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Introduction: Glaucoma, a leading cause of irreversible blindness worldwide,
imposes a devastating burden on over 11 million end-stage patients through
permanent vision loss. Despite this profound disability, the neurochemical basis
of preserved cortical plasticity remains unclear, compounded by the challenge
of recruiting this vulnerable population for advanced neuroimaging studies.

Methods:Weconducted single-voxel protonmagnetic resonance spectroscopy
(1H-MRS) in 11 blind patients with end-stage primary open-angle glaucoma
(POAG) and 11 normal controls to characterize metabolic alterations in the
primary visual cortex (V1) and their relationship to residual retinal function.

Results: Glutamate-glutamine complex (Glx), N-acetylaspartate (NAA), choline
(Cho), and myo-inositol (Ins) ratios relative to creatine (Cr) were quantified,
revealing significantly elevated Glx/Cr in POAG (95% CI: 0.09 ∼ 0.63, P = 0.011),
while NAA/Cr, Cho/Cr, and Ins/Cr remained stable (P > 0.05). Notably, the Glx/Cr
ratio correlated significantly with the N1-wave latency of mfERG (ρ = -0.676, P
= 0.022), independent of other clinical parameters.

Discussion: These findings demonstrate glutamate hyperactivity coexisting with
preserved neuronal and osmotic homeostasis in the V1 of end-stage POAG
patients, suggesting adaptive neuroglial compensation. The correlation between
Glx/Cr ratios and mfERG responses indicates persistent retinocortical signaling
despite blindness, highlighting the potential of 1H-MRS as a valuable tool for
assessing cortical plasticity in advanced glaucoma rehabilitation.
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Introduction

Glaucoma, a neurodegenerative disorder affecting the entire
visual pathway, currently impacts over 79 million individuals
globally, of whom more than 11 million will progress to bilateral
blindness (Stevens et al., 2013; Tham et al., 2014; Quigley
and Broman, 2006). While traditionally viewed as an ocular
disease, accumulating evidence positions glaucoma within
the spectrum of central nervous system neurodegeneration,
characterized by progressive anteroposterior visual pathway
deterioration (Jonas et al., 2017).

Advanced magnetic resonance imaging (MRI) techniques
have uncovered structural and functional cortical alterations
in glaucoma, including volumetric fluctuations, cerebral blood
flow reductions, and abnormal visual cortical activation patterns
(Wang et al., 2016; Harris et al., 2013; Duncan et al., 2012;
Duncan et al., 2007; Qing et al., 2010). Complementary
immunohistochemical evidence further identifies neurochemical
perturbations within the primary visual cortex (V1), such
as dysregulated glutamate receptor expression and astrocytic
hypertrophy, implicating cortical plasticity as a modulator of
neurodegeneration progression (Lam et al., 2003). Despite
these advances, conventional neuroimaging remains limited
in resolving dynamic metabolic substrates underlying
neuroadaptive processes.

Proton magnetic resonance spectroscopy (1H-MRS)
noninvasively quantifies neurometabolites by detecting
characteristic resonance frequencies of hydrogen atoms (1H) in
brain tissue. When placed in a strong magnetic field, protons in
different molecular environments resonate at distinct frequencies,
allowing discrimination of metabolites such as: glutamate-
glutamine complex (Glx, reflecting excitatory neurotransmission
and astrocytic recycling), N-acetylaspartate (NAA, a surrogate
for neuronal density and mitochondrial function), choline (Cho,
indicative of membrane phospholipid turnover), myo-inositol (Ins,
a gliosis and osmoregulationmarker), and creatine (Cr, serving as an
internal reference for metabolic normalization). This technique has
been validated for reproducibility and accuracy against biochemical
assays in visual pathway disorders, establishing its reliability for
mapping neurochemical alterations (Ozsoy et al., 2012; Zhang et al.,
2013; Wu et al., 2013). Prior 1H-MRS studies demonstrate spatially
and temporally distinct metabolic responses in glaucoma: Anterior
visual structures (e.g., lateral geniculate nucleus) exhibit decreased
NAA/Cr and Cho/Cr (Zhang et al., 2013), reflecting irreversible
neuronal loss and membrane degeneration secondary to retrograde
neurodegeneration. Conversely, the posterior visual cortex shows
early-stage adaptations, including elevated Glx/Cr and reduced
Ins/Cr, indicating glutamate-mediated plasticity and impaired
osmoregulation (Guo et al., 2018). Bernabeu et al. demonstrated Ins
elevation in the occipital cortex of blind subjects with retinopathy
or optic neuritis (Bernabeu et al., 2009). Contrasting with this, we
postulated that chronic intraocular pressure stress in glaucoma may
drive distinct glial responses, potentially altering Ins dynamics
in V1. End-stage glaucoma represents a critical phase where
irreversible blindness occurs, yet cortical plasticity mechanisms
remain poorly understood. Studying neurochemical changes in
these patients is vital because identifying preserved metabolic
pathways reveals potential neuroprotective or compensatory

mechanisms that could be harnessed for rehabilitation. Moreover,
the correlation between neurochemical signatures in V1 and
residual retinal function challenges the dogma of complete
visual pathway disconnection in blindness, suggesting intact
retinocortical signaling that could inform strategies to optimize
residual vision.

This study investigates two underexplored dimensions:
(1) whether metabolic alterations persist within V1 in blind
patients with end-stage glaucoma, and (2) how residual retinal
electrophysiology interacts with cortical metabolic profiles in these
patients, aiming to identify neurochemical signatures for future
rehabilitation strategies.

Materials and methods

Participants

Eleven blind individuals with bilateral end-stage primary open-
angle glaucoma (POAG) (2 females and nine males; mean age
33.8 ± 13.1 years, range 20–56 years) were recruited from the
Ophthalmology Department of the Eye and Ear, Nose, and Throat
(EENT) Hospital, Fudan University, Shanghai, China.The eligibility
criteria were as follows.

1. Bilateral 10° central scotoma confirmed by Goldmann kinetic
perimetry and microperimetry;

2. Best-corrected visual acuity (BCVA) ≤ logMAR 1.30 (Snellen
<20/400);

3. Diagnosis of POAG by a glaucoma specialist and follow-up by
a glaucoma medical team for more than 5 years;

4. Intraocular pressure (IOP) stabilization (≤21 mmHg) formore
than 3 years;

5. Documented stability of the BCVA and visual field over the
preceding 3 years;The normal control group (NC) recruited
eleven healthy subjects (3 females and eight males; mean
age 35.75 ± 12.5 years; range 22–56 years) who exhibited
BCVA ≥ logMAR 0.0 (6/6), normal achromatic perimetry,
and absence of ocular pathology/glaucoma family history.
Exclusion criteria for all participants included claustrophobia,
ferromagnetic implants, major psychiatric comorbidities, or
structural brain anomalies.

The studies involving humans were approved by the Ethics
Committee of the EENT Hospital, Fudan University. The studies
were conducted in accordance with the local legislation and
institutional requirements. The participants provided their written
informed consent to participate in this study.

Examination protocol

All bilateral end-stage POAGparticipants underwent systematic
ophthalmic assessments utilizing standardized protocols. Visual
acuity was quantified through the XK100 logarithmic low-vision
chart (WenzhouXinkangMedical), followed by subjective refraction
to establish BCVA. IOPmeasurements were obtained viaGoldmann
applanation tonometry (Haag-Streit), while structural evaluations
included slit-lamp biomicroscopy and optic nerve/macular imaging
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FIGURE 1
Illustration of the VOI placement in the primary visual cortex along the calcarine sulcus in the sagittal (A), axial (B), and coronal (C) views in
T2-weighted images from a POAG patient. POAG indicates primary open-angle glaucoma; VOI, volume of interest.

using the non-mydriatic retinal camera (CR-DGi, Canon). Visual
field characterization integrated Goldmann kinetic perimetry
and Octopus 900 static threshold analysis (Haag-Streit), with
absolute scotoma defined as non-detection of maximum stimulus
(Size V, 1.72° visual angle). A retinal microperimeter (MP-
1, Nidek) was utilized to map the location of the preferred
retinal locus (PRL) and to assess the threshold of the residual
visual field. The retinal layer thickness in the temporal islet
region was measured using frequency-domain optical coherence
tomography (RTVue FD-OCT, Visionix). Electrophysiological
profiling employed multifocal electroretinography (mfERG, Veris
6.0, Electro-Diagnostic Imaging) to record P/N1-wave parameters
(amplitude/latency) in temporal islet regions. Normal controls
received a routine ophthalmic examination, including slit-lamp
examination, visual acuity, fundus photography, IOP, visual
field, and refraction, with all procedures conducted by certified
ophthalmologists.

MRI data acquisition

All participants underwent MRI on a 3.0 T scanner (Verio;
Siemens, Erlangen, Germany) equippedwith a 32-channel head coil.
Sagittal, axial, and coronal T2-weighted turbo spin-echo (TR/TE,
4,000/97 m) imageswere obtained to exclude the presence of organic
lesions in the brain and to locate the voxel of interest for 1H-MRS.
No participants required sedation. All subjects completedMRI scans
without pharmacological intervention to avoid neurometabolic
confounds.

Single-voxel 1H-MRS was subsequently conducted using the
PRESS technique (TR/TE = 3,000/30 m, 80 acquisitions), with
the automated placement of the voxel (40 × 40 × 20 mm)
along the calcarine sulcus. Spectral optimization utilized iterative
shimming procedures: initial automated B-field homogenization
to achieve a full width at half maximum (FWHM) of ≤30, with
additional manual refinements applied if the FWHM surpassed
30. Water suppression was performed. The volume of interest
(VOI) placement was carefully directed to target the bilateral
V1 by aligning anatomically with calcarine sulcus markers across
perpendicular planes, ensuring extensive coverage of Brodmann
area 17 parenchyma (Figure 1).

MRS data processing

Thepeak integrals of Glx, NAA, Cho, Ins, and Cr weremeasured
using the spectroscopy toolkit within the Syngo MR software
(Siemens, Erlangen, Germany). This was conducted following a
series of processing steps, including residual water suppression,
zero-filling expansion from 1,024 to 2048 data points, baseline
adjustment, Fourier transformation, phase correction, and fitting of
the spectral curves. The NAA spectral peak occurred at 2.02 ppm,
while Glx was observed between 2.1 and 2.5 ppm. Ins exhibited
a peak at 3.56 ppm, Cho at 3.22 ppm, and Cr at 3.03 ppm
(as shown in Figure 2). The ratios of NAA to Cr, Cho to Cr, Glx to
Cr, and Ins to Cr were automatically calculated.

Statistical analysis

Statistical analyses were performed using SPSS 20.0 (IBM,
Chicago, IL, United States). Demographic comparability between
POAG and NC was verified by independent t-test (age) and
χ2 tests (sex distribution). Metabolic ratios (Glx/Cr, NAA/Cr,
Cho/Cr, Ins/Cr) underwent group-wise comparison through
independent sample t-test with 95% confidence intervals. Bivariate
Pearson correlations evaluated associations between MRS-derived
metrics and clinical parameters (BCVA, visual field indices, retinal
thickness, mfERG waveforms). A P value of less than 0.05 was
considered to be statistically significant.

Results

Demographic and clinical characteristics of the study cohorts are
summarized in Table 1. No significant intergroup differences were
observed in age (P = 0.831) or sex distribution (P = 1.000).

Metabolic profiling of the V1 revealed distinct neurochemical
alterations in POAG patients (Table 2).The Glx/Cr was significantly
elevated in the POAG cohort compared to the controls (0.84 ± 0.38
vs 0.48 ± 0.20, 95% CI 0.09–0.63, P = 0.011). In contrast, no group
differences emerged in neuronal integrity markers (NAA/Cr: 2.13 ±
0.42 vs 2.02 ± 0.60, P = 0.618), membrane turnover indices (Cho/Cr:
0.57 ± 0.16 vs 0.51 ± 0.12, P = 0.347), or osmoregulatory metabolites
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FIGURE 2
Representative proton spectra in the primary visual cortex acquired from a POAG patient and normal control.

TABLE 1 Demographic features and clinical information of the participants.

Demographic features and clinical information POAG group NC group

No. Subjects 11 11

Gender (male/female) 9/2 8/3

Age (median, range), years 33.73 ± 13.07 (29, 20–56) 34.91 ± 12.51 (31, 22–56)

Intraocular Pressure (median, range), mmHg 18.25 ± 2.28 (18, 14–21) 16.50 ± 2.05 (16, 13–20)

Vertical cup-to-disc ratio (median, range) 0.95 ± 0.05 (0.90, 0.90–1.00) 0.35 ± 0.05 (0.30, 0.20–0.40)

Duration since initial POAG diagnosis (median, range), years 9.50 ± 2.15 (10, 7–15) NA

History of anti-glaucoma surgery (no., %) 6 (54.55%) NA

Ongoing topical anti-glaucoma therapy (no., %) 7 (63.64%) NA

Abbreviations: POAG, primary open-angle glaucoma; NC, normal control; NA, not applicable.

(Ins/Cr: 1.21 ± 0.17 vs 1.07 ± 0.39, P = 0.297). The Glx/Cr, NAA/Cr,
Cho/Cr, and Ins/Cr for the POAG patients and the normal controls
are illustrated in the boxplot in Figure 3.

Pearson correlation analysis demonstrated a significant
relationship between Glx/Cr ratios and electrophysiological
function in POAG patients. Among exploratory correlations, the
strongest association was between Glx/Cr and mfERG N1 latency
(ρ = −0.676, uncorrected P = 0.022, 95% CI [−0.89, −0.21]), though
no associations were observed with structural parameters (retinal
thickness), perceptual metrics (BCVA, visual field), or other clinical
indices (Figure 4). The remaining metabolite ratios (NAA/Cr,
Cho/Cr, and Ins/Cr) showed no significant correlations with any
assessed functional or anatomical measures. The correlations
between metabolites and clinical data in the POAG patients
are shown in Table 3.

Discussion

This study investigated the metabolic changes in the V1 in blind
patients with end-stage POAG using single-voxel 1H-MRS. The
results showed that statistically increased Glx was detected in the V1
of end-stage POAG patients, which provided evidence of metabolic
abnormalities in the V1. Furthermore, the Glx/Cr ratio in the POAG
patientswas significantly correlatedwith themfERG, suggesting that
metabolic alterations in the V1 might partly correlate with residual
retinal function in blind subjects with end-stage POAG.

Glx is a critical neurotransmitter system in the mammalian
brain, with peak concentrations in the cerebral cortex and
hippocampus. Glutamate, the primary excitatory neurotransmitter,
is released during synaptic activity and rapidly cleared through
neuronal and glial transporters to prevent excitotoxicity (Zhou
and Danbolt, 2014; Shen et al., 1999). Following uptake, glial
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TABLE 2 Comparison of the metabolite ratios in the primary visual cortex between POAG patients and normal controls.

Metabolite ratios POAG group NC group 95% CI t Value P value

Glx/Cr 0.84 ± 0.38 0.48 ∼ 0.20 0.09∼0.63 2.783 0.011∗

NAA/Cr 2.13 ± 0.42 2.02 ± 0.60 −0.35∼0.57 0.506 0.618

Cho/Cr 0.57 ± 0.16 0.51 ± 0.12 −0.07∼0.19 0.963 0.347

Ins/Cr 1.21 ± 0.17 1.07 ± 0.39 −0.13∼0.41 1.071 0.297

Values are given as mean ± SD.
Abbreviations: Glx, glutamate-glutamine complex; Cr, creatine; NAA, N-acetylaspartate; Cho, choline; Ins, myo-inositol; POAG, primary open-angle glaucoma; NC, normal control; CI,
Confidence Interval.
∗P < 0.05

FIGURE 3
Boxplot illustrating Glx/Cr, NAA/Cr, Cho/Cr, and Ins/Cr for the POAG
patients and normal controls within the bilateral primary visual cortex.
Error bars represent standard deviation.

FIGURE 4
The Correlation between the Glx/Cr ratio and the N1-wave latencies
of the multifocal electroretinography (mfERG) in the POAG patients.

cells convert glutamate to glutamine, sustaining the Glx cycle
for neurotransmitter recycling and ammonia detoxification
(Moreno et al., 2005). Pathologically, elevated Glx levels are
observed in ischemia, hypoxia, and hepatic encephalopathy,
reflecting disrupted glutamate homeostasis (Ott et al., 1993).
Notably, Glx dysregulation has emerged as a critical contributor
to neurodegeneration in glaucoma. Compromised axonal transport
due to elevated intraocular pressure or hypoperfusion disrupts the
retrograde delivery of neurotrophic factors to retinal ganglion

cells while simultaneously promoting the accumulation of
excitotoxins, including glutamate, in the extracellular matrix
(Grieb and Rejdak, 2002). The excess extracellular Glx exacerbates
oxidative stress and hyperactivates N-methyl-D-aspartate receptors,
triggering calcium influx that activates calpain, induces nitric
oxide synthase, and disrupts mitochondrial function, ultimately
driving apoptosis through imbalanced pro-apoptotic and anti-
apoptotic gene regulation (Luthra et al., 2005; Yenice et al., 2008).
Furthermore, oxidative stress in glaucomatous tissues, evidenced
by elevated reactive oxygen species and oxidative DNA damage
in the trabecular meshwork and vitreous humor, synergizes with
glutamate excitotoxicity to amplify neuronal injury (Chang and
Goldberg, 2012).

Glutamate excitotoxicity caused by excessive glutamate was
observed in both anterior and posterior visual pathways in
glaucoma, such as the optic nerve head, the lateral geniculate
body, and the V1 (Okuno et al., 2006; Doganay et al., 2012;
Ho et al., 2015). It agreed with our prior 1H-MRS study, which
demonstrated the excessive Glx within V1 in early glaucoma
patients (Guo et al., 2018). Similarly, the current study showed
that statistically increased Glx was detected in the V1 of the blind
patients of end-stage POAG patients. In glaucoma pathogenesis,
reduced ascending afferent input to the V1 secondary to visual
impairment has been hypothesized to impair glutamate uptake
and/or disrupt its metabolic homeostasis, resulting in pathological
accumulation of the neurotransmitter within the extracellular
compartment (Chan et al., 2009). While elevated Glx/Cr may reflect
increased extracellular glutamate contributing to excitotoxicity,
we acknowledge that 1H-MRS at 3T cannot spectrally separate
glutamate from glutamine. Thus, alternative explanations must
be considered: altered glutamate-glutamine cycling, where glial-
derived glutamine sustains neuronal glutamate pools; compensatory
upregulation of glutamatergic neurotransmission in response to
deafferentation; and astrocyte-mediated detoxification of excess
glutamate via glutamine synthesis. Although glutamate-dominated
excitotoxicity remains plausible in glaucoma pathogenesis, our data
cannot exclude significant contributions from glutamine.

Interestingly, we also found a relationship between the Glx/Cr
ratio in V1 and the N1-wave latency of the mfERG in end-
stage POAG patients. The N1 wave represents phototransduction
and signal transmission from photoreceptors to bipolar cells.
In glaucoma, glutamate concentration dynamics modulated
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TABLE 3 Correlations between metabolites and clinical data in the POAG patients.

Metabolite ratios N1-wave
latency

N1-wave
amplitude

P-wave
latency

P-wave
amplitude

BCVA Visual field Retinal
thickness

Glx/Cr

Correlation
coefficient

−0.676 −0.178 −0.516 0.067 0.067 0.006 0.093

P Value 0.022∗ 0.601 0.104 0.845 0.844 0.985 0.785

NAA/Cr

Correlation
coefficient

−0.551 −0.360 −0.230 0.335 −0.492 0.324 −0.044

P Value 0.079 0.277 0.496 0.314 0.125 0.332 0.899

Cho/Cr

Correlation
coefficient

−0.329 0.036 −0.267 −0.165 0.459 −0.291 −0.211

P Value 0.323 0.916 0.427 0.628 0.155 0.386 0.534

Ins/Cr

Correlation
coefficient

−0.383 −0.226 −0.230 0.159 0.016 −0.137 −0.365

P Value 0.245 0.505 0.495 0.641 0.962 0.689 0.270

Abbreviations: Glx, glutamate-glutamine complex; Cr, creatine; NAA, N-acetylaspartate; Cho, choline; Ins, myo-inositol BCVA, Best-corrected visual acuity.
∗P < 0.05.

by altered reuptake efficiency and metabolic processing may
induce adaptive cortical reorganization within the V1, potentially
driving compensatory plasticity across posterior visual pathways
(McCoy et al., 2009). Emerging evidence underscores retinocortical
functional coupling in retinal degenerative diseases, demonstrating
enhanced ERG-fMRI correlations in Stargardt disease (Melillo et al.,
2018). Our prior work established analogous retinocortical interplay
in end-stage glaucoma, where blood-oxygen-level-dependent
functional MRI (BOLD-fMRI) beta values in foveal retinotopic
areas correlated with mfERG P-wave amplitudes (Zhu et al., 2022).
The present 1H-MRS findings extend this paradigm, revealing
metabolic glutamate signatures in V1 that parallel residual retinal
electrophysiology, independent of structural degeneration metrics.
The moderate-to-strong inverse correlation between Glx/Cr and
retinal function (effect size ρ = −0.68), though uncorrected,
aligns mechanistically with retinocortical coupling literature. We
emphasize this as a preliminary finding warranting validation in
larger cohorts. These converging multimodal insights position
metabolic-functional cortical profiling as a novel biomarker
framework for low-vision rehabilitation, transcending traditional
structural assessments of retinal nerve fiber layers.

Ins, a cyclic polyol predominantly synthesized by cerebral
glial cells, serves as a critical organic osmolyte mediating brain
osmoregulation (Harris et al., 2011). Astrocytes dynamically adjust
Ins levels through transmembrane transport to counterbalance
extracellular osmotic fluctuations (Elberling et al., 2003).
During glutamate-induced osmotic stress, intracellular Ins
accumulation occurs concomitantly with decreased extracellular
pool concentrations (Razek et al., 2014). Our prior 1H-MRS findings
demonstrated reduced Ins levels in early glaucoma, correlating with
elevated extracellular glutamate concentrations in the V1 (Guo
et al., 2018). Paradoxically, Bernabeu et al. reported Ins elevation
in V1 of blind subjects with retinal and optic nerve disorders
despite unchanged Glx levels (Bernabeu et al., 2009). While Ins

participates in phosphatidylinositol secondary messenger systems
and neuroplasticity mechanisms (Jansonius, 2005), our study
revealed no significant Ins alterations in V1 of end-stage glaucoma
patients with blindness. These divergent observations suggest
disease category-specific and duration-dependent modulation of
Ins homeostasis during glutamate-mediated cortical adaptation
processes. Our null Ins finding aligns with glaucoma-specific
astrocyte pathophysiology: Early-stage IOP stress: Transient Ins
depletion occurs as Müller cells consume inositol for osmotic
compensation against glutamate excitotoxicity; End-stage glial
exhaustion: Chronic oxidative stress inactivates sodium-myo-
inositol cotransporters (SMIT1), limiting Ins accumulation despite
persistent osmotic imbalance. This parallels retinal findings where
advanced glaucoma shows reduced Müller cell density.

NAA, a neuron-specific metabolite maintaining high
cerebral concentrations, is an established biomarker of neuronal
degeneration (Gujar et al., 2005). Cho, primarily comprising
phosphorylated derivatives, reflects membrane turnover processes,
including myelination dynamics (Chan et al., 2009; Zhang et al.,
2013). Longitudinal studies have documented progressive NAA
and Cho reductions along the anterior visual pathway in early and
advanced glaucoma by using MRS (Pang et al., 2024; Zhang et al.,
2013). In contrast, the current study revealed preserved NAA
and Cho levels within V1, similar to the previous 1H-MRS
study (Bernabeu et al., 2009; Guo et al., 2018; Sidek et al.,
2016). The metabolic preservation in end-stage glaucoma
may reflect temporal dynamics of metabolic compensation,
where early-phase compensatory upregulation of membrane
turnover and mitochondrial function may lead to stabilized
metabolic equilibrium at terminal disease stages. Concurrently,
experience-dependent neuroplasticity may engage compensatory
metabolic networks, particularly tactile/auditory cross-modal
reorganization, and Müller glia-driven glutamate cycling, to bypass
neurodegeneration-relatedmetabolic stress.The preserved NAA/Cr
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in V1 contrasts sharply with NAA reductions in anterior visual
structures and mirrors retinal ganglion cell (RGC) apoptosis
timelines in glaucoma. While RGC loss propagates anterograde
degeneration to the lateral geniculate nucleus (LGN)withinmonths,
V1 neurons demonstrate remarkable resistance to trans-synaptic
degeneration. Stable Cho/Cr reflects phospholipid equilibrium
unique to glaucoma’s posterior visual pathway. Unlike anterior optic
radiations, where Cho reductions signify Wallerian degeneration,
V1 exhibits Müller glia-driven membrane recycling. Activated
retinal Müller cells release phosphatidylcholine precursors that
reach the cortex via a disrupted blood-brain barrier in glaucoma,
compensating for axonal membrane loss.

Similar to auditory cortex reorganization in deafness (Bola et al.,
2017a) and somatosensory cortex changes in spinal injury
(Höller et al., 2017), glaucoma-induced visual deprivation drives
cross-modal takeover of V1. However, glaucoma uniquely combines
retrograde neurodegeneration with anterograde metabolic
compensation, creating a distinct “disconnection-reorganization”
paradigm. Glx elevation may facilitate cross-modal reorganization,
analogous to blind individuals repurposing V1 for Braille
processing (Bola et al., 2017b). Persistent Glx could sustain V1
excitability for non-visual inputs, explaining neuronal preservation
despite blindness.

This investigation has several limitations requiring
consideration. First, the modest cohort size (n = 11 per group)
constrains statistical power for detecting subtle metabolic changes
and precludes stratification by critical variables like blindness
duration or residual retinal function profiles. Second, systemic
absorption of topical agents (e.g., β-blockers, prostaglandin analogs)
might alter cerebral blood flow, potentially confounding metabolic
measurements. We cannot exclude vascular-mediated metabolic
effects. Third, the uncorrected multiple comparisons increase the
false-positive risk. Our small sample remains underpowered for
stringentmultiplicity adjustments. Future studies should pre-specify
primary outcomes and employ hierarchical testing frameworks.
Finally, 3T 1H-MRS cannot separate glutamate and glutamine
signals; therefore, the observed Glx elevation is not due solely to
increased glutamate. And single-voxel MRS cannot resolve layer-
specific gradients. Future ultrahigh-field (7T) 1H-MRS studies with
improved spectral resolution are warranted to dissect glutamate
and glutamine contributions and clarify the neurotoxic and
compensatory roles of Glx elevation.

In conclusion, our findings demonstrate that end-stage POAG
with profound blindness exhibits distinct glutamate-mediated
metabolic adaptation within V1, characterized by elevated Glx
levels alongside preserved concentrations of NAA, Cho, and Ins.
This metabolic profile suggests active neuroglial compensation,
potentially involving changes in glutamine levels or altered
glutamate-glutamine cycling, that maintains cortical viability
despite chronic deafferentation. Critically, the correlation between
V1 Glx/Cr ratios and residual retinal responses challenges the
paradigm of complete anteroposterior visual pathway disconnection
in end-stage disease. The persistence of retinocortical signaling,
evidenced by Glx/Cr-mfERG coupling, provides a neurochemical
basis for three targeted rehabilitation approaches: Glutamate-
modulated sensory substitution devices that convert visual inputs to
auditory/tactile signals synchronized with residual ERG activity;
retinotopic-specific neuromodulation amplifying glutamatergic

pathways in V1; personalized rehabilitation timing where MRS-
detected Glx elevation identifies optimal neuroplastic windows for
intervention.
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