the highest binding affinity,
with hydrogen bonds formed between the ERG residues Trp142
and His202 and the drug (Shahswar et al., 2024; Ohtake et al.,
2011). Similarly, Mitonafide and Homidium bromide formed
interactions with residues such as Val125, Leu203, and Ser205,
and Val127 and Ala129, respectively. From a physicochemical
perspective, Idarubicin outperformed the other compounds,
showing a more favorable profile in terms of binding efficiency
and interaction strength (Carella et al., 1990). Given its promising
interaction with the ERG protein and its superior physicochemical
properties (Cacciatore et al., 2024), Idarubicin stands out as
a particularly promising candidate for further development as
a treatment for MM. This research highlights the potential of
targeted molecular docking as a powerful tool in identifying novel
therapeutic agents for complex diseases like MM.

Limitations

Several limitations warrant consideration. Our analyses utilized
publicly available datasets with limited clinical annotation, resulting
in an indirect assessment of invasiveness through gene expression
clustering. Although integrative network algorithms were employed
to identify master regulators, potential biases and parameter
sensitivities may influence findings. The WGCNA was conducted
on a modest sample size, which may affect module stability.
Experimental validation of ERG was confined to in vitro models,
and molecular docking predictions require further empirical
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substantiation. Lastly, validation in larger, well-annotated clinical
cohorts is essential to confirm ERG’s prognostic and therapeutic
relevance in multiple myeloma.

Conclusion

In this study, we employed an integrative systems biology
framework, combining transcriptional network analysis, master
regulator inference, immune landscape profiling, and drug
repurposing, to dissect the molecular determinants of invasive
phenotypes in multiple myeloma. ERG emerged as a central
regulator, associated with enhanced invasiveness, immune
microenvironment remodeling, and potential therapeutic
responsiveness. These findings, supported by both in silico and
in vitro evidence, highlight ERG’s promise as a clinically relevant
biomarker and therapeutic target in aggressive MM. Future efforts
should aim to validate these biomarkers in larger patient cohorts
and explore additional candidates using interpretable machine
learning approaches. Such strategies may facilitate more precise
risk stratification and pave the way for targeted interventions in
high-risk myeloma.
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