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Hormone-switching islet cells:
parallels to transmitter-switching
neurons
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Although originating from different germ layers, pancreatic islet cells
and neurons share extensive similarities, both physiological (e.g., voltage-
dependent release of a bioactive molecule) and molecular (e.g., highly
similar composition of transcription factors and structural genes). Here we
propose that two seemingly unrelated phenomena recognized in these cell
types—neurotransmitter switching in neurons and the expression of two or
more hormones in individual islet cells—share a deep resemblance, potentially
reflecting an ancient molecular circuit of cell plasticity. Comparing and
contrasting dynamic hormone expression in islet cells and transmitter switching
in neurons may provide insights into the functions and underlying mechanisms
of these phenomena.
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Multi-hormonal cells and hormone switching in
pancreatic islets

A key characteristic of pancreatic islet cells is the expression of one of several hormones
(insulin, glucagon, somatostatin, or pancreatic polypeptide, and, with lower frequency,
ghrelin and gastrin), which defines their functional identity (Rieck et al., 2012;Walker et al.,
2021). It has been known for many years that during early development, islet cells often
co-express several hormones. Although originally considered to be progenitors for later
mono-hormonal cells, elegant lineage tracing experiments showed that most embryonic bi-
hormonal cells are eventually eliminated and that adult islet cells originate in fetalNeuroG3+
endocrine progenitor cells that differentiate into mono-hormonal cells (Herrera, 2000;
Gu et al., 2002). However, a recent study suggested that embryonic islet cells may switch the
hormone type that they produce; for example, glucagon+ cells in the embryo may switch
to insulin expression in adult life (Perez-Frances et al., 2022). Multi-hormonal cells also
appear in embryonic stem cell differentiation protocols aimed at generating beta cells, but
they are regarded as a developmental dead end to be avoided in directed differentiation
(Pagliuca et al., 2014; Rezania et al., 2014; Bruin et al., 2014; Veres et al., 2019). Overall, we
do not yet fully understand how such transient cells are formed at the molecular level, what
their evolutionary origin is, and what function they serve, if any.

A related phenomenon, likely more relevant physiologically, is observed when adult
islet cells are exposed to metabolic stress. This sometimes results in ectopic expression
of hormone genes, with or without the downregulation of the original, identity-defining
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TABLE 1 Features of multi-hormonal and hormone-switching islet cells and neurotransmitter switching.

Pancreas Brain

Cell type Islet cells Neurons

Key product Hormones Neurotransmitters

Stability of phenomenon Requires active transcription Requires active transcription

Switch phenomenon Bi/multi-hormonal cells, transdifferentiation Neurotransmitter coexpression and neurotransmitter
switching

Stimulus Developmental cues, glycemic stress, oxidative stress,
and beta cell ablation

Sustained change in electrical activity and
environmental stimuli (e.g., stress or drugs)

Result of switch Reprogramming of islet cell identity to another
mono-hormonal islet cell type, a multi-hormonal state,
or a hormone-negative state

Transmitter switching often reverses the sign of the
synapse: an excitatory transmitter is replaced by an
inhibitory transmitter or vice versa

Physiological significance Naturally occurring multihormonal cells typically
considered to represent a developmental error.
Hormone switching potentially a mechanism of
natural regeneration

Enhanced motor skills, social preference, camouflage,
depression, generalized fear, cognitive deficits, and
autistic-like behavior

Molecular mechanism Likely transcriptional derepression of hormones due to
the downregulation of key transcription factors that
also act as repressors

Transcriptional, at least in part; involvement of Lmx1b,
xTlx3, bcl11b, and Pax6

Effect of age Multi-hormonal cells form in early development;
evidence suggests that delta cells may reprogram to
beta cells in early postnatal life, while alpha cells may
reprogram in adult life

Reduced with advanced age

hormone. It was proposed that such a process taking place in insulin-
producing beta cells may contribute to beta cell failure in diabetes
(Talchai et al., 2012) and that in the reverse direction, alpha or delta
cellsmay respond to stress by acquiring beta cell identity and turning
on the expression of insulin, thus driving beta cell regeneration
(Chera et al., 2014; Thorel et al., 2010). Note that we are referring
here to hormone expression at the level of individual islet cells;
population-wide changes that alter the proportion of cell types in
islets—such as beta cell hyperplasia following the consumption of
a high-fat diet in mice or alpha cell hyperplasia when glucagon
receptor signaling is blocked—represent a different phenomenon,
achieved via the proliferation of normal mono-hormonal cells that
retain their molecular identity.

The molecular basis of islet cell plasticity has started to emerge
in recent years. Although islet cell identity appears to be a stable trait
(i.e., islet cells will never take on ductal or exocrine cell identity)
(Magenheim et al., 2023), the particular choice of the hormone
expressed (defining an islet cell type) is considerably plastic. Studies
of key transcription factors (TFs) in islets revealed that many such
TFs act as activators of a transcriptional program of a given islet
cell type while repressing the expression of alternative islet cell
programs. When such TFs are inactivated, the primary identity of
an islet cell is weakened, and alternative programs are de-repressed.
For example, when the Pax6 gene is disrupted in beta cells, they
turn on the expression of the hormones ghrelin, glucagon, and
somatostatin (Swisa et al., 2017a); when Pdx1 is disrupted in beta
cells or activated in alpha cells, glucagon or insulin expression
is induced (Yang et al., 2011; Gao et al., 2014); when Foxo1 is

disrupted, beta cells turn on the expression of multiple hormones
(Talchai et al., 2012); and when Nkx6.1 is disrupted in beta cells,
they acquire features of somatostatin+ delta cells (Taylor et al., 2013).
While most experiments along these lines have used genetically
engineered gene disruption, it has also been proposed that some
islet TFs, particularly those responsible for maintaining beta cell
identity, are sensitive to hyperglycemia-induced oxidative stress,
potentially contributing to the loss of beta cell identity in type 2
diabetes (Swisa et al., 2017b; Guo et al., 2013).Thus, general islet cell
identity is stable, but the maintenance of a particular cell identity
requires active transcriptional maintenance and is susceptible to
stress. The biological significance of this arrangement is not clear,
and the phenomenon is often observed as an indication of a
failed cellular state. Finally, a potentially related phenomenon is
hormone-negative islet cells. Such cells often appear in the context
of islet cell tumors; they retain the expression of many molecular
hallmarks of islet cells but express no hormones (Sobol et al., 1989).
The cellular origins of such cells and the underlying mechanism
are not known.

Similarity between islet cells and
neurons

Neurons and pancreatic islet cells share deep molecular and
functional similarities, although they originate in different germ
layers (ectoderm and endoderm, respectively), as shown originally
by classical chick-quail experiments (Le Douarin, 1988). Both
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FIGURE 1
Schematic of hormone switching and multi-hormone cells vs transmitter switching and transmitter co-expressing neurons (top); some characteristics
common to both processes (bottom).

cell types are typically post-mitotic and long-lived. Both are
characterized by the release of a signaling molecule through
a process involving altered membrane potential, calcium entry,
and fusion of secretory granules with the plasma membrane.
The nature of the secreted molecule is obviously different—islet
hormones are gene-encoded peptides released into the blood,
while neurotransmitters are typically small molecules acting short-
range through synapses. Nonetheless, there is a clear, extensive
similarity between islet cells and neurons, resulting from their
highly similar transcriptomes, including key transcription factors
and structural genes functioning in the secretion process. The
similarity between neurons and islet cells extends to pathologies. For
example, islet amyloid polypeptide (IAPP), a hormone co-secreted
with insulin frombeta cells, shares structural similaritywith amyloid
beta, which is co-secreted with neurotransmitters from neurons.
Oligomers of these proteins are proposed to contribute to the
development of type 2 diabetes and Alzheimer’s disease, respectively
(Westermark et al., 2011).

At a more abstract level, islet cells and neurons both generate
behaviors: islet cells affect the behaviors of internal organs, and
neurons affect behaviors that are evident outside the body. In
this study, we draw attention to the retention by both neurons
and islet cells of a unique type of plasticity, allowing for a
switch of identity even without cell division or differentiation
from stem cells. We argue that different aspects of this process
are observed in neurons and islet cells and that elucidating their
fundamental similarities may provide valuable insights for both
fields of research.

Neurotransmitter switching

Like islet cells, neurons of a given type are specified to
produce and release a specific neurotransmitter, which defines their
identity and function. Importantly, neurons can sometimes change
the neurotransmitter that they produce, a phenomenon termed
neurotransmitter switching. This has profound consequences on
brain function and plasticity. For example, transmitter switching has
beneficial effects on learning motor skills (Li and Spitzer, 2020),
modulating social preference (Dulcis et al., 2017), and generating
camouflage behavior (Dulcis and Spitzer, 2008) and detrimental
effects, including depression (Dulcis et al., 2013), cognitive deficits
(Pratelli et al., 2024), and generalized fear (Li et al., 2024). The
triggers for neurotransmitter switching are typically external cues,
such as light exposure or altered sensory input, and they may bring
about a long-term, stable change in cell identity.

The molecular mechanisms underlying neurotransmitter
switching are not fully understood, but evidence suggests that
sustained changes in neuronal activity play a role (Li et al.,
2020). Like double-hormone positive fetal islet cells, embryonic
neurons may have a “mixed” phenotype, producing more than one
transmitter, and theymay later switch (Root et al., 2008; Pereira et al.,
2015; Kotak et al., 1998). Neurotransmitter switching involves key
transcription factors such as Lmx1b, Nkx2.2 (Demarque and Spitzer,
2010), Tlx3 (Guemez-Gamboa et al., 2014; Marek et al., 2010),
Bcl11b, andPax6 (Dulcis et al., 2017); notably, several of these factors
are also known players in islet cell biology and determining the
hormone produced by a cell, e.g., Pax6 (Swisa et al., 2017a), Nkx2.2
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(Gutiérrez et al., 2017), and Lmx1B (Schreiber et al., 2021). Adult
post-mitotic neurons require active maintenance of their identity,
including the transmitter they produce, through a transcriptional
program (Deneris and Hobert, 2014). Interestingly, transmitter
switching may change the valence, e.g., change the product of a cell
from excitatory to inhibitory; this resembles a switch in hormone
production in an islet cell that flips the metabolic impact of a cell,
e.g., from a glucagon-positive alpha cell charged with increasing
blood glucose levels to an insulin-positive beta cell that acts to
reduce blood glucose levels. Table 1 and Figure 1 highlight some key
features of multi-hormonal or hormone-switching islet cells and
neurotransmitter switching and point out common themes.

Lessons for islet cell biology and
neurobiology

Neurotransmitter switching is an active, regulated response of
neurons to altered environments, leading to changes in behavior
that can be beneficial (Li and Spitzer, 2020) or detrimental (Li
and Spitzer, 2020; Dulcis et al., 2013; Pratelli et al., 2024; Li et al.,
2024; Godavarthi et al., 2024). In contrast, the altered hormonal
identity of specific islet cells (i.e., a cell autonomous phenomenon)
is typically regarded as a non-physiological process representing
developmental errors or a pathological process contributing to the
disruption of glucose metabolism and diabetes. One exception is
the proposal that near-total loss of beta cells may trigger a switch
in the molecular identity of alpha or delta cells, leading to the
partial regeneration of beta cell mass through alpha or delta cell
reprogramming (Chera et al., 2014; Thorel et al., 2010). Based
on knowledge of neurotransmitter switching, we hypothesize that
additional environmental triggers may reveal novel physiological
aspects of plastic islet cell identity; for example, a switch in diet
composition could lead to the adaptive alteration of hormone
expression at the single-cell level. In other words, neurotransmitter
switching should inspire islet biologists to search for biological
contexts in which the appearance of multi-hormonal cells or
hormone switching is an adaptive, regulated response.

On the other hand, the transcriptional regulation of islet
hormone expression and repression appears to be better established
than the understanding of the transcriptional program of
neurotransmitter switching. We hypothesize that, similar to the
situation in islets, key neuronal transcription factors (some also
expressed in islet cells) act as both gene activators and repressors,
controlling the decision of individual neurons regarding which
transmitters are produced andwhich are silenced. Furthermore, islet
studies point to transcription factors as sensors of oxidative stress
caused by excessive glucose metabolism; a similar process may be at
play in neurons that switch transmitters. Studies of gene expression
and chromatin accessibility using single-cell or single-nucleus
RNA sequencing and single-cell ATAC-sequencing in switching
islet cells and switching neurons could be productiveand mutually

informative regarding aspects of the phenomenon of switching that
are not fully understood in both fields.
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