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Retinol-binding protein 4 (RBP4) has emerged as a critical adipokine involved
in the pathophysiology of metabolic and cardiovascular diseases. Beyond
its classical role in retinol transport, RBP4 influences insulin resistance,
inflammation, lipid metabolism, mitochondrial function, and cellular apoptosis
in both skeletal and cardiac muscles. Elevated levels of RBP4 are associated
with obesity, type 2 mellitus diabetes, and cardiovascular diseases, making
it a potential biomarker and therapeutic target. This comprehensive review
elucidates the molecular mechanisms by which RBP4 affects skeletal and
cardiac muscle physiology. We discuss its clinical implications as a biomarker
for disease risk and progression, explore therapeutic strategies targeting RBP4,
and highlight future research directions. Understanding the multifaceted roles
of RBP4 could pave the way for novel interventions against metabolic and
cardiovascular disorders.
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1 Introduction

Retinol-binding protein 4 (RBP4) is a 21-kDa secreted protein belonging to the
lipocalin family, primarily synthesized in the liver and adipose tissue, serving as the
main transport protein for retinol (vitamin A alcohol) in the bloodstream (Kanai et al.,
1968; Peterson, 1971; Blaner, 1989). Beyond its traditional role, RBP4 functions as an
adipokine involved in regulating glucose metabolism and insulin sensitivity (Yang et al.,
2005; Graham et al., 2006). Elevated RBP4 levels have been observed in insulin-resistant
states such as obesity and type 2 diabetes mellitus (T2DM), implicating it in the
development of metabolic syndrome (Klöting et al., 2007; Kovacs et al., 2007; Olsen and
Blomhoff, 2020; Flores-Cortez et al., 2022). Skeletal muscle, accounting for approximately
80% of insulin-stimulated glucose disposal, is critical for glucose uptake and utilization
(DeFronzo and Tripathy, 2009). Cardiac muscle relies on efficient energy metabolism for
continuous contractile activity. Dysregulation of RBP4 affects both muscle types, leading to
insulin resistance in skeletal muscle and contributing to cardiac remodeling, hypertrophy,
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and dysfunction (Nono and Blüher, 2021; Li et al., 2024; Ji et al.,
2022; Schiborn et al., 2022). Recent studies highlight RBP4’s role
in promoting cardiomyocyte injury and pyroptosis post-myocardial
infarction and its association with adverse cardiovascular events
(Zhang et al., 2021; Zhou et al., 2021; Qian et al., 2022; Chen et al.,
2021). Understanding RBP4’s mechanisms in these tissues is crucial
for developing targeted therapies for metabolic and cardiovascular
diseases. The study of RBP4 has evolved significantly since its initial
characterization, incorporating insights from various disciplines,
including endocrinology, immunology, and molecular biology. This
interdisciplinary approach has been crucial in unraveling the
complex roles of RBP4 in metabolic and cardiovascular health. As
we delve into the molecular mechanisms and clinical implications
of RBP4, it is important to consider both the advancements and the
challenges in this field of research.

2 Molecular mechanisms of RBP4 in
skeletal muscle

RBP4 affects skeletal muscle through a complex network of
molecular interactions, influencing insulin signaling, inflammation,
lipid metabolism, and muscle physiology. These mechanisms are
intricately intertwined, creating a multifaceted impact on muscle
function and metabolic health. The following sections will explore
each of these aspects in detail, highlighting the latest research
findings and their implications for muscle biology.

2.1 Impairment of insulin signaling

RBP4 impairs insulin signaling by interfering with insulin
receptor substrate (IRS) proteins. Elevated RBP4 levels reduce
tyrosine phosphorylation of IRS-1, diminishing its ability to
activate downstream signaling molecules like phosphatidylinositol
3-kinase (PI3K) and protein kinase B (Akt) (Craig et al., 2007;
Janke et al., 2006). This results in decreased glucose transporter
type 4 (GLUT4) translocation to the plasma membrane, reducing
glucose uptake (Suh et al., 2010). RBP4 may induce suppression
of cytokine signaling 3, which binds to IRS-1 and inhibits its
activation (Norseen et al., 2012). Additionally, RBP4 activates c-
Jun N-terminal kinase (JNK), leading to serine phosphorylation
of IRS-1, further impairing insulin signaling (Sabio and Davis,
2010). Downregulation of GLUT4 expression involves inhibition
of myocyte enhancer factor 2 and GLUT4 enhancer factor,
key transcription factors regulating GLUT4 gene expression
(Zorzano et al., 2005; Handschin and Spiegelman, 2008). Moreover,
RBP4 affects insulin signaling by activating the retinol transport
receptor STRA6, leading to downstream effects on JAK2/STAT3
signaling pathways (Huang et al., 2021; Perumalsamy et al., 2021),
promoting gene expression that interferes with insulin action.

2.2 Promotion of inflammation

Chronic low-grade inflammation is a hallmark of insulin
resistance. RBP4 stimulates pro-inflammatory cytokines such as
tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and

interleukin-1β (IL-1β) in skeletal muscle cells and infiltrating
macrophages (Moraes-Vieira et al., 2014; Hotamisligil, 2006). These
cytokines activate inhibitory kinases such as IκB kinase (IKK) and
JNK, which phosphorylate IRS-1 on serine residues, impairing
insulin signaling (Nono and Blüher, 2021). RBP4 binds to toll-like
receptor 4 on muscle cells, triggering nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) and mitogen-activated
protein kinases (MAPKs) pathways, promoting inflammatory
gene transcription and contributing to insulin resistance (Flores-
Cortez et al., 2022). This suggests RBP4 acts as a pro-inflammatory
mediator, linking metabolic stress to inflammatory pathways.
Numerous clinical studies have demonstrated strong correlations
between elevated RBP4 levels and increased inflammatory markers,
including high-sensitivity C-reactive protein (hsCRP), TNF-
α, and IL-6 (Bujak and Frangogiannis, 2007a). Importantly,
longitudinal interventional studies have demonstrated that
reductions in RBP4 levels through exercise, dietarymodifications, or
combined interventions are accompanied by parallel improvements
in metabolic parameters, suggesting a causal relationship
rather than a mere association (Flores-Cortez et al., 2022;
Ghorbanian et al., 2023a; Ghorbanian and Saberi, 2021). For
instance, Ghorbanian et al. (2022) demonstrated that a 12-week
aerobic exercise intervention significantly reduced serum RBP4
levels by approximately 11% (P = 0.001) in men with metabolic
syndrome, while a combined intervention with ketogenic diet
produced an even more pronounced reduction of 23.1% (P =
0.020). These reductions in RBP4 levels were significantly correlated
with improvements in insulin resistance markers, as evidenced by
decreased HOMA-IR values (P = 0.001). Notably, when comparing
intervention groups, both ketogenic diet alone (P = 0.041) and
combined exercise-diet intervention (P = 0.017) resulted in
significantly lower RBP4 levels compared to controls, highlighting
the potential therapeutic value of targeting RBP4 through lifestyle
interventions (Ghorbanian et al., 2023a). RBP4 also activates
antigen-presenting cells, leading to adipose tissue inflammation and
systemic insulin resistance (Schiborn et al., 2022), and the muscle-
adipose tissue crosstalk mediated by RBP4 exacerbates metabolic
dysfunction.

2.3 Alteration of lipid metabolism

Altered lipid metabolism contributes to insulin resistance.
RBP4 suppresses peroxisome proliferator-activated receptor
alpha (PPARα) and its target genes involved in fatty acid β-
oxidation, like carnitine palmitoyltransferase I (Amengual et al.,
2008; Carrasco et al., 2023). This leads to the accumulation of
intramyocellular lipids and intermediates like diacylglycerol and
ceramides, activating protein kinase C isoforms that phosphorylate
IRS-1 on serine residues, inhibiting insulin signaling (Itani et al.,
2002). RBP4 upregulates sterol regulatory element-binding protein
1c, enhancing lipogenic enzyme expression and contributing to
lipid accumulation and insulin resistance (Eberlé et al., 2004).
Additionally, RBP4 may interfere with adipose triglyceride
lipase and hormone-sensitive lipase, which are crucial for lipid
mobilization, disrupting lipid homeostasis (Steinhoff et al.,
2024) and exacerbating ectopic lipid deposition in
skeletal muscle.
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FIGURE 1
Molecular mechanisms by which RBP4 influences skeletal muscle metabolism. Schematic illustration of how retinol-binding protein 4 (RBP4) derived
from liver and adipose tissue induces insulin resistance in skeletal muscle cells through multiple pathways. RBP4 triggers: (1) Impaired insulin signaling
via decreased SOCS3/JNK and PI3K/Akt signaling, leading to reduced IRS-1 tyrosine phosphorylation and GLUT4 translocation; (2) Inflammatory
response through TLR4-mediated activation of NF-κB/MAPK pathway, resulting in increased production of inflammatory cytokines (TNFα, IL-6, L-1β);
(3) Altered lipid metabolism through downregulation of RRARα and CPT1, and activation of SREBP-1c, leading to increased DAG/ceramides and
lipogenic enzyme levels; (4) Mitochondrial dysfunction via decreased PGC-1α-mediated mitochondrial biogenesis and increased ROS production
causing oxidative stress; (5) Altered muscle fiber composition showing decreased Type I oxidative fibers and increased Type II glycolytic fibers; (6)
Impaired autophagy through mTORC1 activation and reduced autophagy initiation; and (7) Muscle atrophy via upregulation of Atrogin-1, MuRF-1, and
NLPR3 inflammasome activation leading to increased protein degradation and pyroptosis. These molecular alterations collectively contribute to the
development of insulin resistance in skeletal muscle cells. Blue boxes indicate decreased expression/activity; pink boxes indicate increased
expression/activity. Arrows indicate activation/induction; lines indicate inhibition.

2.4 Impact on mitochondrial function and
oxidative stress

RBP4 decreases peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC-1α), a regulator of

mitochondrial biogenesis (Patti et al., 2003), leading
to reduced mitochondrial content, decreased oxidative
capacity, and energy production. Mitochondrial dysfunction
results in the overproduction of reactive oxygen species
(ROS) (Anderson et al., 2009), causing oxidative damage
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FIGURE 2
Molecular mechanisms by which RBP4 affects cardiac muscle.Schematic representation of how RBP4 mediates cardiac dysfunction through its effects
on endothelial cells, cardiac fibroblasts, and cardiomyocytes. In endothelial cells, RBP4 decreases eNOS activity and NO production, leading to
increased adhesion molecules and chemokines, resulting in enhanced leukocyte adhesion and endothelial dysfunction. In cardiac fibroblasts, RBP4
activates NLRP3 inflammasome and increases TGF-β1/CTGF expression, promoting gasdermin D cleavage, pyroptosis, collagen synthesis, and ECM
protein production, ultimately causing cardiac fibrosis. In cardiomyocytes, RBP4 triggers four major pathological pathways: (1) Cardiac remodeling and
hypertrophy through activation of ERK1/2 and PI3K/Akt/mTOR signaling, leading to increased ANF/BNP expression and protein synthesis; (2) Calcium
homeostasis disruption via increased intracellular Ca2+ and calcineurin/NFAT signaling, inducing hypertrophic gene expression; (3) Oxidative stress and
apoptosis through elevated ROS production, Bcl-2/Bax dysregulation, and caspase activation; and (4) Metabolic remodeling via decreased PPARα
activity, resulting in reduced fatty acid oxidation and ATP production. These pathological changes collectively contribute to cardiac dysfunction. Blue
arrows indicate decreased expression/activity; red arrows indicate increased expression/activity. Solid arrows represent direct effects; dashed lines
indicate regulatory relationships.

to cellular components and activating stress kinases
such as JNK and IKK, further impairing insulin
signaling (Houstis et al., 2006). RBP4 may impair
mitochondrial dynamics by affecting fusion and fission

balance, leading to fragmented mitochondria and reduced
adenosine triphosphate (ATP) production (Jheng et al.,
2012), exacerbating metabolic dysfunction in
skeletal muscle.
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2.5 Influence on muscle fiber type and
composition

RBP4 influences muscle fiber type distribution by promoting
a shift from oxidative type I fibers to glycolytic type II
fibers (Schiaffino and Reggiani, 2011). Glycolytic fibers are
less efficient in glucose oxidation and more susceptible to
insulin resistance. RBP4 may downregulate PGC-1α and
affect transcription factors involved in fiber type specification
(Lin et al., 2005), reducing oxidative capacity and impairing
endurance, which may affect muscle performance and contribute
to fatigue in metabolic disorders. The shift in muscle fiber
type composition induced by RBP4 not only affects metabolic
properties but also has significant implications for muscle
strength and endurance. Type I fibers, which are more oxidative,
are crucial for sustained, low-intensity activities, while type II
fibers are essential for high-intensity, short-duration activities.
The RBP4-induced shift toward type II fibers may contribute
to reduced endurance capacity and increased fatigability,
potentially exacerbating the physical limitations often observed
in metabolic disorders (Schiaffino and Reggiani, 2011; Lin et al.,
2005). This interplay between RBP4 and muscle fiber type
adds another layer to our understanding of how metabolic
dysregulation can impact overall physical function and
quality of life.

2.6 Modulation of autophagy

RBP4 impairs autophagy by activating the mechanistic target of
rapamycin complex 1, inhibiting autophagy initiation (Mizushima
and Komatsu, 2011). Impaired autophagy leads to the accumulation
of dysfunctional mitochondria and proteins, contributing to
insulin resistance, oxidative stress, and inflammation, further
impairing metabolic function. Enhancing autophagy may represent
a therapeutic strategy to mitigate RBP4-induced metabolic
dysfunction.

2.7 Induction of muscle atrophy and
pyroptosis

RBP4 promotes muscle-specific ubiquitin ligases, such as
atrogin-1 and muscle RING-finger protein-1, increasing protein
degradation (Bodine et al., 2001). Zhang et al. demonstrated that
RBP4 exacerbates denervation-induced muscle atrophy via the
STRA6-dependent pathway (Zhang et al., 2024). RBP4 induces
pyroptosis in muscle cells by interacting with NOD-, LRR- and
pyrin domain-containing protein 3 (NLRP3) inflammasomes
(Zhang et al., 2021; Zhang et al., 2024), contributing to
muscle cell loss and atrophy. Pyroptosis amplifies inflammatory
responses, leading to further tissue damage and functional
impairment.

To clearly illustrate the multiple pathways through which RBP4
affects skeletal muscle, Figure 1 provides a schematic representation
of the molecular mechanisms by which RBP4 mediates insulin
resistance in skeletal muscle cells.

3 Molecular mechanisms of RBP4 in
cardiac muscle

In cardiac muscle, RBP4 plays a crucial role in various
pathophysiological processes, including cardiac remodeling,
fibrosis, oxidative stress, and energymetabolism.The effects of RBP4
on the heart are multifaceted, involving complex signaling cascades
and interactions with various cellular components. Understanding
these mechanisms is essential for developing targeted
therapies for cardiovascular diseases associated with metabolic
dysfunction.

3.1 Promotion of cardiac hypertrophy

RBP4 promotes cardiomyocyte hypertrophy through activation
of the MAPK/ERK pathway, stimulating ERK1/2 phosphorylation
and enhancing hypertrophic gene transcription (Liu et al., 2021;
Gao et al., 2016), increasing expression of atrial natriuretic factor
and brain natriuretic peptide. RBP4 stimulates the PI3K/Akt/mTOR
pathway, leading to increased protein synthesis and cell growth
(Molkentin, 2004). RBP4 may increase intracellular calcium levels,
activating calcineurin, which dephosphorylates the nuclear factor
of activated T-cells, promoting hypertrophic gene expression
(Wilkins and Molkentin, 2004). Additionally, RBP4 can modulate
microRNA expression in cardiomyocytes, influencing gene
networks associated with hypertrophy and fibrosis (Zhao et al.,
2021), adding an epigenetic layer to its impact on
cardiac remodeling.

3.1.1 Induction of cardiac fibrosis
RBP4 increases transforming growth factor-beta one and

connective tissue growth factor expression in cardiac fibroblasts
(Bujak and Frangogiannis, 2007b), stimulating fibroblast activation
and collagen synthesis. RBP4 alters matrix metalloproteinase
activity, disrupting the balance between matrix degradation and
synthesis (Lindsey et al., 2016), and may influence the phenotypic
transformation of vascular smooth muscle cells under high-glucose
conditions via the RhoA/ROCK1 pathway (Zhou et al., 2023),
contributing to vascular remodeling and stiffness. The resulting
fibrosis impairs myocardial compliance and contributes to diastolic
dysfunction.

3.2 Enhancement of oxidative stress and
apoptosis

RBP4 enhances ROS production by activating NADPH
oxidase components (Takac et al., 2011) and impairing electron
transport chain function (Madamanchi and Runge, 2007),
leading to excess ROS. Elevated ROS levels induce oxidative
damage and activate apoptotic pathways in cardiomyocytes. RBP4
modulates Bcl-2 family proteins, decreasing anti-apoptotic Bcl-2
and increasing pro-apoptotic Bax, leading to caspase activation
(Whelan et al., 2012; Elmore, 2007). The intrinsic apoptotic
pathway culminates in cardiomyocyte death, contributing to cardiac
dysfunction and remodeling.
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3.3 Impairment of endothelial function

RBP4 reduces endothelial nitric oxide synthase expression
and activity, decreasing nitric oxide (NO) production (Kim et al.,
2006), leading to vasoconstriction and impaired vasodilation.
RBP4 increases adhesion molecules and chemokine expression
on endothelial cells (Gimbrone and García-Cardeña, 2016),
facilitating leukocyte adhesion and contributing to atherogenesis.
Elevated RBP4 levels are associated with increased arterial
stiffness (Armeni et al., 2021), underscoring its role in vascular
aging and stiffness.

3.3.1 Disruption of calcium homeostasis
RBP4 affects sarcoplasmic reticulum Ca2+-ATPase, decreasing

its expression and impairing calcium reuptake (Bers, 2002), leading
to diastolic calcium overload and systolic dysfunction. It alters
the ryanodine receptor function, affecting calcium release during
excitation-contraction coupling (Hegyi et al., 2019). Disrupted
calcium homeostasis activates pathways promoting hypertrophic
gene expression (Wilkins and Molkentin, 2004; Sag et al., 2009),
contributing to cardiac dysfunction.

3.3.1.1 Alteration of cardiac energy metabolism
RBP4 decreases PPARα activity, reducing fatty acid oxidation

gene expression (Finck and Kelly, 2006) and shifting substrate
utilization toward glucose metabolism. Under stress conditions,
reliance on glucose metabolism is less efficient and may
exacerbate energy deficits. RBP4 impairs mitochondrial biogenesis
and function, reducing ATP production and contributing
to energy deficits in the myocardium (Lesnefsky et al.,
2001), impairing contractile function, and promoting
pathological remodeling.

3.3.2 Induction of cardiomyocyte pyroptosis
RBP4 induces pyroptosis in cardiomyocytes by interacting

with the NLRP3 inflammasome, leading to gasdermin D cleavage
(Zhang et al., 2021; Wang et al., 2019), resulting in inflammatory
cell death and releasing pro-inflammatory cytokines such as IL-
1β and IL-18. This contributes to cardiac injury post-myocardial
infarction, amplifies inflammation, exacerbates tissue damage,
and impairs cardiac repair mechanisms. The diverse effects
of RBP4 on cardiac muscle highlight the complex interplay
between metabolic dysfunction and cardiovascular health. The
ability of RBP4 to induce both hypertrophy and cell death
(through apoptosis and pyroptosis) underscores the delicate balance
in cardiac physiology and the potential for RBP4 to tip this
balance toward pathological outcomes. Moreover, the impact
of RBP4 on cardiac energy metabolism suggests a potential
link between systemic metabolic disorders and heart failure, a
connection that warrants further investigation (Finck and Kelly,
2006; Lesnefsky et al., 2001; Wang et al., 2019).

Figure 2 comprehensively depicts the molecular mechanisms
through which RBP4 induces cardiac dysfunction via its
multifaceted effects on endothelial cells, cardiac fibroblasts, and
cardiomyocytes.

4 Clinical implications

Elevated serum RBP4 levels are associated with insulin
resistance and T2DM, correlating with impaired glucose tolerance
and hyperinsulinemia (Takebayashi et al., 2007; Cho et al., 2006).
Meta-analyses confirm the association between high RBP4 levels
and increased T2DM risk (Tan et al., 2024; Zabetian-Targhi et al.,
2015). In obesity and metabolic syndrome, RBP4 levels correlate
with markers of metabolic dysregulation (Nono and Blüher, 2021;
Dadej et al., 2022). Beyond statistical associations, multiple lines
of evidence establish RBP4 as an independent prognostic risk
factor for cardiovascular disease. Prospective cohort studies with
multivariate adjustment for traditional risk factors demonstrate
that elevated RBP4 levels independently predict future adverse
cardiovascular events with hazard ratios ranging from 1.80 to
3.26 for intermediate and high RBP4-based scores, respectively
(Qian et al., 2022; Chen et al., 2021). Ye et al. (2023) developed
and validated an RBP4-based multimarker score that significantly
improved risk prediction accuracy beyond established risk factors
(net reclassification improvement of 0.24, 95% CI, 0.15–0.34; P
< 0.001). Mechanistically, the direct pathophysiological effects
of RBP4 on vascular inflammation, endothelial dysfunction,
and cardiac remodeling provide strong biological plausibility
for its causal role in cardiovascular pathogenesis, as evidenced
by interventional studies showing that modulation of RBP4
levels directly affects cardiovascular outcomes (Ji et al., 2022;
Schiborn et al., 2022; Li et al., 2020). High RBP4 levels predict
coronary artery disease (Qian et al., 2022; Perumalsamy et al., 2021),
correlate with atherosclerosis severity (Chen et al., 2021; Ye et al.,
2023), and are associated with cardiac remodeling in heart failure
(Li et al., 2020; Christou et al., 2023). RBP4 levels are increased in
gestational diabetes mellitus (Wu et al., 2022; Leca et al., 2024), non-
alcoholic fatty liver disease (NAFLD) (Huang andXu, 2022;Hu et al.,
2023), and may be linked to neurodegenerative diseases such as
amyotrophic lateral sclerosis (Yosry et al., 2022). Additionally, RBP4
levels are associatedwith carotid intima-media thickness, suggesting
a role in early atherosclerosis (Rychter et al., 2024), and serve as a
potential biomarker for sarcopenia in older adults, correlating with
changes in lean mass (Chang et al., 2023).

Pharmacological interventions targeting RBP4 include
fenretinide, a synthetic retinoid reducing RBP4 synthesis and
secretion, thereby improving insulin sensitivity (Napoli, 2012);
thiazolidinediones decreasing RBP4 levels by activating PPARγ
(Cho et al., 2006); and DPP-4 inhibitors that may reduce RBP4
levels and exert anti-inflammatory effects (Kim et al., 2015). The
development of RBP4 antagonists, such as small molecules or
antibodies inhibiting RBP4 function, shows promise in preclinical
studies (Kim and Priefer, 2021; Oluwamodupe and Adeleye,
2023). Targeting the RBP4-STRA6 signaling pathway offers
therapeutic potential in mitigating insulin resistance and β-cell
dysfunction (Huang et al., 2021; Perumalsamy et al., 2021). Lifestyle
modifications, including dietary interventions and exercise, reduce
RBP4 levels and improve metabolic parameters (Dadej et al.,
2022; Ghorbanian et al., 2023b). High-intensity interval training
decreases RBP4 levels and improves insulin sensitivity in metabolic
syndrome (Ghorbanian and Saberi, 2023a), and weight loss
through bariatric surgery also reduces RBP4 levels and improves
metabolic outcomes (Hany et al., 2022).
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Measuring RBP4 levels aids in identifying individuals at
risk for metabolic and cardiovascular diseases, with changes in
RBP4 levels reflecting intervention effectiveness. Combining RBP4
with other biomarkers improves prognostic accuracy for adverse
cardiovascular events (Flores-Cortez et al., 2022; Ye et al., 2023),
and an RBP4-based multimarker score has been proposed as
a prognostic tool for patients with acute coronary syndrome
(Ye et al., 2023). RBP4 could be integrated into multimarker
panels for risk stratification and monitoring disease progression.
While the potential of RBP4 as a biomarker is promising, it is
important to note the challenges in its clinical application. The lack
of standardized measurement methods and established reference
ranges across different populations presents a significant hurdle
(Takebayashi et al., 2007; Cho et al., 2006). Additionally, the
specificity of RBP4 as a marker for particular diseases or conditions
remains a subject of debate, given its involvement in multiple
physiological and pathological processes (Tan et al., 2024; Zabetian-
Targhi et al., 2015). Future research should focus on developing
and validating robust, standardized assays for RBP4 quantification
and establishing population-specific reference values to enhance its
clinical utility.

5 Conclusion

RBP4 significantly impacts skeletal and cardiac muscle
physiology through diverse molecular mechanisms. Its involvement
in insulin resistance, inflammation, lipidmetabolism,mitochondrial
dysfunction, and apoptosis underscores its importance in metabolic
and cardiovascular diseases. RBP4 serves as a valuable biomarker
and a promising therapeutic target. Integrating findings from
extensive research enhances our understanding and highlights
potential interventions. Future research focusing on unraveling its
complex interactions and developing targeted therapies holds great
promise for improving patient outcomes. As our understanding
of RBP4 continues to evolve, this protein sits at the intersection of
multiple physiological and pathological processes.The complexity of
RBP4’s actions underscores the need for a systems biology approach
to fully elucidate its roles and potential as a therapeutic target.
While significant progress has been made, many questions remain
unanswered, particularly regarding the long-term effects of RBP4
modulation and its interactions with other metabolic regulators.
Future research will undoubtedly continue to unravel the intricate
web of RBP4’s actions, potentially revolutionizing our approach to
metabolic and cardiovascular diseases.

6 Future directions

Future research should focus on three key areas while
maintaining comprehensive investigation. First, elucidating
molecular mechanisms through identifying specific receptors
beyond STRA6 (Huang et al., 2021; Zhang et al., 2024),
and characterizing downstream signaling pathways. Advanced
technologies like CRISPR-Cas9 will be valuable for understanding
tissue-specific RBP4 functions and potential off-target effects
of therapies (Rychter et al., 2024; Yang et al., 2021). Second,
Developing RBP4-targeted therapeutics including small-molecule

antagonists and antibodies (Kim and Priefer, 2021; Oluwamodupe
and Adeleye, 2023), while exploring synergistic effects with
existing treatments. The RBP4-STRA6 signaling pathway offers
particular promise (Huang et al., 2021; Perumalsamy et al., 2021).
Third, integrating RBP4 assessment into personalized medicine
by identifying disease-associated RBP4 gene polymorphisms
(Rychter et al., 2024; Yang et al., 2021). and incorporating RBP4
into risk prediction models for patient stratification. Additional
exploration of RBP4’s role in neurodegenerative disorders
(Yosry et al., 2022), immune regulation (Yang et al., 2021), and
its interplay with other adipokines in epicardial adipose tissue
(Christou et al., 2023) may reveal novel intervention targets, as
could investigation of its effects on vascular smooth muscle cell
phenotypic transformation (Zhou et al., 2023).
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