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Unlocking hematopoietic stem
cell potential: integrative
computational approaches for
genomic and transcriptomic
analysis

Pawan Kumar Raghav'*, Basudha Banerjee? and Rajni Chadha?

!Immunogenetics and Transplantation Laboratory, Department of Surgery, University of California San
Francisco, San Francisco, CA, United States, ?BioExIn, Delhi, India

Hematopoietic stem cells (HSCs) sustain lifelong hematopoiesis through their
capacity for self-renewal and multilineage differentiation. However, the isolation
and functional characterization of HSCs remain challenging due to their
cellular heterogeneity and dynamically regulated transcriptional and epigenetic
landscapes. Advances in experimental and computational biology, including
single-cell RNA sequencing (scRNA-seq), chromatin immunoprecipitation
sequencing (ChIP-seq), network inference algorithms, and machine learning,
have improved our ability to resolve transcriptional states, trace lineage
trajectories, and reconstruct gene regulatory networks (GRN) at single-cell
resolution. These approaches enable the discovery of novel HSC subtypes
and regulatory factors, and facilitate the integration of multi-omics data to
uncover epigenetic and transcriptional mechanisms that drive stem cell fate
decisions. Additionally, machine learning models trained on high-throughput
datasets provide predictive power for identifying novel enhancers, transcription
factors, and therapeutic targets. This review underscores the synergistic role of
computational tools in deciphering HSC biology and highlights their potential to
improve stem cell therapies and precision treatments for hematologic disorders.

KEYWORDS
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1 Introduction

Hematopoiesis is the process by which hematopoietic stem cells (HSCs) proliferate
and differentiate into all blood cell lineages, ensuring the continuous production of
blood cells throughout an organism’s life (Ng and Alexander, 2017). HSCs can be
sourced from bone marrow, peripheral, and umbilical cord blood (Lee and Hong, 2020).
Understanding the regulation of HSC self-renewal and lineage differentiation is crucial for
both basic research and clinical applications (Barriga et al., 2012). HSC transplantation
remains a cornerstone in treating hematologic malignancies, autoimmune disorders, and
immunodeficiencies, where their self-renewal capacity is critical for long-term engraftment
and therapeutic success (Weissman and Shizuru, 2008). Despite their substantial clinical
utilization, achieving a highly purified HSC population for transplantation continues to pose
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significant challenges. Standard therapeutic protocols often rely
on mobilized peripheral blood or whole bone marrow, which
contains a heterogeneous mixture of progenitor and mature
cells. Consequently, the proportion of true, self-renewing HSCs
is relatively low (Skulimowska et al., 2022). For successful
transplantation, an optimal dose of approximately 2 x 10°® CD34*
cells per kilogram of the recipient’s body weight is recommended
(Tricot et al, 2010). However, CD34 expression alone does not
guarantee stem cell purity or functional potential. Pharmacological
agents like NSC87877, a c-Kit inhibitor, when combined with
stem cell factor (SCF), have shown promise for enhancing HSC
proliferation post-isolation (Raghav et al,, 2018). Increasing the
accessibility of highly purified, self-renewing HSCs can enhance
therapeutic outcomes and pave the way for novel treatment
approaches (Negrin et al., 2000; Logan et al., 2012; Czechowicz
and Weissman, 2010).

Computational approaches have emerged as powerful
tools to overcome the limitations of HSC identification and
characterization by tracing complex gene regulatory interactions
(GRN) and epigenetic landscapes that govern HSC fate. Techniques
such as single-cell RNA sequencing (scRNA-seq), chromatin
immunoprecipitation sequencing (ChIP-seq), network inference
algorithms, and machine learning enable the mapping of
transcriptional profiles, regulatory networks, and functional
heterogeneity at the single-cell level (Kamimoto et al, 2023;
Moignard et al., 2015; Wilson et al., 2015; Wang et al., 2024).

Among these technologies, scRNA-seq has proven particularly
valuable in revealing transcriptional heterogeneity within HSC
populations. It provides high-resolution insights into the lineage
commitment and developmental trajectories of HSCs (Wilson et al.,
2015; Hérault et al., 2022; Velten et al., 2017). Analytical tools such
as FastQC (Andrews, 2010), STAR (Dobin et al., 2013; Du et al.,
2020), Seurat (Butler et al., 2018), SCANPY (Wolf et al., 2018),
DESeq2 (Love et al., 2014), CellAssign (Zhang et al., 2019), edgeR
(Robinson et al., 2010), and Monocle (Trapnell et al., 2014; Qiu et al.,
2017a; Qiuetal., 2017b) are commonly used to process and interpret
scRNA-seq data. ChIP-seq complements transcriptomic approaches
by identifying genome-wide transcription factor (TF) binding sites
and epigenetic modifications that regulate HSC self-renewal and
differentiation (Cui et al., 2009; Joshi et al., 2013). Tools such as
Bowtie2 (Langmead and Salzberg, 2012), MACS2 (Zhang et al,,
2008), SICER (Xu et al, 2014), and GREAT (McLean et al,
2010) enable precise mapping of protein-DNA interactions and
chromatin dynamics during HSC development. Network inference

Abbreviations: BAM, Binary Alignment Map; CCR, Cell Cycle Regression;
ChIP-Seq, Chromatin Immunoprecipitation Sequencing; DAVID, Database
for Annotation, Visualization, and Integrated Discovery; DBSCAN, Density-
Based Spatial Clustering of Applications with Noise; DEGs, Differentially
Expressed Genes; DGE, Differential Gene Expression; GO, Gene Ontology;
GRN, Gene Regulatory Network; GSEA, Gene Set Enrichment Analysis;
HSCs, Hematopoietic Stem Cells; IPA, Ingenuity Pathway Analysis; MAST,
Model-based Analysis of Single-cell Transcriptomics; NGS, Next-Generation
Sequencing; PCA, Principal Component Analysis; PRC2, Polycomb
Repressive Complex 2; SCDE, Single-Cell Differential Expression; SCF,
Stem Cell Factor; scRNA-Seq, Single-cell RNA-Sequencing; SVM, Support
Vector Machines; TFs, Transcription Factors; t-SNE, t-Distributed Stochastic
Neighbor Embedding; UMAP, Uniform Manifold Approximation and
Projection; UMIS, Unique Molecular Identifiers; VSN, Variance-Stabilizing
Normalization; WGCNA, Weighted Gene Co-expression Network Analysis.
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algorithms are another critical layer in decoding the regulatory
circuitry of HSCs. By integrating large-scale expression data, these
methods uncover interactions among TFs and their target genes,
thereby identifying pivotal regulators such as PU.1, GATA2, LMO?2,
and MYB (Velten et al, 2017; Wilson et al., 2016; Rodriguez-
Fraticelli et al., 2020; Moignard et al, 2013). Tools such as
ARACNE (mutual information-based) (Margolin et al., 2006),
WGCNA (correlation-based module detection) (Langfelder and
Horvath, 2008), Cytoscape (Shannon et al., 2003), and GeneNet
(Bayesian network inference) (Ananko et al., 2002) are widely used
for inferring and visualizing these networks. Machine learning
techniques further enhance our ability to model gene expression,
predict regulatory elements, and analyze chromatin accessibility
in HSCs (Xiang et al., 2020; Fortelny and Bock, 2020; Lal et al.,
2021). Scikit-Learn, DeepCpG, and ChromNet, provide robust data
integration, feature selection, model training, and predictive analysis
capabilities (Angermueller et al., 2017; Lundberg et al., 2016; Scikit-
Learn, 2016; Shannon et al., 2003).

Computational approaches revolutionize the understanding of
HSC biology by unraveling cellular heterogeneity, elucidating
transcriptional and epigenetic control mechanisms, and identifying
biomarkers and therapeutic targets. Figure 1 presents a comprehensive
framework for unraveling the complexity of HSC regulation by
integrating multi-omics data with advanced computational pipelines.
This framework ultimately facilitates the isolation and functional
validation of pure HSC populations for therapeutic applications.

2 Approaches for analyzing HSC
genomics and transcriptomic data

Following high-throughput data generation and expression
quantification, various computational approaches are employed to
analyze genomic and transcriptomic data in HSCs (Figure 1). These
methods enable in-depth exploration of transcriptional heterogeneity,
regulatory mechanisms, and lineage trajectories. scRNA-seq is
a powerful tool for dissecting HSC heterogeneity, allowing the
identification of novel cell types, functional states, and regulatory
networks (Wilson et al., 2015; Hérault et al., 2022). ChIP-seq reveals
genome-wide TF binding sites and epigenetic regulation, including
cis-regulatory landscapes of HSCs (Qi et al., 2021). Network inference
algorithms use high-throughput expression data to infer regulatory
interactions among genes or proteins (Cahan et al, 2021). These
approaches have been used to reconstruct transcriptional networks
involved in hematopoietic development. Application of network
inference on single-cell gene expression data decodes early blood
development regulatory programs (Moignard et al., 2015). Machine
learning algorithms, including support vector machines (SVMs),
random forests, and deep learning, are employed to predict regulatory
interactions and identify novel gene networks between endothelial
cells and HSCs (Wang et al., 2024).

3 scRNA-seq in HSC analysis

scRNA-seq is a technique that enables high-resolution
characterization of cellular heterogeneity by profiling gene
expression at the single-cell level (Hérault et al., 2022). scRNA-seq
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FIGURE 1
Computational approaches for HSCs' genomic and transcriptomic data analysis. Illustrates the integrative workflow for analyzing bone marrow-derived
HSCs using NGS and high-performance computing. scRNA-seq used to identify progenitor HSCs, resolve transcriptional heterogeneity, and explore
cell state transitions using tools such as Seurat, SCANPY, Monocle, DESeq2, DAVID, and CellRanger. ChIP-seq identifies transcription factor binding
sites and assesses gene regulatory dynamics, with key tools including FastQC, Bowtie, MACS2, SICER, Enrichr, and GREAT. Network inference
approaches, such as GeneNet, GENIE3, WGCNA, ARACNE, and Cytoscape, enable the reconstruction of gene regulatory networks governing HSC fate
decisions. Machine learning methods, including PyTorch, DeepCpG, ChromNet, scikit-learn, and TensorFlow, are applied to identify biomarkers, predict
regulatory elements, and model gene expression patterns. NGS: next-generation sequencing; scRNA-seq: Single-cell RNA sequencing; ChlIP-seq:
Chromatin immunoprecipitation sequencing.

has been instrumental in uncovering the transcriptional diversity
of HSCs and their progeny. This groundbreaking approach has
unveiled novel cell states, differentiation trajectories, and regulatory
networks that were previously unknown (Hérault et al, 2022;
Ivanova et al., 2002). Seminal studies have utilized scRNA-seq to
identify and functionally characterize distinct HSC subpopulations.
These studies revealed cells with transcriptional signatures linked
to quiescence, immune activation, and a megakaryocyte-erythroid
lineage bias (Wilson et al., 2015; Velten et al., 2017; Rothenberg,
2021). The technique has also delved into the differentiation
of lineage-specific T and B lymphocytes and has identified
transcriptional regulators that commit cells to these lineages
(Velten et al, 2017; Rothenberg, 2021). Beyond steady-state
hematopoiesis, sScRNA-seq has unveiled how radiation affects the
transcriptional programs of HSCs, shedding light on stress-induced
alterations in quiescence and survival pathways. (Gao et al., 2021;
Fast et al., 2021). scRNA-seq offers unprecedented insights into the
molecular mechanisms that govern HSC identity and function.
(Velten et al, 2017; Rodriguez-Fraticelli et al., 2018). Table 1
outlines the fundamental computational processes involved in

Frontiers in Cell and Developmental Biology

03

analyzing scRNA-seq data and the commonly employed tools for
HSC-specific research.

3.1 Quality control and preprocessing

scRNA-seq generates high-dimensional raw data that requires
extensive preprocessing to ensure analytical accuracy and
biological validity (Zheng et al., 2017). This crucial step involves
removing technical noise and low-quality cells before downstream
analyses. The preprocessing pipeline typically encompasses cell
quality assessment, read alignment, unique molecular identifier
(UMI) counting, gene expression quantification, and quality
filtering.

Cell quality control serves as the foundation and is an essential
step for excluding cells with poor-quality reads or abnormal
transcript profiles. Tools such as Cell Ranger, Seurat, and RSeQC are
being widely used for this purpose (Butler et al., 2018; Zheng et al.,
2017; Wang et al., 2012). Cell Ranger evaluates sequencing quality,
total read count, and genome-mapping percentages, while Seurat
utilizes metrics such as the number of detected genes, UMI counts,
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TABLE1 Commonly used computational tools for the analysis of HSCs' scRNA-seq data. Outlines key analytical approaches, including quality control,
normalization, dimensionality reduction, clustering, differential gene expression analysis, pseudotime trajectory inference, and network analysis. For
each step, representative tools are listed alongside corresponding references. scRNA-seq, single-cell RNA sequencing; HSCs, Hematopoietic stem cells;
PCA, Principal component analysis; t-SNE, t-Distributed Stochastic Neighbor Embedding; UMAP, Uniform Manifold Approximation and Projection;
DEGs, Differentially expressed genes; GO, Gene ontology.

Approaches Steps Tools References
Cell quality control FastQC Andrews (2010)
RSeQC Wang et al. (2012)
Read alignment STAR Dobin et al. (2013)
HISAT Kim et al. (2015)
i X Unique molecular identifier Cell Ranger Zheng et al. (2017)
1 trol and
Quality control and preprocessing Scater McCarthy et al. (2017)
Gene expression quantification HTSeq Anders et al. (2015)
featureCounts Liao et al. (2014)
Quality filtering of cells and genes Seurat Butler et al. (2018)
SCANPY Wolf et al. (2018)
Normalization of sequencing depth DESeq2 Love et al. (2014)
scran Lun et al. (2016)
Normalization
Normalization of gene expression scran Lun et al. (2016)
ZINB-WaVE Risso et al. (2018)
PCA Seurat Butler et al. (2018)
SCANPY Wolf et al. (2018)
t-SNE Seurat Butler et al. (2018)
SCANPY Wolf et al. (2018)
Dimensionality reduction
UMAP UMAP Ghojogh et al. (2021)
SCANPY Wolf et al. (2018)
Diffusion maps destiny Angerer et al. (2016)
SCANPY Wolf et al. (2018)
Hierarchical clustering Seurat Butler et al. (2018)
SCANPY Wolf et al. (2018)
k-means clustering Seurat Butler et al. (2018)
SCANPY Wolf et al. (2018)
Clustering and cell type identification
Density-based clustering Seurat Butler et al. (2018)
SCANPY Wolf et al. (2018)
Cluster identification based on marker Seurat Butler et al. (2018)
genes CellAssign Zhang et al. (2019)
DEGs between cell types DESeq2 Love et al. (2014)
edgeR Robinson et al. (2010)
Differential gene expression analysis
GO enrichment analysis clusterProfiler Yuetal. (2012)
GSEA Subramanian et al. (2005)
Ordering of cells along a developmental Monocle Trapnell et al. (2014)
trajectory Slingshot Street et al. (2018)
Cell trajectory and pseudotime analysis
Inference of gene expression dynamics Monocle Trapnell et al. (2014)
along the trajectory scVelo Bergen et al. (2020)
Network analysis Construction of gene co-expression WGCNA Langfelder and Horvath (2008)
networks SCENIC Aibar et al. (2017)
Frontiers in Cell and Developmental Biology 04 frontiersin.org
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and mitochondrial gene content to identify and exclude low-
quality cells (Butler et al., 2018).

Read alignment maps sequencing reads to a reference
genome. STAR and HISAT are the most commonly used aligners
(Dobin et al., 2013; Kim et al., 2015). STAR offers ultrafast and
high-accuracy alignment through a two-pass strategy, while HISAT
employs hierarchical indexing to efficiently map spliced reads.

UMI counting enables accurate quantification of gene
expression by distinguishing between true transcripts (UMIs,
short DNA sequences that tag individual mRNA molecules)
and PCR duplicates (Smith et al, 2017). Cell Ranger, Drop-
seq, and Scater facilitate UMI counting (Macosko et al., 2015;
Baran-Gale et al., 2018; McCarthy et al., 2017).

Gene expression quantification typically involves counting
UMIs associated with each gene. Commonly used tools include
Cell Ranger, HTSeq, featureCounts, and Kallisto (Anders et al.,
2015; Du et al, 2020; Zheng et al., 2017; Liao et al, 2014).
Cell Ranger quantifies gene expression using the feature-barcode
matrix generated from UMI counting (Zheng et al., 2017). Kallisto
employs pseudo-alignment for faster transcript quantification
without the need for complete read mapping (Bray et al., 2016;
Briining et al., 2022). Quality filtering of cells and genes ensures
that only relevant data is retained for downstream analysis.
Seurat and Cell Ranger apply user-defined thresholds based on
gene detection, UMI counts, and mitochondrial gene expression
(Butler et al., 2018; Zheng et al, 2017). Genes expressed in
insufficient cells or at extremely low levels are filtered out to
minimize noise and enhance statistical power (Wolf et al., 2018).
These preprocessing steps are crucial for ensuring the reliability
of scRNA-seq analysis. Their extensive validation in HSC studies
forms the foundation for robust interpretation of single-cell
transcriptomic data.

3.2 Normalization

Normalization is a critical step in scRNA-seq data analysis,
addressing variability introduced by differences in sequencing
depth, capture efficiency, and RNA content across cells (Cuevas-
Diaz Duran et al., 2024). Appropriate normalization ensures that
observed gene expression differences reflect biological variation
rather than technical noise. Several tools have been developed to
normalize scRNA-seq workflows, each employing distinct strategies
to correct biases.
adjusts
using a variance-stabilizing normalization (VSN) approach,

SCnorm for cell-specific technical variability

allowing accurate comparison of RNA levels
across cells (Bacher et al., 2017).

Seurat, a widely used R package for scRNA-seq analysis,

expression

offers multiple normalization methods. These include global-scaling
approaches and Cell Cycle Regression (CCR), which corrects cell
cycle-related transcriptional effects that can confound downstream
clustering and trajectory analysis (Butler et al., 2018).

DESeq2 is an R package for differential expression analysis,
including normalization methods for scRNA-seq data. It uses a
model-based approach to estimate size factors that account for
differences in sequencing depth across cells (Love et al., 2014).
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Other tools, such as scran and ZINB-WaVE, offer alternative
frameworks for normalization, particularly for sparse and zero-
inflated single-cell datasets (Lun et al, 2016; Risso et al., 2018).
The appropriate normalization strategy is essential for accurate
differential expression, clustering, and trajectory inference. The
choice often depends on the specific characteristics of the dataset
and the downstream analytical goals.

3.3 Dimensionality reduction

Dimensionality reduction transforms high-dimensional gene
expression data into a lower-dimensional space while preserving
essential biological variation (Townes et al., 2019). This facilitates
data visualization, clustering, and trajectory inference by mitigating
noise and computational complexity. Several widely used techniques
are applied for HSC scRNA-seq studies.

Principal component analysis (PCA) is a linear method that
identifies orthogonal axes (principal components) capturing the
variance in gene expression. It is typically the first step in most
scRNA-seq workflows and is implemented in tools such as Seurat
and SCANPY (Butler etal., 2018; Wolfetal., 2018; Stuart etal., 2019).

t-Distributed stochastic neighbor embedding (t-SNE) is
a nonlinear technique that emphasizes local data structure,
making it helpful in visualizing distinct cell populations based
on expression similarity. It is commonly employed in Seurat
and SCANPY for cluster visualization (Butler et al., 2018;
Wolf et al., 2018; Stuart et al., 2019).

Uniform manifold approximation and projection (UMAP) is
a recent nonlinear method that preserves local and global data
structures. UMAP has gained popularity due to its superior
scalability and speed over t-SNE, particularly for large datasets.
It is supported by SCANPY, and Harmony (Wolf et al., 2018;
Korsunsky et al., 2019; Ghojogh et al., 2021).

Diffusion maps model gene expression similarity using diffusion
distances, which are robust to noise and particularly useful for
capturing continuous trajectories and identifying rare cell states.
Destiny and Diffusion Maps are commonly used tools for this
purpose (Angerer et al., 2016; Haghverdi et al., 2015).

3.4 Clustering

Clustering identifies transcriptionally distinct HSC populations
within complex tissues such as the bone marrow (Butler et al.,
2018). Multiple clustering strategies have been developed,
each with strengths suited to different data structures and
biological contexts.

Hierarchical clustering is a widely used method based on the
recursive merging of similar cells or genes. The algorithm constructs
adendrogram to represent the nested relationships between clusters,
which can then be cut at a desired resolution to define distinct
groups. This method is implemented in tools such as Seurat,
SCANPY, and Monocle, and has been applied extensively in HSC
studies to resolve lineage-specific transcriptional states (Wolf et al.,
2018; Qiu et al., 2017a; Satija et al., 2015).

k-means clustering partitions cells into k user-defined clusters
by iteratively assigning cells to the nearest centroid and updating
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centroid positions until convergence. Despite its simplicity, k-
means remains effective for well-separated clusters and is supported
in frameworks such as Scikit-Learn and Cell Ranger (Scikit-
Learn, 2016; Zheng et al., 2017).

Density-based clustering, including Density-Based Spatial
Clustering of Applications with Noise (DBSCAN), identifies
clusters based on cell density. This method captures clusters of
varying shapes and sizes, excluding outliers or rare cell types as
noise. DBSCAN is available in Seurat and SCANPY and has been
used to delineate heterogeneous populations within HSC datasets
(Butler et al., 2018; Wolf et al., 2018; Satija et al., 2015).

Marker gene-based annotation represents a supervised approach
that leverages prior knowledge of gene expression signatures specific
to known cell types. Tools such as SingleR and CellAssign compare
transcriptomes against reference datasets or predefined marker
panels to assign cell identities. This approach is particularly valuable
for validating cluster annotations or transferring labels across
datasets (Zhang et al., 2019; Aran et al., 2019).

3.5 Differential expression and enrichment
analysis

Differential gene expression (DGE) analysis is a key component
of scRNA-seq workflows, enabling the identification of genes
that vary significantly across cell types, states, or conditions.
DGE analysis has been instrumental in uncovering transcriptional
regulators of HSCs associated with differentiation, aging, and lineage
commitment (Wang et al., 2019). Several widely adopted tools
support DGE analysis in scRNA-seq data.

DESeq2 is an R/Bioconductor package that employs a
negative binomial distribution to model count data and estimate
dispersion and fold changes between groups (Love et al,
2014). It has been used to identify transcriptional changes in
aging HSCs (Adelman et al., 2019).

edgeR is another R/Bioconductor package that similarly
models gene expression using a negative binomial distribution
and generalized linear models, offering robust statistical
frameworks for identifying differentially expressed genes (DEGs)
across groups (Robinson et al, 2010). It has been applied in
studies investigating dynamic gene expression during HSC
differentiation (Lun et al., 2016).

Limma-voom combines linear modeling with precision weights
derived from mean-variance relationships in log-transformed
count data. This method is effective for scRNA-seq and has
been used in both HSC-specific and broader single-cell studies
(Lun et al., 2016; Ritchie et al., 2015).

MAST (Model-based Analysis of Single-cell Transcriptomics)
utilizes a Bayesian hierarchical framework to model the bimodal
distribution of single-cell data. It is particularly suited for zero-
inflated datasets and has been widely applied to identify DEGs in
HSCs and their progeny (Vanuytsel et al., 2022; Finak et al., 2015).

Initially ~ developed  for
DGE
capturing dynamic changes during HSC lineage specification
(Trapnell et al., 2014; Gao et al., 2021).

SCDE (Single-Cell Differential Expression) models dropouts

trajectory Monocle

along pseudotemporal

analysis,

supports testing trajectories,

and overdispersion using a Bayesian approach and have been
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applied in studies exploring gene expression dynamics during HSC
differentiation (Tusi et al., 2018; Kharchenko et al., 2014).

In parallel with DGE, gene ontology (GO) enrichment analysis
is used to interpret biological functions associated with DEG sets,
revealing signaling pathways, cellular processes, and transcriptional
programs relevant to hematopoiesis. To interpret the biological
significance of differentially expressed genes, several widely used
tools have been developed for GO enrichment analysis.

DAVID (Database for
Integrated Discovery), which enables functional annotation of

Annotation, Visualization, and
gene lists, has been applied in studies of HSC differentiation
(Adelman et al., 2019; Huang et al., 2009).

Enrichr, a web-based tool that offers access to multiple
gene set libraries and enrichment algorithms, has been used
to identify transcriptional regulators
HSC states (Kuleshov et al., 2016).

GSEA (Gene Set Enrichment Analysis) assesses whether

underlying dynamic

predefined gene sets show statistically significant differences
between biological conditions. It has been widely adopted in single-
cell studies of HSCs and immune lineages (Subramanian etal., 2005).

ClusterProfiler provides a programmatic interface for GO
and pathway enrichment directly within R and supports
visualization and statistical comparison of multiple gene sets
(Yu et al., 2012; Xu et al., 2024).

These tools have proven essential for decoding the molecular
underpinnings of HSC identity and fate decisions. By linking gene
expression patterns to functional pathways, DGE and enrichment
analyses continue to deepen understanding of the regulatory
networks governing hematopoiesis.

3.6 Pseudotime analysis

Pseudotime analysis is a computational strategy used to infer
the temporal progression of cellular states from static single-
cell transcriptomic data. By ordering cells along a putative
developmental trajectory based on their gene expression profiles,
pseudotime analysis enables the identification of key regulators
and pathways involved in differentiation, lineage commitment, and
cellular transitions (Street et al., 2018; Bergen et al., 2020; Campbell
and Yau, 2019). Several tools have been developed to model
in HSCs,
algorithms to reconstruct lineage hierarchies and predict gene

pseudotemporal dynamics each wusing distinct
expression changes.

Monocle is one of the most widely used tools for pseudotime
inference. It employs a reverse graph embedding algorithm to
map gene expression dynamics along developmental trajectories. In
HSC studies, Monocle has been used to reconstruct differentiation
pathways and identify transcriptional regulators of lineage fate
decisions (Trapnell et al., 2014; Olsson et al., 2016).

SCORPIUS utilizes a random walk-based algorithm to model
the progression of cells along a smooth trajectory, enabling the
prediction of future transcriptional states and identifying key
regulatory genes. It has been applied to delineate hematopoietic
lineage bifurcation, including the transition from HSCs to lymphoid
and myeloid progenitors (Liang et al., 2020; Cannoodt et al., 2016).

Wanderlust reconstructs developmental progressions using a
minimum spanning tree approach, enabling detailed mapping
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This method has
uncovered lineage-specific gene regulatory programs during HSC
differentiation (Velten et al., 2017; Bendall et al., 2014).

Waterfall applies a hierarchical clustering framework to model

of sequential gene expression changes.

cellular progression, effectively capturing transcriptional transitions
and branching events. In HSCs, Waterfall has been used to trace
developmental hierarchies and pinpoint regulatory genes involved
in early hematopoietic commitment (Shin et al., 2015).

3.7 Network analysis

Network analysis provides a systems-level view of gene and
protein interactions, enabling the identification of regulatory
modules, signaling pathways, and transcriptional hierarchies that
govern cellular identity and function (Cahan et al, 2021). In
HSCs, network analysis has been pivotal for reconstructing
GRN, identifying lineage-specific transcriptional regulators, and
uncovering dynamic programs that govern differentiation and
stem cell fate decisions. Several computational frameworks have
been widely applied to single-cell transcriptomic data for network
inference and analysis in HSCs.

Weighted Gene Co-expression Network Analysis (WGCNA) is
an R-based package that constructs gene co-expression networks by
identifying modules of highly correlated genes. These modules are
often associated with biological traits or cell states. WGCNA has
been used to identify hub genes and co-expression modules relevant
to HSC maintenance and differentiation (Desterke et al., 2020).

SCENIC (Single-Cell Regulatory Network Inference and
Clustering) integrates co-expression analysis with motif enrichment
to infer TF-target relationships at single-cell resolution (Aibar et al.,
2017). In HSCs, SCENIC has enabled the reconstruction of
GRN and the identification of lineage-defining TFs and their
regulatory targets (Moignard et al., 2015).

Monocle, in addition to trajectory inference, supports dynamic
network analysis by modeling gene expression changes over
pseudotime. This allows for identifying temporally regulated
genes and pathways during hematopoietic differentiation
(Trapnell et al., 2014; Olsson et al., 2016).

CellNet is a supervised machine learning tool designed
to assess and reconstruct cell type-specific GRN
gene expression data. It has been employed to evaluate the

using

fidelity of engineered or reprogrammed HSCs and to identify
regulatory signatures distinguishing distinct hematopoietic states
(Cahan et al,, 2014; Lu et al., 2016).

Ingenuity Pathway Analysis (IPA) is a commercial platform
that maps gene expression data onto curated biological pathways
and networks. IPA has been used to identify upstream regulators,
canonical pathways, and molecular interactions relevant to HSC
signaling and functional specification (Marx-Bliimel et al., 2021).

4 HSC ChlIP-Seq data analysis

ChIP-seq maps genome-wide binding sites of TFs and other
regulatory proteins, providing critical insights into the epigenetic
regulation of gene expression (Lundberg et al, 2016). ChIP-seq
has been instrumental in delineating cis-regulatory landscapes

Frontiers in Cell and Developmental Biology

07

10.3389/fcell.2025.1589823

that control self-renewal and lineage commitment of HSCs. The
method involves crosslinking DNA and proteins in situ, isolating
protein-DNA complexes, immunoprecipitating them using target-
specific antibodies, and sequencing the recovered DNA fragments.
This enables the identification of genomic loci bound by TFs
and chromatin-modifying proteins (Gade and Kalvakolanu, 2012).
ChIP-seq profiled undifferentiated and activated HSCs to identify
dynamic TF binding events and cis-regulatory regions associated
with self-renewal and differentiation (Qi et al., 2021). These findings
have deepened the understanding of HSC regulation and may
inform future therapeutic strategies for hematological diseases.

4.1 Computational pipeline for ChlP-Seq
data analysis

Computational analysis of ChIP-seq data involves several key
steps, each facilitated by specialized bioinformatics tools.

4.1.1 Quality control and preprocessing

Raw sequencing reads must be assessed for quality and
trimmed to remove adapters or low-quality bases. FastQC
and Trimmomatic tools are routinely used at this stage
(Andrews, 2010; Bolger et al., 2014).

4.1.2 Alignment

Cleaned reads are aligned to a reference genome using aligners
such as Bowtie2 or BWA, producing binary alignment map (BAM)
files that record read locations and mapping quality (Langmead and
Salzberg, 2012; Li and Durbin, 2009).

4.1.3 Peak calling

Aligned reads identify enriched regions referred to as “peaks”
that signify protein-DNA interactions. Standard tools include
MACS2, which models peak significance, and SICER, which is suited
for broad enrichment signals (Zhang et al., 2008; Xu et al., 2014).

4.1.4 Peak annotation and functional analysis

Identified peaks are annotated with genomic features (e.g.,
promoters, enhancers) using ChIPseeker (Yu et al, 2015).
Enrichment analysis tools such as GREAT and Enrichr are
then used to interpret the functional roles of bound regions
(McLean et al., 2010; Kuleshov et al., 2016).

This pipeline enables the discovery of genome-wide TF binding
sites, enhancer-promoter interactions, and regulatory motifs central
to HSC function.

4.2 HSC ChlIP-Seq studies

Applying ChIP-seq to HSCs has enabled high-resolution
mapping of TF binding sites and chromatin modifications,
offering critical insights into the regulatory architecture underlying
hematopoiesis (Lundberg et al., 2016; Gade and Kalvakolanu, 2012).
Through computational ChIP-seq data analysis, numerous studies
have characterized gene regulatory elements that govern HSC self-
renewal, quiescence, and lineage specification (Wilson et al., 2016;
Cui et al,, 2009). A study employed ChIP-seq to map genome-wide
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TF occupancy in HSCs subpopulations (Subramanian et al., 2023).
MACS?2 was used for peak calling and HOMER for motif discovery
(Zhang et al., 2008) identified dynamic changes in cis-regulatory
landscapes during differentiation. The analysis revealed stage-
specific binding of key TFs, underscoring the dynamic regulatory
programs that orchestrate HSC fate decisions. The distribution of
histone modifications H3K4me3 and H3K27me3 in HSCs and their
progeny was investigated using Bowtie for read alignment, MACS2
for peak calling, and IGV for visualization (Zhang et al., 2021).
The study demonstrated that histone mark distribution is altered
during differentiation. These findings suggested that epigenetic
reprogramming is pivotal in regulating gene expression and lineage
commitment. The function of Polycomb Repressive Complex 2
(PRC2) was examined in HSC regulation (Xie et al., 2014). ChIP-
seq profiling of PRC2 components revealed enrichment at genes
involved in differentiation. Functional studies showed that loss of
PRC2 activity impaired HSC self-renewal and promoted premature
differentiation, highlighting its essential role in maintaining stem
cell identity. The enhancer landscape during HSC differentiation
was characterized by profiling H3K4mel, a histone modification
associated with active and primed enhancers. (Lara-Astiaso et al.,
2014). The analysis revealed that lineage-specific enhancers are
established early and maintained throughout differentiation, serving
as epigenetic bookmarks for future transcriptional activation. The
study also mapped binding sites of key TFs implicated in lineage
choice and functional specification. ChIP-seq delineates the binding
profile of GATA1, a master regulator of erythropoiesis, in erythroid
progenitors derived from HSCs (Wilson et al., 2016). Bowtie and
HOMER demonstrated that GATA1 targets both promoters and
enhancers of erythroid-specific genes, reinforcing its central role
in erythroid lineage programming. Similarly, ChIP-seq analysis
revealed that GATA2, another critical TF in early hematopoiesis,
binds to regulatory elements associated with genes essential for
HSC maintenance and differentiation (Joshi et al., 2013). Loss of
GATA?2 disrupted these programs, confirming its indispensable role
in sustaining HSC identity.

These studies underscore the power of ChIP-seq to uncover the
transcriptional and epigenetic networks that define HSC behavior.
High-resolution binding data with advanced computational
pipelines facilitate the identification of promoters, enhancers,
and TF occupancy patterns that govern key aspects of HSC
function from quiescence and self-renewal to lineage commitment
(Joshi et al., 2013; Gade and Kalvakolanu, 2012; Hannah et al,,
2011). These findings enhance understanding of hematopoietic
development and provide a framework for identifying novel targets
for therapeutic manipulation in hematological disorders.

5 Network inference algorithms

Network inference algorithms offer a robust computational
framework for reconstructing GRN from high-throughput gene
expression data. These approaches enable the identification of
transcriptional regulators, target genes, and functional modules that
control cellular processes such as development, differentiation, and
lineage commitment (Kamimoto et al., 2023; Mercatelli et al., 2020).
Their application has been particularly transformative in the study of
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HSCs, where understanding the regulatory circuitry is essential for
elucidating the mechanisms governing self-renewal, multipotency,
and differentiation. Several network inference algorithms have been
developed, each with unique strengths and assumptions based
on data types and modeling goals (Saint-Antoine and Singh,
2020). These include Bayesian approaches, mutual information-
based algorithms, and correlation-based methods. These algorithms
have been applied to transcriptomic data, particularly from scRNA-
seq, to predict regulatory interactions with increasing granularity
and biological relevance. In a study, GENIE3 (tree-based ensemble
learning) predicted regulatory interactions and was employed to
infer GRN from single-cell expression profiles of developing mouse
embryos (Kamimoto et al., 2023). The analysis identified well-
established regulators of hematopoiesis, including GATA2, RunxI,
and Scl/Tall, as well as novel candidates such as LMO2 and MYB.
Functional validation through genetic perturbation experiments
confirmed the predicted regulatory interactions and demonstrated
the network’s ability to forecast downstream effects of TF deletion.
Similarly, a study used network inference to analyze bulk RNA-
seq data from murine HSCs and their progenitors (Cabezas-
Wallscheid et al., 2014). Their analysis revealed a GATA2-centered
module regulating self-renewal and identified several additional
factors involved in HSC lineage priming.

In another study, network inference was applied to human
scRNA-seq datasets to reconstruct differentiation trajectories in
early hematopoiesis (Velten et al., 2017). The analysis highlighted
PU.1 as a key regulator of myeloid lineage commitment, consistent
with prior functional evidence. GRN underlying the differentiation
of HSCs into all major blood lineages has been reconstructed
(Serina Secanechia et al, 2022). Using scRNA-seq data across
developmental timepoints identified both canonical regulators
(e.g., GATA2, Runxl, Scl/Tall) and novel contributors such as
CEBPa and Spil. CRISPR-Cas9-mediated perturbations were used
to validate predictions, demonstrating the predictive strength of
the inferred network. These studies illustrate how integrating
expression data with network inference enables mechanistic
insights into HSC biology. By revealing both established and
previously uncharacterized regulators, these approaches provide
a blueprint for understanding hematopoietic fate decisions at a
systems level (Armingol et al., 2021).

5.1 Computational workflow for network
inference in HSCs

The computational reconstruction of GRN in HSCs typically
involves four key steps.

5.1.1 Preprocessing

Raw transcriptomic data (e.g., RNA-seq or scRNA-seq) undergo
to quality control, normalization, and batch correction to minimize
technical variability and retain biological signals (Lun et al., 2016).

5.1.2 Network inference

Preprocessed data are input into network inference
algorithms such as GENIE3, ARACNE, WGCNA, and GeneNet.
These tools infer edges between TFs and potential targets,
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constructing initial GRN (Margolin et al., 2006; Langfelder and
Horvath, 2008; Ananko et al., 2002).

5.1.3 Network validation

Inferred interactions are validated against known regulatory
databases or experimentally using loss-of-function or gain-of-
function assays. This step assesses biological plausibility and
predictive robustness (Kamimoto et al., 2023).

5.1.4 Network analysis

The final network is analyzed using centrality, modularity,
and connectivity metrics to identify master regulators
(Cahan 2021). like
Cytoscape is commonly used for visualization and annotation

(Shannon et al., 2003).

and key subnetworks et al., Tools

6 Machine learning approaches for
HSC data analysis

Machine learning approaches have become indispensable in
HSC computational biology, particularly for modeling complex
regulatory networks and predicting gene interactions from high-
dimensional data. These techniques facilitate the discovery of novel
transcriptional programs and molecular mechanisms underlying
HSC differentiation, lineage commitment, and self-renewal (Bian
and Cahan, 2016). A notable study utilized a deep learning-based
framework to predict tissue-specific regulatory interactions between
endothelial cells and HSCs using scRNA-seq data from mouse
bone marrow (Wang et al., 2024). This approach accurately captured
previously unrecognized cross-cell-type interactions, highlighting
the capacity of machine learning to elucidate complex intercellular
communication.

ChIP-seq data have been integrated with machine learning,
including applying a random forest algorithm to predict TF binding
sites, identifying key regulators of HSC function and differentiation
(Kamimoto et al., 2023). This highlights the utility of machine
learning for enhancer and TF motif prediction. SVMs have also
been applied to classify distinct stages of HSC differentiation based
on gene expression profiles. A study delineated hematopoietic
progenitor cell phenotyping through machine learning approaches,
offering insights into the transcriptional differences from fetal
liver HSCs (Fidanza et al., 2020). A neural network model
has been developed to identify functional enhancers regulating
self-renewal and lineage-specific regulators (Xia et al, 2020),
and machine learning has also been used to estimate the
regulatory potential of DNA sequences, identifying transcription
factors and enhancer elements relevant to HSC identity and
fate (Xiang et al., 2020).

Other studies have demonstrated the predictive power of
random forest models in modeling gene expression changes
during HSC differentiation and mapping chromatin accessibility
across regulatory regions (Fortelny and Bock, 2020; Lal et al,
2021). Collectively, these applications underscore the transformative
role of machine learning in decoding regulatory complexity in
HSC biology (Fidanza et al., 2020).
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6.1 Machine learning tools for HSC data
analysis

Several computational tools and platforms have been developed
to implement machine learning techniques for HSC datasets.

6.1.1 Scikit-learn

A widely used Python library offering an extensive suite of
machine learning algorithms, including SVM, decision trees, and
clustering. It has been applied in studies predicting intercellular
regulatory interactions (Wang et al., 2024; Scikit-Learn, 2016).

6.1.2 TensorFlow

A robust open-source framework developed by Google,
suitable for large-scale deep learning applications. TensorFlow
constructs a neural network model to predict gene expression in
single HSCs (Athanasiadis et al., 2017).

6.1.3 PyTorch

An alternative deep learning platform known for its flexibility
and dynamic computation graph, used to model lineage trajectories
of individual HSCs (Wang et al., 2024).

6.1.4 DeepCpG

A deep learning model for predicting DNA methylation
sequencing data. It has used to model
methylation dynamics at single CpG resolution in HSCs and

from been

progenitors (Angermueller et al., 2017).

6.1.5 ChromNet

A tool that infers chromatin interactions from ChIP-seq
data using deep learning, applied to predict enhancer-promoter
connectivity in HSCs (Lundberg et al., 2016).

6.2 Machine learning based workflow for
HSC data analysis

Machine learning-driven analysis of HSC data typically follows
a structured workflow.

6.2.1 Data preprocessing

Raw expression or epigenomic data are filtered, normalized,
and batch corrected. Genes with low expression or limited variance
are excluded (Gonzalez Zelaya, 2019).

6.2.2 Feature selection
Informative features are extracted to reduce dimensionality

such as
(mRMR)

and improve model generalizability. Approaches

minimum redundancy maximum relevance are

commonly employed (Dhal and Azad, 2022).

6.2.3 Model training

Selected features are used to train machine learning
models such as SVM, random forests, or neural networks
(Bian and Cahan, 2016).
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6.2.4 Model evaluation
Cross-validation  or  independent  test  sets

robustness and

assess
model performance, ensuring
overfitting (Xiong et al., 2020).

avoiding

6.2.5 Network analysis

Predicted regulatory interactions are visualized and interpreted
using platforms like Cytoscape, aiding in identifying key regulators
and pathways (Shannon et al., 2003).

6.3 Case study: regulatory prediction
between endothelial cells and HSCs

A complete machine learning pipeline was demonstrated in
a study aimed at decoding HSCs based on their morphological
features, using microscopy images, enabling rapid identification
of HSCs and progenitor cells (Wang et al., 2024). The SVM
model was trained and validated using cross-validation techniques
after applying a mutual information-based minimum redundancy
maximum relevance algorithm for feature selection (Dhal
and Azad, 2022). The resulting network, visualized using
Cytoscape, signaling pathways
that were experimentally supported, showcasing the strength

revealed novel intercellular
of machine learning for hypothesis generation and network
reconstruction.

7 Conclusion

HSC biology has entered a transformative era, driven
by advances sequencing
and the parallel development of sophisticated computational
scRNA-seq and ChIP-seq to network
inference algorithms and machine learning, these techniques

in  high-throughput technologies

frameworks. From

and tools have collectively revolutionized our ability to
dissect the heterogeneity of HSCs, trace lineage trajectories,
and decipher regulatory circuits at unprecedented resolution.
Crucially, computational strategies enhance the identification
and functional characterization of true, self-renewing HSCs.
They also facilitate the discovery of biomarkers, transcriptional
regulators, and epigenetic modifiers that underpin hematopoietic
differentiation. Integrating multi-omics datasets with predictive
modeling and functional validation is poised to unlock deeper
mechanistic insights into normal and pathological hematopoiesis.
The convergence of machine learning, systems biology, and
experimental hematology will be essential for achieving the
long-standing goal of prospectively isolating and therapeutically
deploying pure HSC populations. Furthermore, linking these
computational insights to clinical outcomes can accelerate the
development of precision therapies for hematologic malignancies,
bone marrow failure syndromes, and immune disorders. In
essence, computational approaches are no longer ancillary tools
in HSC research; they are central to the next-generation of
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discoveries and therapeutic innovations in stem cell biology and
regenerative medicine.

Author contributions

PR: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Supervision, Validation, Visualization,
Writing - original draft, Writing - review and editing. BB: Data
curation, Formal Analysis, Validation, Visualization, Writing -
original draft, Writing - review and editing. RC: Data curation,
Formal Analysis, Validation, Visualization, Writing — original draft,
Writing - review and editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

The authors are most grateful to NIH/NLM (U.S. National
Institutes of Health’s National Library of Medicine) for accessing free
full-text scientific publications on PubMed Central (www.ncbi.nlm.
nih.gov/pmc/), which was integral for the successful completion of
this work. The figure is original and created by the author using
Biorender (https://www.biorender.com/).

Conflict of interest

Authors BB, RC were employed by BioExIn.

The remaining author declares that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

frontiersin.org


https://doi.org/10.3389/fcell.2025.1589823
http://www.ncbi.nlm.nih.gov/pmc/
http://www.ncbi.nlm.nih.gov/pmc/
https://www.biorender.com/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Raghav et al.

References

Adelman, E. R, Huang, H.-T,, Roisman, A., Olsson, A., Colaprico, A., Qin, T,
et al. (2019). Aging human hematopoietic stem cells manifest profound epigenetic
reprogramming of enhancers that may predispose to leukemia. Cancer Discov. 9 (8),
1080-1101. doi:10.1158/2159-8290.CD-18-1474

Aibar, S., Gonzilez-Blas, C. B., Moerman, T., Huynh-Thu, V. A., Imrichova, H.,
Hulselmans, G., et al. (2017). SCENIC: single-cell regulatory network inference and
clustering. Nat. Methods 14 (11), 1083-1086. doi:10.1038/nmeth.4463

Ananko, E. A., Podkolodny, N. L., Stepanenko, I. L., Ignatieva, E. V., Podkolodnaya,
O. A., and Kolchanov, N. A. (2002). GeneNet: a database on structure and
functional organisation of gene networks. Nucleic Acids Res. 30 (1), 398-401.
doi:10.1093/nar/30.1.398

Anders, S., Pyl, P. T, and Huber, W. (2015). HTSeq — a Python framework
to work with high-throughput sequencing data. Bioinformatics 31 (2), 166-169.
doi:10.1093/bioinformatics/btu638

Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data.
Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

Angerer, P,, Haghverdi, L., Biittner, M., Theis, E J., Marr, C., and Buettner, F. (2016).
destiny: diffusion maps for large-scale single-cell data in R. Bioinformatics 32 (8),
1241-1243. doi:10.1093/bioinformatics/btv715

Angermueller, C., Lee, H. J., Reik, W,, and Stegle, O. (2017). DeepCpG: accurate
prediction of single-cell DNA methylation states using deep learning. Genome Biol. 18
(1), 67. doi:10.1186/513059-017-1189-z

Aran, D,,Looney, A. P, Liu, L., Wu, E., Fong, V., Hsu, A, etal. (2019). Reference-based
analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage.
Nat. Immunol. 20 (2), 163-172. d0i:10.1038/s41590-018-0276-y

Armingol, E., Officer, A., Harismendy, O., and Lewis, N. E. (2021). Deciphering cell-
cell interactions and communication from gene expression. Nat. Rev. Genet. 22 (2),
71-88. doi:10.1038/s41576-020-00292-x

Athanasiadis, E. 1., Botthof, J. G., Andres, H., Ferreira, L., Lio, P, and Cvejic, A.
(2017). Single-cell RNA-sequencing uncovers transcriptional states and fate decisions
in haematopoiesis. Nat. Commun. 8 (1), 2045. doi:10.1038/s41467-017-02305-6

Bacher, R., Chu, L.-E, Leng, N., Gasch, A. P, Thomson, J. A., Stewart, R. M., et al.
(2017). SCnorm: robust normalization of single-cell RNA-seq data. Nat. Methods 14
(6), 584-586. d0i:10.1038/nmeth.4263

Baran-Gale, J., Chandra, T., and Kirschner, K. (2018). Experimental design for single-
cell RNA sequencing. Brief. Funct. Genomics 17 (4), 233-239. doi:10.1093/bfgp/elx035

Barriga, F, Ramirez, P, Wietstruck, A., and Rojas, N. (2012). Hematopoietic
stem cell transplantation: clinical use and perspectives. Biol. Res. 45 (3), 307-316.
doi:10.4067/S0716-97602012000300012

Bendall, S. C., Davis, K. L., Amir, E.-A. D., Tadmor, M. D., Simonds, E. E,
Chen, T. ], et al. (2014). Single-cell trajectory detection uncovers progression
and regulatory coordination in human B cell development. Cell 157 (3), 714-725.
doi:10.1016/j.cell.2014.04.005

Bergen, V., Lange, M., Peidli, S., Wolf, E A., and Theis, F. J. (2020). Generalizing RNA
velocity to transient cell states through dynamical modeling. Nat. Biotechnol. 38 (12),
1408-1414. doi:10.1038/s41587-020-0591-3

Bian, Q, and Cahan, P. (2016). Computational tools for stem cell biology. Trends
Biotechnol. 34 (12), 993-1009. doi:10.1016/j.tibtech.2016.05.010

Bolger, A. M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible
trimmer for Illumina sequence data. Bioinformatics 30 (15), 2114-2120.
doi:10.1093/bioinformatics/btul70

Bray, N. L., Pimentel, H., Melsted, P, and Pachter, L. (2016). Near-optimal
probabilistic  RNA-seq  quantification. Nat.  Biotechnol. 34 (5), 525-527.
doi:10.1038/nbt.3519

Briining, R. S., Tombor, L., Schulz, M. H., Dimmeler, S., and John, D. (2022).
Comparative analysis of common alignment tools for single-cell RNA sequencing.
Gigascience 11, giac001. doi:10.1093/gigascience/giac001

Butler, A., Hoffman, P,, Smibert, P,, Papalexi, E., and Satija, R. (2018). Integrating
single-cell transcriptomic data across different conditions, technologies, and species.
Nat. Biotechnol. 36 (5), 411-420. doi:10.1038/nbt.4096

Cabezas-Wallscheid, N., Klimmeck, D., Hansson, J., Lipka, D. B., Reyes, A., Wang, Q.,
etal. (2014). Identification of regulatory networks in HSCs and their immediate progeny
via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell
15 (4), 507-522. doi:10.1016/j.stem.2014.07.005

Cahan, P, Cacchiarelli, D., Dunn, S.-J., Hemberg, M., de Sousa Lopes, S. M. C,,
Morris, S. A., etal. (2021). Computational stem cell biology: open questions and guiding
principles. Cell Stem Cell 28 (1), 20-32. d0i:10.1016/j.stem.2020.12.012

Cahan, P, Li, H., Morris, S. A., Lummertz da Rocha, E., Daley, G. Q., and Collins, J. J.
(2014). CellNet: network biology applied to stem cell engineering. Cell 158 (4), 903-915.
doi:10.1016/j.cell.2014.07.020

Campbell, K. R.,and Yau, C. (2019). A descriptive marker gene approach to single-cell
pseudotime inference. Bioinformatics 35 (1), 28-35. doi:10.1093/bioinformatics/bty498

Frontiers in Cell and Developmental Biology

11

10.3389/fcell.2025.1589823

Cannoodt, R., Saelens, W,, and Saeys, Y. (2016). Computational methods for
trajectory inference from single-cell transcriptomics. Eur. J. Immunol. 46 (11),
2496-2506. doi:10.1002/€ji.201646347

Cuevas-Diaz Duran, R., Wei, H., and Wu, J. (2024). Data normalization for addressing
the challenges in the analysis of single-cell transcriptomic datasets. BMC Genomics 25
(1), 444. doi:10.1186/s12864-024-10364-5

Cui, K., Zang, C., Roh, T.-Y,, Schones, D. E., Childs, R. W, Peng, W,, et al.
(2009). Chromatin signatures in multipotent human hematopoietic stem cells indicate
the fate of bivalent genes during differentiation. Cell Stem Cell 4 (1), 80-93.
doi:10.1016/j.stem.2008.11.011

Czechowicz, A., and Weissman, I. L. (2010). Purified hematopoietic stem cell
transplantation: the next generation of blood and immune replacement. Immunol.
Allergy Clin. North Am. 30 (2), 159-171. doi:10.1016/j.iac.2010.03.003

Desterke, C., Petit, L., Sella, N., Chevallier, N., Cabeli, V., Coquelin, L., et al. (2020).
Inferring gene networks in bone marrow hematopoietic stem cell-supporting stromal
niche populations. iScience 23 (6), 101222. doi:10.1016/j.is¢i.2020.101222

Dhal, P, and Azad, C. (2022). A comprehensive survey on feature selection in the
various fields of machine learning. Appl. Intell. 52 (4), 4543-4581. doi:10.1007/s10489-
021-02550-9

Dobin, A., Davis, C. A., Schlesinger, E, Drenkow, J., Zaleski, C., Jha, S., et al.
(2013). STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29 (1), 15-21.
doi:10.1093/bioinformatics/bts635

Du, Y, Huang, Q,, Arisdakessian, C., and Garmire, L. X. (2020). Evaluation of STAR
and Kallisto on single cell RNA-seq data alignment. G3 (Bethesda) 10 (5), 1775-1783.
doi:10.1534/g3.120.401160

Fast, E. M., Sporrij, A., Manning, M., Rocha, E. L., Yang, S., Zhou, Y, et al. (2021).
External signals regulate continuous transcriptional states in hematopoietic stem cells.
eLife 10, 10. doi:10.7554/elife.66512

Fidanza, A., Stumpf, P. S., Ramachandran, P, Tamagno, S., Babtie, A., Lopez-
Yrigoyen, M., et al. (2020). Single-cell analyses and machine learning define
hematopoietic progenitor and HSC-like cells derived from human PSCs. Blood 136 (25),
2893-2904. doi:10.1182/blood.2020006229

Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A. K., et al.
(2015). MAST: a flexible statistical framework for assessing transcriptional changes and
characterizing heterogeneity in single-cell RNA sequencing data. Genome Biol. 16, 278.
doi:10.1186/513059-015-0844-5

Fortelny, N., and Bock, C. (2020). Knowledge-primed neural networks enable
biologically interpretable deep learning on single-cell sequencing data. Genome Biol.
21 (1), 190. doi:10.1186/s13059-020-02100-5

Gade, P, and Kalvakolanu, D. V. (2012). Chromatin immunoprecipitation assay
as a tool for analyzing transcription factor activity. Methods Mol. Biol. 809, 85-104.
doi:10.1007/978-1-61779-376-9_6

Gao, S., Wu, Z., Kannan, J., Mathews, L., Feng, X., Kajigaya, S., et al. (2021).
Comparative transcriptomic analysis of the hematopoietic system between human and
mouse by single cell RNA sequencing. Cells 10 (5), 973. doi:10.3390/cells10050973

Ghojogh, B., Ghodsi, A., Karray, E, and Crowley, M. (2021). Uniform manifold
approximation and projection (UMAP) and its variants: tutorial and survey. arXiv.

Gonzalez Zelaya, C. V. (2019). “Towards explaining the effects of data preprocessing
on machine learning,” in 2019 IEEE 35th international conference on data engineering
(ICDE). IEEE, 2086-2090.

Haghverdi, L., Buettner, F, and Theis, E J. (2015). Diffusion maps for high-
dimensional single-cell analysis of differentiation data. Bioinformatics 31 (18),
2989-2998. doi:10.1093/bioinformatics/btv325

Hannah, R., Joshi, A., Wilson, N. K., Kinston, S., and Géttgens, B. (2011). A
compendium of genome-wide hematopoietic transcription factor maps supports the
identification of gene regulatory control mechanisms. Exp. Hematol. 39 (5), 531-541.
doi:10.1016/j.exphem.2011.02.009

Hérault, L., Poplineau, M., Remy, E., and Duprez, E. (2022). Single cell
transcriptomics to understand HSC heterogeneity and its evolution upon aging.
Cells 11 (19), 3125. doi:10.3390/cells11193125

Huang, D. W, Sherman, B. T., and Lempicki, R. A. (2009). Systematic and integrative
analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4 (1),
44-57. doi:10.1038/nprot.2008.211

Ivanova, N. B., Dimos, J. T, Schaniel, C., Hackney, J. A., Moore, K. A., and
Lemischka, I. R. (2002). A stem cell molecular signature. Science 298 (5593), 601-604.
doi:10.1126/science.1073823

Joshi, A., Hannah, R., Diamanti, E., and Gottgens, B. (2013). Gene set control analysis
predicts hematopoietic control mechanisms from genome-wide transcription factor
binding data. Exp. Hematol. 41 (4), 354-66.e14. d0i:10.1016/j.exphem.2012.11.008

Kamimoto, K., Stringa, B., Hoffmann, C. M., Jindal, K., Solnica-Krezel, L., and
Morris, S. A. (2023). Dissecting cell identity via network inference and in silico gene
perturbation. Nature 614 (7949), 742-751. doi:10.1038/s41586-022-05688-9

frontiersin.org


https://doi.org/10.3389/fcell.2025.1589823
https://doi.org/10.1158/2159-8290.CD-18-1474
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1093/nar/30.1.398
https://doi.org/10.1093/bioinformatics/btu638
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
https://doi.org/10.1093/bioinformatics/btv715
https://doi.org/10.1186/s13059-017-1189-z
https://doi.org/10.1038/s41590-018-0276-y
https://doi.org/10.1038/s41576-020-00292-x
https://doi.org/10.1038/s41467-017-02305-6
https://doi.org/10.1038/nmeth.4263
https://doi.org/10.1093/bfgp/elx035
https://doi.org/10.4067/S0716-97602012000300012
https://doi.org/10.1016/j.cell.2014.04.005
https://doi.org/10.1038/s41587-020-0591-3
https://doi.org/10.1016/j.tibtech.2016.05.010
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1038/nbt.3519
https://doi.org/10.1093/gigascience/giac001
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1016/j.stem.2014.07.005
https://doi.org/10.1016/j.stem.2020.12.012
https://doi.org/10.1016/j.cell.2014.07.020
https://doi.org/10.1093/bioinformatics/bty498
https://doi.org/10.1002/eji.201646347
https://doi.org/10.1186/s12864-024-10364-5
https://doi.org/10.1016/j.stem.2008.11.011
https://doi.org/10.1016/j.iac.2010.03.003
https://doi.org/10.1016/j.isci.2020.101222
https://doi.org/10.1007/s10489-021-02550-9
https://doi.org/10.1007/s10489-021-02550-9
https://doi.org/10.1093/bioinformatics/bts635
https://doi.org/10.1534/g3.120.401160
https://doi.org/10.7554/elife.66512
https://doi.org/10.1182/blood.2020006229
https://doi.org/10.1186/s13059-015-0844-5
https://doi.org/10.1186/s13059-020-02100-5
https://doi.org/10.1007/978-1-61779-376-9\string_6
https://doi.org/10.3390/cells10050973
https://doi.org/10.1093/bioinformatics/btv325
https://doi.org/10.1016/j.exphem.2011.02.009
https://doi.org/10.3390/cells11193125
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1126/science.1073823
https://doi.org/10.1016/j.exphem.2012.11.008
https://doi.org/10.1038/s41586-022-05688-9
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Raghav et al.

Kharchenko, P. V,, Silberstein, L., and Scadden, D. T. (2014). Bayesian approach
to single-cell differential expression analysis. Nat. Methods 11 (7), 740-742.
doi:10.1038/nmeth.2967

Kim, D., Langmead, B., and Salzberg, S. L. (2015). HISAT: a fast spliced aligner with
low memory requirements. Nat. Methods 12 (4), 357-360. doi:10.1038/nmeth.3317

Korsunsky, I, Millard, N., Fan, J., Slowikowski, K., Zhang, E.,, Wei, K,, et al. (2019).
Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods
16 (12), 1289-1296. doi:10.1038/s41592-019-0619-0

Kuleshov, M. V., Jones, M. R,, Rouillard, A. D., Fernandez, N. E, Duan, Q., Wang, Z.,
et al. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016
update. Nucleic Acids Res. 44 (W1), W90-W97. doi:10.1093/nar/gkw377

Lal, A., Chiang, Z. D., Yakovenko, N., Duarte, E. M., Israeli, ]., and Buenrostro, J. D.
(2021). Deep learning-based enhancement of epigenomics data with AtacWorks. Nat.
Commun. 12 (1), 1507. doi:10.1038/s41467-021-21765-5

Langfelder, P, and Horvath, S. (2008). WGCNA: an R package for weighted
correlation network analysis. BMC Bioinforma. 9, 559. doi:10.1186/1471-2105-9-559

Langmead, B., and Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2.
Nat. Methods 9 (4), 357-359. doi:10.1038/nmeth.1923

Lara-Astiaso, D., Weiner, A., Lorenzo-Vivas, E., Zaretsky, I, Jaitin, D. A., David,
E., et al. (2014). Immunogenetics. Chromatin state dynamics during blood formation.
Science 345 (6199), 943-949. doi:10.1126/science.1256271

Lee, J. Y., and Hong, S.-H. (2020). Hematopoietic stem cells and their roles in tissue
regeneration. Int. J. Stem Cells 13 (1), 1-12. doi:10.15283/ijsc19127

Li, H, and Durbin, R. (2009). Fast and accurate short read alignment
with  Burrows-Wheeler  transform.  Bioinformatics 25  (14), 1754-1760.
doi:10.1093/bioinformatics/btp324

Liang, R., Arif, T., Kalmykova, S., Kasianov, A., Lin, M., Menon, V., et al. (2020).
Restraining lysosomal activity preserves hematopoietic stem cell quiescence and
potency. Cell Stem Cell 26 (3), 359-376.e7. doi:10.1016/j.stem.2020.01.013

Liao, Y., Smyth, G. K., and Shi, W. (2014). featureCounts: an efficient general purpose
program for assigning sequence reads to genomic features. Bioinformatics 30 (7),
923-930. doi:10.1093/bioinformatics/btt656

Logan, A. C., Weissman, I. L., and Shizuru, J. A. (2012). The road to purified
hematopoietic stem cell transplants is paved with antibodies. Curr. Opin. Immunol. 24
(5), 640-648. doi:10.1016/j.c0i.2012.08.002

Love, M. 1., Huber, W,, and Anders, S. (2014). Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 (12), 550.
doi:10.1186/s13059-014-0550-8

Lu, Y.-E, Cahan, P, Ross, S., Sahalie, J., Sousa, P. M., Hadland, B. K., et al. (2016).
Engineered murine HSCs reconstitute multi-lineage hematopoiesis and adaptive
immunity. Cell Rep. 17 (12), 3178-3192. doi:10.1016/j.celrep.2016.11.077

Lun, A. T. L, McCarthy, D. ], and Marioni, J. C. (2016). A step-by-step
workflow for low-level analysis of single-cell RNA-seq data with Bioconductor.
[version 2; peer review: 3 approved, 2 approved with reservations]. F1000Res 5, 2122.
doi:10.12688/f1000research.9501.2

Lundberg, S. M., Tu, W. B,, Raught, B., Penn, L. Z., Hoffman, M. M., and Lee,
S.-I. (2016). ChromNet: learning the human chromatin network from all ENCODE
ChIP-seq data. Genome Biol. 17, 82. doi:10.1186/s13059-016-0925-0

Marx-Bliimel, L., Marx, C., Sonnemann, J., Weise, E, Hampl, J., Frey, J., et al. (2021).
Molecular characterization of hematopoietic stem cells after in vitro amplification on
biomimetic 3D PDMS cell culture scaffolds. Sci. Rep. 11 (1), 21163. doi:10.1038/s41598-
021-00619-6

Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., et al. (2015).
Highly parallel genome-wide expression profiling of individual cells using nanoliter
droplets. Cell 161 (5), 1202-1214. doi:10.1016/j.cell.2015.05.002

Margolin, A. A., Nemenman, L, Basso, K., Wiggins, C., Stolovitzky, G., Dalla, E R,
etal. (2006). ARACNE: an algorithm for the reconstruction of gene regulatory networks
in a mammalian cellular context. BMC Bioinforma. 7 (Suppl. 1), S7. doi:10.1186/1471-
2105-7-S1-87

McCarthy, D. J., Campbell, K. R., Lun, A. T. L., and Wills, Q. E. (2017). Scater:

preprocessing, quality control, normalization and visualization of single-cell RNA-seq
data in R. Bioinformatics 33 (8), 1179-1186. doi:10.1093/bioinformatics/btw777

McLean, C. Y., Bristor, D., Hiller, M., Clarke, S. L., Schaar, B. T., Lowe, C. B,,
etal. (2010). GREAT improves functional interpretation of cis-regulatory regions. Nat.
Biotechnol. 28 (5), 495-501. doi:10.1038/nbt.1630

Mercatelli, D., Scalambra, L., Triboli, L., Ray, E, and Giorgi, E M. (2020). Gene
regulatory network inference resources: a practical overview. Biochim. Biophys. Acta
Gene Regul. Mech. 1863 (6), 194430. doi:10.1016/j.bbagrm.2019.194430

Moignard, V., Macaulay, I. C., Swiers, G., Buettner, F, Schiitte, J., Calero-Nieto, E. J.,
etal. (2013). Characterization of transcriptional networks in blood stem and progenitor
cells using high-throughput single-cell gene expression analysis. Nat. Cell Biol. 15 (4),
363-372. d0i:10.1038/ncb2709

Moignard, V., Woodhouse, S., Haghverdi, L., Lilly, A. J., Tanaka, Y., Wilkinson,
A. C, et al. (2015). Decoding the regulatory network of early blood development

Frontiers in Cell and Developmental Biology

12

10.3389/fcell.2025.1589823

from single-cell gene expression measurements. Nat. Biotechnol. 33 (3), 269-276.
doi:10.1038/nbt.3154

Negrin, R. S., Atkinson, K., Leemhuis, T., Hanania, E., Juttner, C., Tierney, K., et al.
(2000). Transplantation of highly purified CD34+Thy-1+ hematopoietic stem cells in
patients with metastatic breast cancer. Biol. Blood Marrow Transpl. 6 (3), 262-271.
doi:10.1016/s1083-8791(00)70008-5

Ng, A. P, and Alexander, W. S. (2017). Haematopoietic stem cells: past, present and
future. Cell Death Discov. 3, 17002. doi:10.1038/cddiscovery.2017.2

Olsson, A., Venkatasubramanian, M., Chaudhri, V. K., Aronow, B. J., Salomonis, N.,
Singh, H., et al. (2016). Single-cell analysis of mixed-lineage states leading to a binary
cell fate choice. Nature 537 (7622), 698-702. doi:10.1038/nature19348

Qi, Q, Cheng, L., Tang, X, He, Y,, Li, Y., Yee, T, et al. (2021). Dynamic CTCF
binding directly mediates interactions among cis-regulatory elements essential for
hematopoiesis. Blood 137 (10), 1327-1339. doi:10.1182/blood.2020005780

Qiu, X,, Hill, A,, Packer, J., Lin, D., Ma, Y.-A., and Trapnell, C. (2017b). Single-
cell mRNA quantification and differential analysis with Census. Nat. Methods 14 (3),
309-315. doi:10.1038/nmeth.4150

Qiu, X., Mao, Q, Tang, Y., Wang, L., Chawla, R., Pliner, H. A., et al. (2017a).
Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14
(10), 979-982. d0i:10.1038/nmeth.4402

Raghav, P. K, Singh, A. K, and Gangenahalli G. (2018). Stem cell
factor and NSCB87877 combine to enhance c-Kit mediated proliferation
of human megakaryoblastic ~cells. PLoS ONE 13 (11), 0206364.

doi:10.1371/journal.pone.0206364

Risso, D., Perraudeau, F, Gribkova, S., Dudoit, S., and Vert, J.-P. (2018). A general
and flexible method for signal extraction from single-cell RNA-seq data. Nat. Commun.
9 (1), 284. doi:10.1038/s41467-017-02554-5

Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W,, Shi, W,, et al. (2015). Limma
powers differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 43 (7), e47. doi:10.1093/nar/gkv007

Robinson, M. D., McCarthy, D. J., and Smyth, G. K. (2010). edgeR: a Bioconductor
package for differential expression analysis of digital gene expression data.
Bioinformatics 26 (1), 139-140. doi:10.1093/bioinformatics/btp616

Rodriguez-Fraticelli, A. E., Weinreb, C., Wang, S.-W., Migueles, R. P, Jankovic,
M., Usart, M., et al. (2020). Single-cell lineage tracing unveils a role for TCF15 in
haematopoiesis. Nature 583 (7817), 585-589. doi:10.1038/s41586-020-2503-6

Rodriguez-Fraticelli, A. E., Wolock, S. L., Weinreb, C. S., Panero, R., Patel, S. H.,
Jankovic, M., et al. (2018). Clonal analysis of lineage fate in native haematopoiesis.
Nature 553 (7687), 212-216. doi:10.1038/nature25168

Rothenberg, E. V. (2021). Single-cell insights into the hematopoietic generation
of T-lymphocyte precursors in mouse and human. Exp. Hematol. 95, 1-12.
doi:10.1016/j.exphem.2020.12.005

Saint-Antoine, M. M., and Singh, A. (2020). Network inference in systems biology:
recent developments, challenges, and applications. Curr. Opin. Biotechnol. 63, 89-98.
doi:10.1016/j.copbio.2019.12.002

Satija, R., Farrell, J. A., Gennert, D., Schier, A. F, and Regev, A. (2015). Spatial
reconstruction of single-cell gene expression data. Nat. Biotechnol. 33 (5), 495-502.
doi:10.1038/nbt.3192

Scikit-Learn, K. O. (2016). Machine learning for evolution strategies. Cham: Springer
International Publishing, 45-53.

Serina Secanechia, Y. N., Bergiers, I., Rogon, M., Arnold, C., Descostes, N, Le, S.,
et al. (2022). Identifying a novel role for the master regulator Tall in the endothelial to
hematopoietic transition. Sci. Rep. 12 (1), 16974. doi:10.1038/s41598-022-20906-0

Shannon, P, Markiel, A., Ozier, O., Baliga, N. S, Wang, J. T, Ramage,
D., et al. (2003). Cytoscape: a software environment for integrated models of
biomolecular interaction networks. Genome Res. 13 (11), 2498-2504. doi:10.1101/gr.
1239303

Shin, J., Berg, D. A., Zhu, Y., Shin, J. Y., Song, J., Bonaguidi, M. A., etal. (2015). Single-

cell RNA-seq with Waterfall reveals molecular cascades underlying adult neurogenesis.
Cell Stem Cell 17 (3), 360-372. doi:10.1016/j.stem.2015.07.013

Skulimowska, I., Sosniak, J., Gonka, M., Szade, A., Jozkowicz, A., and Szade, K.
(2022). The biology of hematopoietic stem cells and its clinical implications. FEBS J.
289 (24), 7740-7759. doi:10.1111/febs.16192

Smith, T., Heger, A., and Sudbery, I. (2017). UMI-tools: modeling sequencing errors
in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 27 (3),
491-499. doi:10.1101/gr.209601.116

Street, K., Risso, D., Fletcher, R. B., Das, D., Ngai, J., Yosef, N, et al. (2018). Slingshot:
cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics
19 (1), 477. doi:10.1186/s12864-018-4772-0

Stuart, T., Butler, A., Hoffman, P, Hafemeister, C., Papalexi, E., Mauck, W. M., et al.
(2019). Comprehensive integration of single-cell data. Cell 177 (7), 1888-1902.e21.
doi:10.1016/j.cell.2019.05.031

Subramanian, A., Tamayo, P, Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A, et al. (2005). Gene set enrichment analysis: a knowledge-based approach for

frontiersin.org


https://doi.org/10.3389/fcell.2025.1589823
https://doi.org/10.1038/nmeth.2967
https://doi.org/10.1038/nmeth.3317
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1038/s41467-021-21765-5
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1126/science.1256271
https://doi.org/10.15283/ijsc19127
https://doi.org/10.1093/bioinformatics/btp324
https://doi.org/10.1016/j.stem.2020.01.013
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1016/j.coi.2012.08.002
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1016/j.celrep.2016.11.077
https://doi.org/10.12688/f1000research.9501.2
https://doi.org/10.1186/s13059-016-0925-0
https://doi.org/10.1038/s41598-021-00619-6
https://doi.org/10.1038/s41598-021-00619-6
https://doi.org/10.1016/j.cell.2015.05.002
https://doi.org/10.1186/1471-2105-7-S1-S7
https://doi.org/10.1186/1471-2105-7-S1-S7
https://doi.org/10.1093/bioinformatics/btw777
https://doi.org/10.1038/nbt.1630
https://doi.org/10.1016/j.bbagrm.2019.194430
https://doi.org/10.1038/ncb2709
https://doi.org/10.1038/nbt.3154
https://doi.org/10.1016/s1083-8791(00)70008-5
https://doi.org/10.1038/cddiscovery.2017.2
https://doi.org/10.1038/nature19348
https://doi.org/10.1182/blood.2020005780
https://doi.org/10.1038/nmeth.4150
https://doi.org/10.1038/nmeth.4402
https://doi.org/10.1371/journal.pone.0206364
https://doi.org/10.1038/s41467-017-02554-5
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1038/s41586-020-2503-6
https://doi.org/10.1038/nature25168
https://doi.org/10.1016/j.exphem.2020.12.005
https://doi.org/10.1016/j.copbio.2019.12.002
https://doi.org/10.1038/nbt.3192
https://doi.org/10.1038/s41598-022-20906-0
https://doi.org/10.1101/gr.-✐1239303
https://doi.org/10.1101/gr.-✐1239303
https://doi.org/10.1016/j.stem.2015.07.013
https://doi.org/10.1111/febs.16192
https://doi.org/10.1101/gr.209601.116
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1016/j.cell.2019.05.031
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

Raghav et al.

interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102 (43),
15545-15550. doi:10.1073/pnas.0506580102

Subramanian, S., Thoms, J. A. I, Huang, Y., Cornejo-Paramo, P., Koch, E C,
Jacquelin, S., et al. (2023). Genome-wide transcription factor-binding maps reveal
cell-specific changes in the regulatory architecture of human HSPCs. Blood 142 (17),
1448-1462. doi:10.1182/blood.2023021120

Townes, F. W, Hicks, S. C., Aryee, M. ], and Irizarry, R. A. (2019). Feature selection
and dimension reduction for single-cell RNA-Seq based on a multinomial model.
Genome Biol. 20 (1), 295. doi:10.1186/s13059-019-1861-6

Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P,, Li, S., Morse, M., et al. (2014).
The dynamics and regulators of cell fate decisions are revealed by pseudotemporal
ordering of single cells. Nat. Biotechnol. 32 (4), 381-386. doi:10.1038/nbt.2859

Tricot, G., Cottler-Fox, M. H., and Calandra, G. (2010). Safety and efficacy assessment
of plerixafor in patients with multiple myeloma proven or predicted to be poor
mobilizers, including assessment of tumor cell mobilization. Bone Marrow Transplant.
45 (1), 63-68. doi:10.1038/bmt.2009.130

Tusi, B. K., Wolock, S. L., Weinreb, C., Hwang, Y., Hidalgo, D., Zilionis, R., et al.
(2018). Population snapshots predict early haematopoietic and erythroid hierarchies.
Nature 555 (7694), 54-60. doi:10.1038/nature25741

Vanuytsel, K., Villacorta-Martin, C., Lindstrom-Vautrin, J., Wang, Z., Garcia-Beltran,
W.E, Vrbanac, V., etal. (2022). Multi-modal profiling of human fetal liver hematopoietic
stem cells reveals the molecular signature of engraftment. Nat. Commun. 13 (1), 1103.
doi:10.1038/541467-022-28616-x

Velten, L., Haas, S. E, Raffel, S., Blaszkiewicz, S., Islam, S., Hennig, B. P, et al. (2017).
Human haematopoietic stem cell lineage commitment is a continuous process. Nat. Cell
Biol. 19 (4), 271-281. doi:10.1038/ncb3493

Wang, L., Wang, S., and Li, W. (2012). RSeQC: quality control of RNA-seq
experiments. Bioinformatics 28 (16), 2184-2185. doi:10.1093/bioinformatics/bts356

Wang, S., Han, J., Huang, J., Islam, K., Shi, Y., Zhou, Y,, et al. (2024). Deep learning-
based predictive classification of functional subpopulations of hematopoietic stem cells
and multipotent progenitors. Stem Cell Res. Ther. 15 (1), 74. doi:10.1186/s13287-024-
03682-8

Wang, T, Li, B,, Nelson, C. E., and Nabavi, S. (2019). Comparative analysis of
differential gene expression analysis tools for single-cell RNA sequencing data. BMC
Bioinforma. 20 (1), 40. doi:10.1186/s12859-019-2599-6

Weissman, I. L., and Shizuru, J. A. (2008). The origins of the identification and
isolation of hematopoietic stem cells, and their capability to induce donor-specific
transplantation tolerance and treat autoimmune diseases. Blood 112 (9), 3543-3553.
doi:10.1182/blood-2008-08-078220

Wilson, N. K., Kent, D. G., Buettner, F, Shehata, M., Macaulay, I. C., Calero-
Nieto, E. J,, et al. (2015). Combined single-cell functional and gene expression analysis
resolves heterogeneity within stem cell populations. Cell Stem Cell 16 (6), 712-724.
doi:10.1016/j.stem.2015.04.004

Wilson, N. K., Schoenfelder, S., Hannah, R., Sinchez Castillo, M., Schiitte, J.,
Ladopoulos, V., et al. (2016). Integrated genome-scale analysis of the transcriptional

Frontiers in Cell and Developmental Biology

13

10.3389/fcell.2025.1589823

regulatory landscape in a blood stem/progenitor cell model. Blood 127 (13), el12-e23.
doi:10.1182/blood-2015-10-677393

Wolf, E. A., Angerer, P, and Theis, E J. (2018). SCANPY: large-scale single-cell gene
expression data analysis. Genome Biol. 19 (1), 15. doi:10.1186/s13059-017-1382-0

Xia, B., Zhao, D., Wang, G., Zhang, M., Ly, ]., Tomoiaga, A. S., et al. (2020). Machine
learning uncovers cell identity regulator by histone code. Nat. Commun. 11 (1), 2696.
doi:10.1038/s41467-020-16539-4

Xiang, G., Keller, C. A., Heuston, E., Giardine, B. M., An, L, Wixom, A.
Q. et al. (2020). An integrative view of the regulatory and transcriptional
landscapes in mouse hematopoiesis. Genome Res. 30 (3), 472-484. doi:10.1101/gr.
255760.119

Xie, H., Xu, J., Hsu, J. H.,, Nguyen, M., Fujiwara, Y., Peng, C., et al. (2014).
Polycomb repressive complex 2 regulates normal hematopoietic stem cell
function in a developmental-stage-specific manner. Cell Stem Cell 14 (1), 68-80.
doi:10.1016/j.stem.2013.10.001

Xiong, Z., Cui, Y., Liu, Z., Zhao, Y., Hu, M., and Hu, J. (2020). Evaluating
explorative prediction power of machine learning algorithms for materials
discovery using-fold forward cross-validation. Comp. Mater Sci. 171, 109203.
doi:10.1016/j.commatsci.2019.109203

Xu, S., Grullon, S., Ge, K., and Peng, W. (2014). Spatial clustering for identification
of ChIP-enriched regions (SICER) to map regions of histone methylation patterns in
embryonic stem cells. Methods Mol. Biol. 1150, 97-111. doi:10.1007/978-1-4939-0512-
6_5

Xu, S., Hu, E., Cai, Y, Xie, Z., Luo, X., Zhan, L., et al. (2024). Using clusterProfiler
to characterize multiomics data. Nat. Protoc. 19 (11), 3292-3320. doi:10.1038/s41596-
024-01020-z

Yu, G., Wang, L.-G., Han, Y,, and He, Q.-Y. (2012). clusterProfiler: an R package
for comparing biological themes among gene clusters. OMICS 16 (5), 284-287.
doi:10.1089/0mi.2011.0118

Yu, G., Wang, L.-G., and He, Q.-Y. (2015). ChIPseeker: an R/Bioconductor package
for ChIP peak annotation, comparison and visualization. Bioinformatics 31 (14),
2382-2383. doi:10.1093/bioinformatics/btv145

Zhang, A., Wei, Y., Shi, Y,, Deng, X., Gao, J., Feng, Y., et al. (2021). Profiling of
h3k4me3 and h3k27me3 and their roles in gene subfunctionalization in allotetraploid
cotton. Front. Plant Sci. 12, 761059. doi:10.3389/fpls.2021.761059

Zhang, A. W,, O’Flanagan, C., Chavez, E. A,, Lim, J. L. P, Ceglia, N., McPherson,
A, et al. (2019). Probabilistic cell-type assignment of single-cell RNA-seq for tumor
microenvironment profiling. Nat. Methods 16 (10), 1007-1015. doi:10.1038/s41592-
019-0529-1

Zhang, Y., Liu, T, Meyer, C. A., Eeckhoute, J., Johnson, D. S., Bernstein, B. E.,
et al. (2008). Model-based analysis of ChIP-seq (MACS). Genome Biol. 9 (9), R137.
doi:10.1186/gb-2008-9-9-r137

Zheng, G. X. Y,, Terry, ]. M., Belgrader, P, Ryvkin, P, Bent, Z. W,, Wilson, R, et al.
(2017). Massively parallel digital transcriptional profiling of single cells. Nat. Commun.
8, 14049. doi:10.1038/ncomms14049

frontiersin.org


https://doi.org/10.3389/fcell.2025.1589823
https://doi.org/10.1073/pnas.0506580102
https://doi.org/10.1182/blood.2023021120
https://doi.org/10.1186/s13059-019-1861-6
https://doi.org/10.1038/nbt.2859
https://doi.org/10.1038/bmt.2009.130
https://doi.org/10.1038/nature25741
https://doi.org/10.1038/s41467-022-28616-x
https://doi.org/10.1038/ncb3493
https://doi.org/10.1093/bioinformatics/bts356
https://doi.org/10.1186/s13287-024-03682-8
https://doi.org/10.1186/s13287-024-03682-8
https://doi.org/10.1186/s12859-019-2599-6
https://doi.org/10.1182/blood-2008-08-078220
https://doi.org/10.1016/j.stem.2015.04.004
https://doi.org/10.1182/blood-2015-10-677393
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1038/s41467-020-16539-4
https://doi.org/10.1101/gr.-✐255760.119
https://doi.org/10.1101/gr.-✐255760.119
https://doi.org/10.1016/j.stem.2013.10.001
https://doi.org/10.1016/j.commatsci.2019.109203
https://doi.org/10.1007/978-1-4939-0512-6_5
https://doi.org/10.1007/978-1-4939-0512-6_5
https://doi.org/10.1038/s41596-024-01020-z
https://doi.org/10.1038/s41596-024-01020-z
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1093/bioinformatics/btv145
https://doi.org/10.3389/fpls.2021.761059
https://doi.org/10.1038/s41592-019-0529-1
https://doi.org/10.1038/s41592-019-0529-1
https://doi.org/10.1186/gb-2008-9-9-r137
https://doi.org/10.1038/ncomms14049
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

	1 Introduction
	2 Approaches for analyzing HSC genomics and transcriptomic data
	3 scRNA-seq in HSC analysis
	3.1 Quality control and preprocessing
	3.2 Normalization
	3.3 Dimensionality reduction
	3.4 Clustering
	3.5 Differential expression and enrichment analysis
	3.6 Pseudotime analysis
	3.7 Network analysis

	4 HSC ChIP-Seq data analysis
	4.1 Computational pipeline for ChIP-Seq data analysis
	4.1.1 Quality control and preprocessing
	4.1.2 Alignment
	4.1.3 Peak calling
	4.1.4 Peak annotation and functional analysis

	4.2 HSC ChIP-Seq studies

	5 Network inference algorithms
	5.1 Computational workflow for network inference in HSCs
	5.1.1 Preprocessing
	5.1.2 Network inference
	5.1.3 Network validation
	5.1.4 Network analysis


	6 Machine learning approaches for HSC data analysis
	6.1 Machine learning tools for HSC data analysis
	6.1.1 Scikit-learn
	6.1.2 TensorFlow
	6.1.3 PyTorch
	6.1.4 DeepCpG
	6.1.5 ChromNet

	6.2 Machine learning based workflow for HSC data analysis
	6.2.1 Data preprocessing
	6.2.2 Feature selection
	6.2.3 Model training
	6.2.4 Model evaluation
	6.2.5 Network analysis

	6.3 Case study: regulatory prediction between endothelial cells and HSCs

	7 Conclusion
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

