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Olfaction is essential for the survival and reproduction of fish, as it facilitates
foraging, food localization, mate selection, and breeding. The in vitro cultured
olfactory epithelial cells will provide an important resource for research on how
fish use olfaction to detect odor molecules in their environment. In this study,
olfactory epithelial cells from Megalobrama amblycephala were cultured in vitro
to investigate their responses to various odors, amino acids, and prostaglandin
F,. (PGF,,). Initially, the olfactory epithelial cells were cultured in vitro using the
explant method and collagenase digestion technique. Based on observations
of in vitro growth characteristics, collagenase digestion demonstrated superior
growth stability and morphological features of ciliated neurons. The presence
of olfactory neurospheres was identified through scanning electron microscopy
(SEM). Immunofluorescence analysis revealed that most of the cells cultured
were labeled with NEUN antibody. Additionally, the expression of olfactory
receptors (ORs) was detected in the in vitro cultured olfactory epithelial
cells using fluorescence in situ hybridization (FISH) and reverse transcription
PCR (RT-PCR). Stimulation with amino acids mixture and PGF,, significantly
increased the number of olfactory epithelial cells labeled with pERK. RNA-seq
analysis revealed that 1,276 differentially expressed genes (DEGs) were identified
following PGF,, stimulation, with pathways related to olfaction and reproduction
being significantly enriched. Collectively, this study successfully established anin
vitro model of the olfactory epithelium cells in M. amblycephala and preliminarily
investigated its response to odorant molecules, providing a valuable platform for
research on fish olfactory function.

KEYWORDS

Megalobrama amblycephala, olfactory epithelium cells, in vitro culture, collagenase
dissociation, olfactory receptors (ORs), prostaglandin F2a (PGF2a)

1 Introduction

Olfaction plays a crucial role in the sensory system of vertebrates, encompassing a
wide range of intricate functions (Hughes et al., 2018). In fish behavior, it is essential
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for foraging, mating, predator evasion, and migratory activities. The
detection of odors relies on the expression of olfactory receptors
(ORs) in olfactory sensory neurons (OSNs) (Bazdes et al., 2013;
Hughes et al., 2018). OSNs utilize axons to perceive odor molecules
and transmit impulses to the brain, thereby integrating olfactory
functions (Firestein, 2001; Soelter et al., 2020).

OSNs express ORs that have evolved to detect odorants relevant
to behavior. Throughout vertebrate evolution, ORs have undergone
significant expansion (Policarpo et al., 2024). This increasing
diversity is exemplified by the growth from an estimated 159 ORs
in zebrafish to 2,000 ORs in African elephants (Niimura et al.,
2014). Importantly, each functional ORs selectively identifies a
unique odorant molecule (Braubach et al., 2012), while individual
OSNs persistently express a singular OR (Andrew et al., 1994).
Furthermore, OSNs possess a unique regenerative capability that
distinguishes them from other types of neural cells in mammals
(Suzuki and Takeda, 1993), playing a vital role in the sense
of smell. However, culturing OSNs in vitro presents significant
challenges. Some studies suggest that the viability and functional
integrity of mature OSNs may be adversely affected by enzyme
digestion during their cultivation (Schwarzenbacher et al., 2005;
Lacroix et al, 2008). Previous studies have established primary
culture systems using cells derived from embryonic, neonatal or
adult mice for cultivation of OSNs (Micholt et al., 2012). Cultured
olfactory stem cells have been successfully obtained from cloned
mice (Peterson et al., 2019) and human neurospheres (Murrell et al.,
2005). However, the differentiation of these cells into mature OSNs
has presented a significant challenge. The COVID-19 pandemic
has sparked significant interest in the investigation and cultivation
of OSNs (Hao et al, 2020; Wu et al., 2023). Researchers have
developed chemically and mechanically-based models to explore
the crucial functions of OSNs in mammals (Ren et al., 2021).
Considering that viruses can inflict damage on the olfactory system
(Hou et al., 2020; Ahn et al., 2021), extensive research efforts have
been dedicated to investigating their impact, leading to enhanced
comprehension. For example, found that the virus attaches to
motile cilia via the ACE2 receptor (Wu et al., 2023). Recent studies
have challenged the conventional belief that OSNs cannot survive
outside an organism, thereby overturning this long-standing notion
(Gao etal, 2021; Ren et al., 2021). Simultaneously, we acknowledge
the imperative of cultivating OSNs for studying olfactory function.

Fish, which constitute one of the largest categories in vertebrates,
account for approximately half of all known species. They primarily
rely on detecting water-soluble odorant molecules such as amino
acids, prostaglandin F,, (PGF,,), and bile acids to ensure their
survival in aquatic environments (Cong et al., 2019). Moreover,
there is an increasing recognition that the olfactory capabilities of
fish are intricately linked to their dietary habits and reproduction
(Liu et al., 2021). However, the ability to culture fish OSNs remains
relatively limited. As a representative herbivorous fish species, the
Megalobrama amblycephala possesses a considerable number of
ORs (Liu et al., 2021). In this study, we focused on M. amblycephala,
a fish species of economic importance. We employed a combination
of Collagenase I + IV and trypsin to isolate olfactory epithelium
from M. amblycephala. This method effectively reduces the damage
to neuronal cilia. Through the synergistic application of these three
enzymes, we achieved targeted and thorough digestion of distinct
olfactory epithelium regions, enhancing its applicability. This work
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represents a preliminary exploration of culturing olfactory epithelial
cells in aquatic organisms.

2 Materials and methods
2.1 Sample collection and maintenance

Cells isolated from five M. amblycephala, both females
and males, were used simultaneously. Twelve-month-old M.
amblycephala, with an average body weight of 300 + 50g,
were sourced from the Ezhou Aquaculture Base in Wuhan and
subsequently housed in the recirculating aquaculture system
at the Huazhong Agricultural University Aquaculture Base.
Individuals exhibiting excellent health underwent a preventive
treatment involving a 20 min immersion in water containing
potassium permanganate at a concentration of 0.5 ppm before
being introduced into the recirculatory system. Throughout the
maintained period, dissolved oxygen levels were maintained at 8
3 mg/L, and the water temperature was regulated to be within the
range of 24 °C + 4 °C.

2.2 Explant isolation of olfactory
epithelium

Prior to performing aseptic procedures, M. amblycephala
specimens were euthanized using anesthesia and exsanguinated.
The carcasses were then disinfected with alcohol to prevent
bacterial and fungal contamination. On a sterile workbench,
the olfactory epithelium tissues were meticulously excised using
sterilized tweezers and forceps before being transferred to a sterile
culture dish. Any remaining mucus tissue was removed through two
consecutive rinses with PBS.

The olfactory epithelium tissues were incubated in Antibiotic
incubation medium (Table 1) for 2h, followed by meticulous
dissection using sterilized knives and scissors on a sterile Petri dish.
Approximately thirty tissue fragments, each measuring 1-2 mm?®,
were evenly distributed in a T25 culture flask and then the growth
medium was added. The flask was positioned vertically for 2 h,
then tilted horizontally for 30 min to facilitate tissue adhesion.
Subsequently, 3 mL of the growth medium was introduced. Cultures
were maintained at 28 °C, with the growth medium refreshed
every 3 days. Daily assessment of fragment adherence, dispersion,
and proliferation was facilitated using an inverted phase contrast
microscope.

2.3 Collagenase isolation of olfactory
epithelium

The olfactory epithelium tissue was incubated in AIM within
a 50 mL centrifuge tube for 2h to ensure complete saturation.
Subsequently, the surrounding mucus was eliminated by treating the
tissue with trypsin-EDTA (0.25%) for 5 min. After trypsinization,
a neutralization medium was added to halt enzymatic activity,
and then the supernatant was discarded. The tissue was then
gently pipetted in the presence of collagenase working solution
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FIGURE 1

Schematic representation of the collagenase isolation protocol for olfactory epithelium (OE). (A) OE tissues were rinsed with PBS and subsequently
immersed in AIM solution for thorough sterilization. (B) Digestion with trypsin-EDTA (0.25%) was performed to remove the surrounding mucus. (C)
Collagenase digestion solution was applied to the OE tissues, followed by gentle pipetting with a 5 mL transfer pipette to enhance dissociation, with
this process being repeated four times. (D) The cell suspension was collected and placed on ice, followed by filtration and subsequent inoculation.

to facilitate further digestion. This enzymatic treatment lasted for
6 min, following which neutralization medium was introduced
and the supernatant containing dissociated cells was collected
while retaining the tissue for subsequent processing. The digestion
was repeated four times to ensure thorough tissue disintegration
thoroughly, with additional digestion performed as necessary until
complete digestion confirmation of digestion. All supernatants
were filtered through a 100 um cell strainer to remove undigested
materials and subsequently centrifuged for cell isolation. The
resulting cells were washed in neutralization medium within a
15 mL centrifuge tube and passed through a 70 um cell strainer.
Following a second centrifugation step, the cells were resuspended
in growth medium, and their concentration was determined using
an automated cell counter. Finally, the cells were plated at a density
of 1 x 10° cells/mL in sterile six-well plates and incubated in a
28 °C incubator with 5% CO, (Figure 1). After 24 h, the initial
growth medium was replaced with neuronal cell culture medium,
repeating this replacement process every 3 days. Table 1 presents the
formulation of all culture media.

2.4 Morphology and vitality assay of
olfactory epithelial cells

The morphology of olfactory epithelial cells during the growth
phase was monitored using inverted phase contrast microscopy,
with initial observations commencing on the first day of growth
and continuing twice daily. For detailed morphology assessment,
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olfactory epithelial cells were analyzed using Scanning Electron
Microscopy (SEM). Samples designated for SEM analysis were
fixed overnight at 4 °C in 2.5% glutaraldehyde (EM Grade) and
subsequently underwent a secondary fixation in 2% osmium
tetroxide (OsO,) for 2 h at room temperature. Following fixation,
samples were progressively dehydrated through a series of
ethanol immersions at concentrations of 30%, 50%, 70%, 95%,
and finally 100%. They were then critically point dried using
hexamethyldisilazane (HMDS). The dry specimens were metal-
coated and examined with a Field Emission Scanning Electron
Microscope (FESEM).

The proliferation activity of olfactory epithelial cells was assessed
using the Cell Counting Kit-8 (CCK-8) assay. Cells were seeded at a
concentration of 1 x 10 cells/mL in a 96-well plate and divided into
seven groups with ten replicate wells per group. Proliferation was
monitored over 7 days, with daily medium refreshment. At specified
time points, each well was incubated with 10 L of CCK-8 solution
for 4 h, followed by absorbance measurement at 450 nm using a
microplate reader (Envision).

2.5 Neuronal nuclei (NEUN) detection in
Vitro cultured olfactory epithelial cells

On the sixth day of culturing olfactory epithelial cells on
adhesive glass coverslips with a diameter of 8.5 mm, the culture
medium was discarded, and cells were washed with PBS to remove
residual medium and impurities. The olfactory epithelial cells were
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fixed in 4% paraformaldehyde for 15 min, followed by another
wash with PBS. Permeabilization was achieved by treating the
cells with 0.1% Triton X-100 for 20 min. Subsequently, the cells
were blocked for 1h in PBS containing 0.01% Triton X-100,
enriched with 2.5% goat serum, 2.5% donkey serum, and 20 mM
glycine. An overnight incubation at 4 °C followed using a rabbit
NeuN antibody (GeneTex, catalog number: 43,579) diluted to a
concentration of 1:1,000 in the blocking solution. The following day,
cells were acclimatized to room temperature for 30 min, washed
with PBS, and then incubated in darkness for 1 h with Alexa Fluor
488-conjugated secondary antibody (Donkey anti-rabbit at 1:500
dilutions, AntGene, catalog number: 1650451008). After washing,
cells were stained with DAPI for 5 min to visualize nuclei and rinsed
to remove excess stain. Finally, the cell slips were treated with
antifade mounting medium and examined using a laser confocal
microscope.

2.6 Detection of olfactory receptors (ORs)

To determine whether olfactory epithelial cells in vitro express
ORs, fluorescence in situ hybridization (FISH) and RT-PCR were
utilized for detection. The entire coding sequence of the OR-
B11 from M. amblycephala was amplified from c¢DNA, cloned
into the pcDNA3.1 (+) vector, and sequenced. Probes for OR-
P11 were generated by amplifying the gene fragment from the
cloning vector using primers listed in Supplementary Table SI.
An antisense cRNA probe targeting OR-f11 was synthesized
in vitro using T7 RNA polymerase and enhanced with a DIG
RNA labeling mixture. Cell slides were fixed with 4% PFA for
15 min. After washing with PBST, they were treated with 0.1%
Triton X-100 for 10 min. Following another PBST wash, slides
were pre-hybridized at 65 °C for 1h in hybridization buffer (50%
formamide, 5xSSC, 0.05 mg/mL heparin, 0.5 mg/mL tRNA, 0.1%
Tween-20, 0.01 M citric acid, DEPC-treated). The OR-$11 probe
(5ng/uL) was then added and hybridized at 65°C for 12-16 h.
After hybridization, slides were washed in Wash Solution I (25%
formamide, 1xSSC, 0.1% Tween-20) for 2 x 30 min, in Wash
Solution I (1xSSC, 0.1% Tween-20) for 2 x 15 min, and in Wash
Solution III (0.2xSSC, 0.1% Tween-20) for 2 x 30 min. Slides
were cooled to room temperature and incubated with Anti-DIG
POD Fab fragments (1:500, Roche) at 4 °C for 16-18 h, followed
by PBST washes for 3 x 5min. Then the slides were processed
using the Tyramide Signal Amplification (TSA) Cy3 Kit (Akoya
Biosciences) according to the manufacturer’s instructions. Following
a 10 min incubation with Cy3-conjugated tyramide (diluted 1:50 in
amplification buffer) at room temperature, the slides were subjected
to 3 x 5 min washes in PBST. Finally, slides were stained with DAPI
(5 ug/mL) for 10 min and mounted with an anti-fade mounting
solution. After examination under a confocal microscope (Nikon),
all cell slides were scanned using a high-resolution slide scanning
system (3DHISTECH Ltd.).

RNA was extracted from olfactory epithelial cells cultured in
vitro for 6 days using trizol (TaKaRa, catalog number: 9,108).
Subsequently, the RNA was reverse transcribed into cDNA using the
Prime Script RT Reagent Kit with gDNA Eraser (TaKaRa, catalog
number: RR047A) as the template for RT-PCR. The reaction volume
was 10 pL, containing 5 uL of 2 x Rapid Taq Master Mix (Vazyme,

Frontiers in Cell and Developmental Biology

10.3389/fcell.2025.1587151

catalog number: P222-01), 0.2 mM primer, and cDNA template. The
cycling program was as follows: initial denaturation at 95 °C for
3 min, denaturation at 95 °C for 15 s, annealing at 58 °C for 155,
extension at 72 °C for 3 s, repeated for 35 cycles. Finally, the RT-PCR
products were analyzed by 1% agarose gel electrophoresis.

2.7 Detection of pERK in vitro cultured
olfactory epithelial cells after exposure to
odorant molecules

The odorants were sourced from Sigma-Aldrich with a purity
level of 97%. The amino acids mixture, used as food odor,
was based on the composition of amino acids in water grass,
as shown in Supplementary Table S1. Each experimental session
began with a freshly prepared solution containing the mixture.
PGF,,, as a sex pheromone, was dissolved in DMSO to achieve
a concentration of 1 x 107" M and stored at —80 °C for future
use. Fresh neural cell culture medium was replaced for the six-
day-old olfactory epithelial cells 12 h prior to initiating the odor
exposure experiment. Subsequently, an appropriate amount of the
amino acid mixture solution and PGF,, were added to reach a
final concentration of 1 x 107> M. The olfactory epithelial cells
were then incubated at 28°C in a culture chamber. After a
10 min exposure period, ERK phosphorylation was confirmed using
rabbit anti-pERK1/2 monoclonal antibody (1:500, Cell Signaling
Technology, catalog number: 4,370). Three biological replicates were
set up for each experiment. The experimental procedures were as
described in section 2.5. Subsequent quantification was performed
using Image]J software (v1.53t) under standardized parameters. For
nuclear enumeration, DAPI-stained nuclei were counted. pERK"
cells were identified as those exceeding the intensity threshold (mean
+ 2SD of controls). The positivity rate was calculated using the
formula: % pERK" = (pERK™ cells/total nuclei) x 100. Each group
included a minimum of three replicates.

2.8 RNA-seq and analysis

After a 2h exposure to a solution containing amino acid
mixture and PGF,, at final concentration of 1 x 107 M, the
olfactory epithelial cells were collected for total RNA extraction
and subjected to quality evaluation. High-quality total RNA
was utilized for constructing an RNA-seq library. The RNA
was purified, reverse transcribed, and libraries were constructed
following the manufacturer’s instructions (Illumina, San Diego,
CA). Briefly, the transcriptome library for olfactory epithelial
cells was prepared using the Illumina Stranded mRNA Prep
Kit with 1 ug of total RNA. Subsequently, messenger RNA was
isolated through a poly A selection method employing oligo
(dT) beads and fragmented using a fragmentation buffer. Next,
double-stranded cDNA synthesis was performed utilizing the Super
Script Double-Stranded cDNA Synthesis Kit (Invitrogen, CA)
with Illumina random hexamer primers. The synthesized cDNA
underwent end repair, phosphorylation, and “A” base addition
according to Illumina’s library construction protocol. Size selection
of the resulting cDNA libraries targeted fragments of 300 bp on
2% Low Range Ultra Agarose gel followed by PCR amplification
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consisting of 15 cycles using Phusion DNA Polymerase from
NEB. After quantification with the Qubit 4.0 Fluorometer, paired-
end RNA-seq sequencing library was sequenced using the Nova
Seq 6,000 sequencer. The raw data underwent filtration to remove
sequencing reads containing adapters, poly-N sequences, and low-
quality sequences (Q < 20). The remaining reads were defined as
“clean reads” and utilized for subsequent analysis. Subsequently,
the clean reads were mapped to the reference genome of M.
amblycephala (PRJNA343584) using HISAT. Following this, the
RSEM program was employed to quantify gene expression, with
gene expression levels presented in the form of transcripts per
million (TPM).

To identify differentially expressed genes (DEGs) between two
groups, we utilized the transcripts per million reads (TPM) method
to quantify the expression level of each transcript. Gene abundances
were quantified using RSEM. Subsequently, differential expression
analysis was conducted using DESeq2. Genes with [log2FC|>1 and
FDR <0.05 (DESeq2) were considered as significantly differentially
expressed genes. Furthermore, functional enrichment analysis for
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) was conducted to identify significantly enriched
DEGs in GO terms and metabolic pathways, respectively. The
Bonferroni-corrected p-value of 0.05 was used compared to the
whole-transcriptome background. Goatools and Python scipy were
employed for conducting the GO functional enrichment and KEGG
pathway analysis, respectively.

2.9 Quantitative real-time PCR (qPCR)

Real-time quantitative PCR (qPCR) was performed using
an ABI real-time qPCR system (Foster City, CA, United States
of America) with a 20 uL reaction volume containing 10 uL
SYBR Green PCR Master Mix (TaKaRa, code No. RR820A),
0.4 mM primers and the cDNA template. The cycling program
consisted of an initial denaturation for 5min at 95 °C, followed
by 40 cycles of 95°C for 20s and 60°C for 25s f-actin was
utilized as a reference gene, using its expression level as a
standard to measure the relative expression levels of the target
gene. Subsequently, a comparison of the relative expression levels
among samples was conducted, with DMSO stimulation serving
as the control group. The dataset was systematically organized
and analyzed utilizing Microsoft Excel 2010, employing the
2788C method (Schmittgen and Livak, 2008) for the quantitative
analysis of the data. The primers utilized in this study can
be found in Supplementary Table S2.

2.10 Statistical analyses

The results were expressed as the mean + standard deviation
(mean + SD) across three independent experimental replicates. After
normalization, the data underwent one-way analysis of variance
(One-Way ANOVA) using SPSS 19.0 software. Subsequently,
multiple comparisons were performed using the Scheffé method.
Statistical significance was determined at P < 0.05 and P <
0.01, indicating significant and highly significant differences,
respectively.
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3 Results

3.1 Cells derived from explants exhibit
distinct in vitro growth characteristics

In the explant culture system, we observed two distinct
phenomena. On day 7 of culturing, a subset of the explants exhibited
simultaneous radial outgrowth of both neuronal-like and paving-
stone like cells, albeit with slow cell proliferation. By day 15, the
number of bipolar neuron-like cells ceased to increase, while the
number of dead cells began to rise (Supplementary Figure S1A). In
contrast, another set of explants, there was a profusion of paving-
stone like cells appearing by day 3. These cells started detaching by
day 5, and notably, there was no migration of neuronal-like cells
during the subsequent culture period (Supplementary Figure S1B).

3.2 Olfactory epithelial cells isolated using
collagenase exhibit stable growth in vitro

Olfactory epithelium tissues from five M. amblycephala
specimens were completely digested using a collagenase digestion
solution. The resulting cells were resuspended in growth medium
and seeded into a six-well culture dish at a concentration of 1 x
10° cells/mL. After approximately 24 h of seeding, most majority
olfactory epithelial cells adhered to the surface of Petri dishes
(Figure 2A). By the third day, cell proliferation occurred with
some displaying typical bipolar neuronal morphology. This bipolar
morphology exhibited a significant increase by the fifth day and
persisted for approximately 72 h. However, on day nine, there was
a decline in the abundance of bipolar neurons coinciding with an
increase in round cells. Concurrently, cell viability as determined
by the CCK-8 assay demonstrated a substantial decrease on day
eight (Figure 2B). The exponential phase of cell growth occurred on
day five, reaching peak viability on day six. Notably, by day eight,
there was a significant reduction in viability which corroborated
morphological assessments of the cells. SEM conducted on day six
revealed olfactory neurospheres featuring filamentous extensions
resembling cilia encircling them (Figure 2C).

3.3 Olfactory epithelial cells were labeled
with the NEUN antibody and expressed
ORs

To detect neurons within the olfactory epithelial cells, labeling
was performed using the NEUN antibody, a specific marker for
neuronal nuclei. The olfactory epithelial in fish primarily consists
of neurons, supporting cells, and basal cells, all crucial for the
development and signal transduction processes within OSNs. It was
hypothesized that these cellular components would be present in the
cultured olfactory epithelial cells. Therefore, NeuN antibodies were
utilized to selectively label cells. The results demonstrated that the
nuclei of majority of cells were bright green fluorescently labeled,
suggesting a significant presence of neurons in the cultured olfactory
epithelium cells (Figure 3). The unlabeled cells were non-neuronal,
such as basal cells.
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FIGURE 2
Characteristics of olfactory epithelial cells. (A) The growth conditions of cells observed via phase-contrast microscopy. (B) Cell viability was evaluated
systematically over seven consecutive days utilizing the CCK-8 assay. (C) Examination of cell morphology utilizing SEM.
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FIGURE 3

Laser Scanning Confocal Microscope of immunofluorescence staining of neuronal cells. The neurons were labeled with anti-NEUN antibodies, which
appear green in the nucleus (indicated by yellow arrows). Cells nuclear were stained with DAPI (blue). The white arrow indicates non-neuronal cells.

Following the identification of neurons within the cultured
olfactory epithelial cells, the expression of ORs was assessed.
Initially, FISH revealed the presence of OR-f11 (OR114-1)
(Supplementary Figure S2A).  Subsequently, RT-PCR detected
the expression of multiple ORs, including OR-B1, OR-$2,
OR-B9, OR-B10, OR-BII, OR-BI2, OR-B7, OR-PS, and OR-
B15 (Supplementary Figure S2B).

3.4 Olfactory epithelial cells are activated
by amino acid mixture and PGF,,

To investigate the potential activation of olfactory epithelium
cells by amino acids mixture and PGF,,, phosphorylated ERK
(pERK) was utilized as a neuronal activation marker (Cui et al., 2025;
Masuda et al., 2024; Wakisaka et al., 2017). Olfactory epithelium
cells were exposed to odor molecules in the culture medium and
subsequently incubated in a 28 °C 5% CO, incubator for 10 min.
Each odor molecule was tested with three biological replicates, while
DMSO served as the control odor. The results revealed that the
amino acid mixture produced the highest number of labeled cells,
approximately 20%, while PGF, elicited a moderate response, with
the proportion of labeled cells remaining below 20%. Therefore,
exposure to the amino acid mixture and PGF,, significantly
increased the number of olfactory epithelium cells labeled with
PERK (P < 0.01), indicating that the cultured olfactory epithelium
cells possess olfactory recognition function when activated by these
specific stimuli (Figure 4).
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3.5 Distinct molecular characteristics of
the cultured olfactory epithelial cells
exposed to PGF,,

Following exposure to odor molecules, total RNA from cultured
olfactory epithelium cells was extracted in three independent
biological replicates for each odor (a total of 9 samples, n = 3). Each
sample yielded an average of 6.09 GB clean data. These high-quality
reads were successfully aligned to the genome of M. amblycephala
with a mapping success rate surpassing 95%. PCA analysis
(Supplementary Figure S3A) confirmed acceptable reproducibility
within each treatment group and highlights discernible differences,
particularly in the PGF, group. The distribution of gene expression
levels in each sample and the degree of data dispersion were
analyzed (Supplementary Figure S3B). The results demonstrated
that the distribution of gene expression levels in the nine samples
exhibited a reasonable pattern. Transcriptome analysis revealed
that exposure to the amino acid mixture is with only 25 DEGs
identified (Supplementary Figure S3C). In contrast, exposure to
PGF,, significantly differs from DMSO, resulting in a total of 1,267
DEGs (P < 0.05), including 647 upregulated and 620 downregulated
genes (Figure 5A). KEGG pathway enrichment analysis revealed that
1,267 differentially expressed genes were significantly enriched in 59
pathways (P < 0.05), with the top 30 pathways shown (Figure 5B).
Among these pathways, ovarian steroidogenesis, GnRH signaling
pathway, and oxytocin signaling pathway are closely associated with
reproduction. Ovarian steroidogenesis involves 20 DEGs, the GnRH
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signaling pathway involves 21 DEGs, and the oxytocin signaling
pathway involves 27 DEGs, with a total of 33 non-redundant DEGs
across these three reproductive pathways (Figure 5C). Specifically,
the expression levels of PLCS and ARTISt were downregulated,
while the expression levels of HB-EGF, EGFR, p38MAPK, PLA2, AC,
cPLA, and COX-2 were upregulated. GO annotations indicated these
genes are primarily involved in intracellular signal transduction
and prostaglandin-endoperoxide synthase activity. Furthermore, the
genes ptgs2b, ptgs2a, ptges related to prostaglandin E synthesis
and PGE receptor ptgerla were also significantly upregulated (P
< 0.01) (Table 2). The cAMP and cGMP-PKG signaling pathways
are involved in the process of ORs binding with ligands. The genes
prkglb, rgs2, and ncalda which play an important role in the
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(P<0.01)

olfactory transduction, were upregulated after PGF,, simulation
(Supplementary Figure S4). To assess the reliability of sequencing
and subsequent data analysis, 7 DGEs were randomly selected for
validation through qPCR experiments. The qPCR verification results
were in accordance with the RNA-Seq data, thus confirming the
accuracy and dependability of RNA-Seq measurements (Figure 5D).

The olfactory epithelium cells exposed to PGF,,, DEGs was
significantly enriched in ovarian steroidogenesis, GnRH signaling
pathway, and oxytocin signaling pathway, all of which are highly
interconnected. Consequently, we linked these pathways primarily
through DEGs (Figure 6). We supposed that this pathway linkage
elucidates the increased expression of PGE, synthase and PGE
receptors.
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Discussion

Culturing mammalian OSNSs in vitro poses an ongoing challenge
in neurobiological research. Previous studies suggest that OSNs
have limited proliferation and differentiation capacity in vitro
(Kicic et al., 2006; Martinovich et al., 2017). The prevalence of
immature OSNs in culture is believed to impair their odor detection
capabilities, resulting in limited research on the cultivation of
OSNs in vitro. However, recent findings by Huang et al. (2022)
have revealed the previously unrecognized potential of immature
OSNs to perceive odors, leading many researchers to reassess
the value of cultivating OSNs in vitro (Huang et al., 2022). The
processing capability of immature OSNs at high odor concentrations
is crucial for odor-guided behavior essential for survival, particularly
when olfactory function is compromised (Huang et al., 2022).
Additionally, single-cell RNA sequencing results indicate that 55%
of human OSNs are immature (Durante et al.,, 2020), highlighting
the significance of immature OSNs in the olfactory system and
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emphasizing increased research attention and substantial progress
made towards understanding mammalian olfaction. Research
conducted in mammalian systems has revealed a direct correlation
between the olfactory sensitivity of animals and the quantity of
functional ORs they possess (Niimura and Nei, 2006). Additionally,
there is a growing interest in studying the expression and function
of ORs in other tissues (Wu et al., 2024). However, the research
on OSNs in fish species remains relatively scarce compared
to mammals. To enhance our understanding of fish olfaction
recognition mechanisms through improved OSNs cultivation
techniques, we selected the economically significant fish species M.
amblycephala for the in vitro cultivation of olfactory epithelial cells.

In cell culture, explant and enzyme digestion are two commonly
used techniques. The explant technique allows for continuous
extraction of new cells from each explant, thereby significantly
reducing harm to animal models. When utilizing the explant
technique to cultivate olfactory epithelial cells of M. amblycephala,
some neurons migrated out from the explants, exhibiting a
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TABLE1 Medium composition.

Culture medium Composition

pen strep (Gibco, catalog number: 15070063) 2mL

amphotericin B (1 mg/mL) 1 mL
(CAS:1,397-89-3)

Antibiotic incubation medium (AIM)
gentamicin sulfate (2 mg/mL) 2.5mL
(CAS:1,405-41-0)

DMEM/F12 (Gibco, catalog number: 11320033) up to 50 mL
collagenase I (Biosharp, catalog number: BS163) 100 mg
Collagenase I + IV collagenase IV (Biosharp, catalog number: BS165) 100 mg
PBS (Gibco, catalog number: 10010023) up to 100 mL
pen strep 2mL
amphotericin B 1mL
gentamicin sulfate 2.5mL
Collagenase digestion solution collagenase 1+ TV > ml
trypsin-EDTA (0.25%) 4 mL

(Gibco, catalog number: 25200056)

DMEM/F12 up to 50 mL
pen strep 2mL
amphotericin B 0.5mL
icin sulf: 2.5mL
Neutralization medium gentamicin sulfate >m
FBS (Fetal bovine serum) 10 mL

(Cell-Box, catalog number: AUS-02S-02)

DMEM/F12 up to 50 mL
pen strep 2mL
amphotericin B 0.5mL
gentamicin sulfate 2.5mL
B-27 Supplement (Gibco, catalog number: 17504044) 1mL
Growth medium

N-2 Supplement (Gibco, catalog number: 17502048) 0.5mL
HEPES (Gibco, catalog number: 15630106) 0.5mL

FBS 5mL
DMEM/F12 up to 50 mL
pen strep 2mL

Neuronal culture medium
B-27 1mL

(Continued on the following page)

Frontiers in Cell and Developmental Biology 10 frontiersin.org


https://doi.org/10.3389/fcell.2025.1587151
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Guan et al.

TABLE 1 (Continued) Medium composition.

Culture medium

10.3389/fcell.2025.1587151

Composition

Content Volume
‘ N-2 0.5mL
‘ HEPES 0.5mL
‘ Neurobasal™ Plus Medium (Gibco, catalog number: A35829-01) up to 50 mL

TABLE 2 Genes related to olfactory signal transduction after PGF,,
simulation.

Gene ’ Gene description ‘ Fvs.D Log2FC
slc8ala solute carrier family 8-member la down -1.35
prkglb protein kinase cGMP-dependent 1b up 2.63
rgs2 regulator of G protein signaling 2 up 2.05
Ncalda neurocalcin delta a up 1.08
ptgs2a prostaglandin-endoperoxide synthase up 1.29
2a
ptgs2b prostaglandin-endoperoxide synthase up 2.76
2b
Ptges prostaglandin E synthase up 2.34
ptgerla prostaglandin E receptor 1a up 1.57
(subtype EP1)

morphology consistent with OSNs cultivated from mammal
embryos (Micholt et al., 2012; Martinovich et al., 2017). However,
the small number of cells derived from the explants resulted in
a lack of cellular contact. Additionally, this phenomenon lacks
consistency, as certain explants do not possess the capacity to
migrate cells outward. Furthermore, through repeated experiments,
we have confirmed that the olfactory epithelial explants of M.
amblycephala do not exhibit neuronal migration. We posit that
these differences in characteristics during in vitro culture stem from
variances in tissue fragments originating from distinct regions of
the olfactory epithelium. Due to differences in tissue and cellular
specificity, it is speculated that culturing M. amblycephala OSNs
using explants may not be suitable. We observed that the explant
method exhibited a significantly higher contamination rate. This is
likely due to the direct exposure of fish olfactory epithelial tissue to
the aquatic environment, which presents a considerable challenge
for explant culture.

Trypsinization exerts detrimental proteolytic effects, including
the disruption of membrane protein integrity, alteration of
cytoplasmic composition, and potential induction of cell death
(Lordon et al, 2024). In mammals, collagenase I is primarily
employed for dissociating epithelial cells (Lin et al., 2016), while
collagenase IV is used for dissociating neurons. In the present study,
we utilized a combination of collagenase I, collagenase IV, and
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trypsin-EDTA (0.25%) for the dissociation of olfactory epithelium
cells (Lan et al, 2022). Prior to dissociation using collagenase,
we excised the olfactory mucosa to minimize cell contamination
(Randell et al., 2001). Following dissociation, olfactory epithelium
cells were cultured in a growth medium containing 20% FBS for
24-36 h. The high concentration of FBS enhances cell adhesion
(Fan and Karino, 2008). After adhesion, changing the neuronal
culture medium facilitates neuronal growth. Upon observation,
we discovered that olfactory epithelium cells obtained through
collagenase digestion exhibit robust stability, accelerated growth,
and distinctive neuronal morphological characteristics. SEM also
revealed cells exhibiting the morphology of olfactory neurospheres
(Li et al., 2018). In the olfactory epithelium tissue, sensory neurons
constitute approximately 80% of the cell population (Bettina et al.,
1999). NEUN is an antibody used as a maker for the identification
of neuronal cells (Jiang et al., 2024). Most labeled cells are identified
as neurons by this antibody staining method, while unlabeled
cells are recognized as non-neuronal. Non-neuronal cells play
a crucial role in promoting the growth and differentiation of
OSNs (Dietz et al., 2023). OSNs express ORs, enabling them to
recognize odor molecules (Buck and Axel, 1991; Niimura et al.,
2014). FISH and RT-PCR detected the native expression of ORs in
cultured cells derived from fish olfactory epithelial tissue, indicating
that the cultured olfactory epithelial cells retain the ability to
recognize odors.

Compared to DMSO, exposure to the amino acid mixture and
PGF,, significantly augmented the population of pERK-labeled
olfactory epithelial cells. We propose that a subset of these labeled
cells is stimulated by odor molecules, akin to the observations made
in piscine olfactory organs (Wakisaka et al., 2017). Additionally,
the RNA-seq results revealed the upregulation of the expression
levels of prkglb, slc8ala, ncalda and rgs2, which play crucial
roles in the olfactory transduction (Supplementary Figure S4).
Previous studies have indicated that upon recognition of odor
molecules by ORs, three key signal transduction pathways, namely,
cAMP (Sands and Palmer, 2008), IP3(Fadool and Ache, 1992),
and cGMP (Meyer et al, 2000), are activated. These activated
specific signaling pathways reflect the characteristics of OSNs. In
zebrafish, stimulation with PGF,, has been observed to activate
ciliated OSNs (Yabuki et al., 2016). Following activation, the
G protein a subunit Golf converts intracellular ATP to cyclic
adenosine monophosphate (cAMP) (Bakalyar and Reed, 1990).
Elevated levels of intracellular cAMP then function as a secondary
messenger, which triggers neural impulse generation within these
cells (Restrepo et al,, 1996; Sands and Palmer, 2008). However,
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some ciliated OSNs lack functional components required for the
cAMP signaling pathway like Golf. In such cases, the cGMP
signaling pathway serves as a crucial second messenger (Ma,
2007). Both pathways exhibit significant enrichment in the
present study, leading us to speculate that PGF,, activates the
cultured OSNG.

PGF,, acts as a sex pheromone (Lim and Sorensen, 2011;
Sorensen et al., 2018), exerting influence on courtship behaviors
in male zebrafish through the olfactory system (Yabuki et al,
2016). After exposure to PGF,,, there is an increase in PGE,
synthase and PGE receptor expression upon exposure to
PGE,,.
synchronizing lunar-regulated beach-spawning behavior
grass puffers (Chen et al., 2022).

In summary, we employed collagenase digestion effectively

Recent findings indicate that PGE, plays a role in
in

to culture fish olfactory epithelial cells, and their morphological
characteristics were validated using SEM. Following neuronal cell
labeling with NEUN antibody, FISH and RT-PCR assays confirmed
the expression of ORs. Although olfactory responsiveness was
assessed within a relatively short time frame in cultured olfactory
epithelial cells, this methodology represents a notable advancement
in teleost olfactory research. It offers an alternative strategy to
mitigate stress responses associated with in vivo fish experiments,
establishes a novel platform for high-throughput receptor screening,
and serves as a crucial foundation for conducting single-cell patch-
clamp electrophysiology to study olfactory function in vitro. Future
studies will focus on establishing continuous cell lines of fish OSNs to
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further enhance our understanding of their importance in survival
and reproduction.
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