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Mitochondrial insights: key
biomarkers and potential
treatments for diabetic
nephropathy and sarcopenia

Yi Wei Chen1†, Shan He2†, Yu Wang2, Lian Ying Hu2,
Qin Kai Chen2* and Si Yi Liu2*
1Department of Orthopedics, Jiujiang University Affiliated Hospital, Jiujiang, China, 2Department of
Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang,
China

Introduction: Clinical studies reveal bidirectional links between sarcopenia (SP)
and diabetic nephropathy (DN). Damage to mitochondria in DN may result in
diminished energy production, which consequently triggers SP. Consequently,
mitochondria seem to function as critical nodes connecting DN with SP.
The objective of this research was to pinpoint biomarkers associated with
mitochondrial dysfunction in DN and SP.

Methods: By analyzing the Gene Expression Omnibus (GEO) repository, we
identified shared differentially expressed genes (DEGs) in the DN (GSE96804,
GSE30528) and SP (GSE1428, GSE136344) datasets that displayed similar
expression trends in mitochondrial genes. Using Least Absolute Shrinkage and
Selection Operator (LASSO), Support Vector Machine (SVM), Extreme Gradient
Boosting (XGB), and Random Forest (RF) algorithms, we identified three key
mitochondrial hub genes. Diagnostic nomograms were created to predict DN
and SP risk. We assessed immune infiltration using CIBERSORT and built a drug-
gene network with Cytoscape. Molecular docking determined binding affinities
between potential drugs and hub genes, which were validated in the datasets.

Results: Analysis of GEO datasets identified 80 shared DEGs between DN and
SP, including 10 mitochondria-related genes. Utilizing four machine learning
algorithms (LASSO, SVM, XGBoost, RF), we pinpointed three mitochondrial hub
genes. Subsequent validation confirmed two key mitochondria-related genes -
HTT and TTC19 - as shared diagnostic biomarkers for both DN and SP. These
biomarkers demonstrated strong diagnostic power (AUC >0.8), leading to the
construction of diagnostic nomograms. Immune infiltration analysis revealed
elevated M1 macrophages in DN and increased M2 macrophages in SP, with
both biomarkers showing significant correlations with various immune cells.
Gene set enrichment analysis linkedHTT and TTC19 to mitochondrial metabolic
processes. Crucially, in silico drug prediction identified 156 potential drugs, and
molecular docking confirmed a high binding affinity between acetaminophen
and the HTT protein.

Conclusion: Our study identifies HTT and TTC19 as novel mitochondria-
immune related biomarkers common to both DN and SP, providing insights
into their shared pathogenesis involvingmitochondrial dysfunction and immune
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dysregulation. The computational prediction of acetaminophen interaction
highlights a potential avenue for therapeutic exploration. Further clinical and
mechanistic studies are warranted to validate these findings and elucidate the
underlying pathways.

KEYWORDS

diabetic nephropathy, sarcopenia, machine learning, mitochondria-related genes,
molecular docking

1 Introduction

Diabetic nephropathy (DN) represents the predominant
primary etiology of end-stage renal disease (ESRD) (Yu and
Bonventre, 2018). Research indicates that approximately 30%–40%
of individuals with Type 1 Diabetes Mellitus (T1DM) will develop
DN, with around 50% of these cases advancing to ESRD (Kato
and Natarajan, 2019). The pathogenesis of DN is characterized by
a complex interaction of metabolic and inflammatory responses,
hemodynamic factors, and various etiological determinants (Kato
and Natarajan, 2019). Furthermore, oxidative stress, mitochondrial
dysfunction, and renal hypoxia are implicated in the progression
and exacerbation of DN. Mitochondrial dysfunction has emerged
as a critical factor in the progression of DN, given its essential
role in cellular energy metabolism and the regulation of reactive
oxygen species (ROS). Studies have demonstrated that elevated
blood glucose levels result in the overloading of the electron
transport chain, subsequently increasing the production of ROS.
This increase in ROS induces DNA damage and reduces the
activity of glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
(Takasu et al., 2025). Additionally, the reduction of superoxide
within the mitochondria exacerbates the inflammatory response
by impairing vascular function and activating the nuclear factor-κB
(NF-κB) pathway in B cells (Takasu et al., 2025;Wei and Szeto, 2019).
The consequent impairment of mitochondrial function ultimately
initiates apoptosis and cell death, contributing to the onset and
progression of DN (Chang et al., 2021). Sarcopenia (SP) is a skeletal
muscle disorder marked by the gradual decline in muscle mass
and strength. The adverse effects of SP primarily encompass an
elevated risk of falls, fractures, and disability, potentially resulting
in the loss of independent living capabilities among older adults.
Additionally, SP is associated with heightened rates of all-cause
mortality and disability in this population (Cruz-Jentoft and Sayer,
2019). In comparison to youthful musculature, aging muscles
exhibit an increased production of ROS and a concomitant decline
in both oxygen consumption and ATP synthesis (Kamarulzaman
and Makpol, 2025). In senescent skeletal muscles, various stimuli,
including calcium, oxidative stress, and TNF-α, have the potential
to induce apoptosis (Bottoni et al., 2019). Furthermore, alterations
in mitochondrial protein interactions, cristae architecture, and
mitochondrial networks may result in ADP insensitivity, thereby
contributing to the development of SP [7].

The association between DN and SP is receiving increasing
scholarly attention. A meta-analysis has identified DN as a risk
factor for the onset of SP in individuals with diabetes (Feng et al.,
2022). Additionally, emerging studies have underscored SP as a
distinct risk factor for the development of DN. Furthermore, recent
research has highlighted SP as an independent risk factor for

DN (Huang et al., 2022). Despite the prevalence of SP and DN
as comorbidities in elderly diabetic patients, no studies to date
have confirmed a shared pathogenic mechanism underlying these
two conditions. This underscores the necessity of investigating
their common molecular pathways. In patients with DN, elevated
serum levels of oxidative stress markers have been observed,
which are significant contributors to renal tubular cell damage and
the progression of DN (Xu et al., 2016). Mitochondria, serving
as the cellular energy centers, are vital for maintaining cellular
homeostasis but are particularly vulnerable to oxidative stress-
induced damage (Min et al., 1985). Mitochondrial damage is pivotal
in the pathophysiology of DN and SP, potentially acting as a
nexus between these conditions. Under hyperglycemic conditions,
mitochondria generate an excessive amount of ROS, which induces
oxidative stress and results in damage to glomerular and tubular
cells, as well as mitochondrial dysfunction (Takasu et al., 2025).
This dysfunction not only impairs the energy metabolism of renal
cells, thereby exacerbating renal damage (Takasu et al., 2025),
but may also activate apoptotic signaling pathways, leading to
the apoptosis of muscle cells and consequently facilitating the
progression of SP (Bottoni et al., 2019). Thus, the identification
of mitochondrial-related biomarkers common to both DN and SP
could provide valuable insights for the diagnosis and treatment of
these conditions.

Our research endeavor seeks to synthesize various public
datasets to identify mitochondrial genes linked to DN and SP, and
to assess their diagnostic significance in these conditions. Through
the application of differential expression analysis, machine learning
algorithms, and immune infiltration analysis, we aim to elucidate
the potential molecular mechanisms underlying these diseases. Our
findings reveal druggable targets and diagnostic markers associated
with the shared pathological mechanisms between DN and SP.

2 Materials and methods

2.1 Data download and integration

The datasets for DN, GSE96804 (Pan et al., 2018; Shi et al.,
2018) and GSE30528 (Woroniecka et al., 2011), and the datasets
for sarcopenia (SP), GSE1428 (Giresi et al., 2005) and GSE136344
(Gueugneau et al., 2021), were all retrieved from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/). Four datasets were analyzed
using distinct microarray platforms: GSE30528 (GPL571) and
GSE1428 (GPL96) employed Human Genome U133A arrays (v2.0
and original respectively), whereas GSE96804 (GPL17586) and
GSE136344 (GPL5175) utilized Human Transcriptome Array 2.0
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TABLE 1 GEO dataset information list.

GSE30528 GSE96804 GSE1428 GSE136344

Platform GPL571 GPL17586 GPL196 GPL5175

Experiment type Expression profiling by array Expression profiling by array Expression profiling by array Expression profiling by array

Species Homo sapiens Homo sapiens Homo sapiens Homo sapiens

Tissue Glomeruli Glomeruli Vastus lateralis muscle Vastus lateralis muscle

Samples in control group Control (13) Control (20) 10 young (19–25 years old) 11 young samples

Samples in disease group DN (9) DN (41) 12 older (70–80 years old) 12 elderly samples

Reference Transcriptome analysis of
human diabetic kidney disease

Dissection of Glomerular
Transcriptional Profile in
Patients With Diabetic
Nephropathy: SRGAP2a
Protects Podocyte Structure
and Function

Identification of a molecular
signature of sarcopenia

Muscle Proteomic and
Transcriptomic Profiling of
Healthy Aging and Metabolic
Syndrome in Men

DN, diabetic nephropathy.

and Exon 1.0 ST Array platforms correspondingly. In the DN
datasets, two independent DN cohorts were analyzed: GSE30528
(13 controls vs. 9 DN cases) and GSE96804, which comprised
renal tubular specimens from 20 healthy donors and 41 DN
patients. The subsequent integration of these datasets resulted in
a combined total of 33 control and 50 DN samples, ensuring
statistical robustness for the differential expression analysis. In the
SP datasets, GSE1428 included 10 young samples and 12 elderly
samples, and GSE136344 included 11 young samples and 12 elderly
samples. The data from the two datasets were integrated, resulting
in a combined dataset with 21 young and 24 elderly normal tissue
samples. Specific dataset information is provided in Table 1. We
used the R package “sva” (Leek et al., 2012) to perform batch
effect removal on the DN datasets GSE30528 and GSE96804, and
the SP datasets GSE1428 and GSE136344, respectively, to obtain
the integrated datasets DN-Datasets and SP-Datasets. The study
workflow is illustrated in Supplementary Figure S1.

2.2 Differential expression gene analysis

We used the “limma” package in R software to perform
differential analysis on the expression profile data of the DN -
Datasets and SP - Datasets respectively, and screened the genes with
the criteria of |logFC| > 0.25 and p. value <0.05. The differential
expression analysis outcomes were visualized through a volcano
plot, which was created utilizing the R package ggplot2.

2.3 Identification of genes with the same
trend and mitochondria-related DEGs

We screened the differentially expressed genes (DEGs)
that showed a common expression trend. By searching
the GeneCard (Stelzer et al., 2016) database (https://www.genecards.
org/), we identified 2,676 mitochondria-related genes using a

correlation score exceeding 1 as the filtering criterion. The overlap
between genes co-expressed differentially and those associated with
mitochondria was utilized to pinpoint differentially expressed genes
linked to mitochondrial functions.

2.4 Gene function enrichment analysis

The “enrichplot” package was employed to visualize the Gene
Ontology (GO) (Gene Ontology Consortium, 2015) enrichment
outcomes, encompassing biological processes, cellular components,
and molecular functions. Furthermore, a network diagram was
created to illustrate the enrichment findings from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa and Goto,
2000) analysis.

2.5 Selection of key mitochondrial genes
using machine learning algorithms

Least Absolute Shrinkage and Selection Operator (LASSO)
is used for initial dimensionality reduction and linear feature
screening; Support Vector Machine (SVM) handles nonlinear
classification of high-dimensional small-sample data; and Random
Forest (RF) and Extreme Gradient Boosting (XGB) capture complex
interaction effects among genes through integrated learning.
Ultimately, only genes selected in all four algorithms are defined
as key biomarkers to ensure the robustness and interpretability
of the results. We employed the LASSO, XGB, SVM, and RF
methods to identify critical prognostic genes, and we constructed
regression models with the aid of the “glmnet” package in R. The
penalty coefficient was established using a tenfold cross-validation
process. Subsequently, the Random Forest model was created with
the “randomForest” package in R, following which the top ten
variables were selected based on their importance scores. The XGB
model was developed with the assistance of the “xgboost” package
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in R, which facilitated the selection of key variables based on
feature importance scores (Gain or Cover) through tenfold cross-
validation. For SVM, the “e1071”package was utilized to perform
recursive feature elimination (SVM-RFE) for variable selection. A
Venn diagram was utilized to determine the overlapping DEGs
related to mitochondria, which were identified by the LASSO, XGB,
SVM, and RF methods.

2.6 Diagnostic model construction and
evaluation

We applied the “rms” (Xu et al., 2021) package to construct
a Nomogram model to predict the risk of patients. A calibration
curve was used to determine the degree of match between our
predicted values and the reality. Decision curve analysis (DCA)
was performed to evaluate whether model - based decisions were
beneficial to patients.

2.7 Immune infiltration analysis

We utilized the CIBERSORT tool, an algorithm for Cell
Type Identification By Estimating Relative Subsets Of RNA
Transcripts (Kawada et al., 2021), to deconvolute the cellular
composition of intricate tissues from gene expression profiles
(https://cibersort.stanford.edu/). We carried out an analysis to
investigate immune cell infiltration in the samples from patients,
comparing the disease group with the normal control group.
The “e1071”and “preprocessor” packages in R software were used
in combination with the CIBERSORT algorithm. Additionally,
we assessed the correlation between hub DEGs associated with
mitochondria and the aforementioned immune cells, and we have
depicted these findings in a heat map format. Furthermore, we
measured the immune cell composition within each individual
sample.The simulation was conducted with a total of n calculations,
and outcomes with a significance level of p < 0.05 were filtered and
kept for analysis.

2.8 GSEA analysis

Utilizing the “enrichR” package within R, we performed Gene
Set Enrichment Analysis (GSEA) (Subramanian et al., 2005). The
hallmark gene set and immune signature gene set were downloaded
as the background sets for the enrichment analysis. Subsequently, we
computed the enrichment score and p-value for each gene set via the
GSEA method.

2.9 Drug prediction and molecular docking

First, we used the Comparative Toxicogenomics Database
(CTD) (Davis et al., 2021) to predict drugs for the genes
(http://ctdbase.org/.) A miRNA - drug regulatory network was
constructed and visualized using Cytoscape. Structural data
for target proteins and drug components were obtained from
the Protein Data Bank (PDB, http://www.rcsb.org) and the

PubChem database (Cob-Calan et al., 2019) (https://pubchem.ncbi.
nlm.nih.gov). Subsequently, the protein structureswere transformed
into∗.pdbqt format, following which molecular docking was carried
out using the web-based tool CB-dock2 (https://cadd.labshare.cn/cb
- dock2). The folding patterns and molecular interactions between
the target protein and ligandmolecules were examined to obtain the
binding energy for screening.

2.10 Statistical analysis

All data processing and analysis in this study were conducted
using R software (Version 4.3.3). For the comparison of two
groups of continuous variables, the independent Student’s t-test
was employed to estimate the statistical significance of normally
distributed variables, while the Mann-Whitney U test (also known
as the Wilcoxon rank-sum test) was utilized to analyze differences
between non-normally distributed variables. For comparisons
involving three or more groups, the Kruskal–Wallis test was
applied. Chi-square tests or Fisher’s exact tests were used to assess
the statistical significance of categorical variables between two
groups. Spearman’s correlation method was employed to compute
the correlation coefficients between various molecules. Unless
otherwise specified, all statistical P values were two-tailed, with a
significance level set at P < 0.05.

3 Results

3.1 Differential analysis of datasets

We initially employed the R package “sva” to perform batch
effect removal on the DN-Dataset and SP-Datasets, resulting in
the batch-corrected DN-Datasets and SP-Datasets. Subsequently,
we compared the datasets before and after batch effect correction
using Principal Component Analysis (PCA), as illustrated in
Figures 1A–D. The PCA results indicate that the batch effects in
the samples of the datasets have been largely eliminated following
the batch removal procedure. Differential analysis was conducted
using the “limma” package, and the results were visualized through
a volcano plot. In the DN-Datasets, a total of 2,308 differentially
expressed genes were identified, comprising 1,171 upregulated
genes and 1,137 downregulated genes (Figure 1E). Furthermore,
within the SP-Datasets, we detected 253 genes displaying differential
expression, comprising 117 that were upregulated and 136 that were
downregulated (Figure 1F).

3.2 Identification of mitochondrial-related
genes

We screened differentially expressed genes (DEGs) exhibiting
similar expression trends (Figure 2A) and selected those that
intersected with mitochondria-related genes (Figure 3A). This
resulted in the identification of ten mitochondria-related DEGs:
CKB, FAM162A, HSPE1, HTT, NFKBIA, PPARGC1A, PRKDC,
QDPR, TTC19, and UCHL1. In the biological process (BP)
enrichment analysis, DEGs with similar expression trends were
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FIGURE 1
Dataset correction and analysis of differentially expressed genes. (A) PCA plot of DN- Datasets before correction. (B) PCA plot of the corrected
DN-Datasets. (C) PCA plot of SP- Datasets before correction. (D) PCA plot of the corrected SP- Datasets. (E) Volcano plot of differential analysis results
between DN and Control groups in the DN- Datasets dataset. (F) Volcano plot of differential analysis results between SP and Control groups in the SP-
Datasets dataset. DN, Diabetic nephropathy; SP, Sarcopenia. The Diabetic nephropathy (DN) dataset GSE30528 is in light blue, and the Diabetic
nephropathy (DN) dataset GSE96804 is in light red. The Sarcopenia (SP) dataset GSE136344 is in light blue, and the Sarcopenia (SP) dataset GSE1428 is
in light red.
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primarily associated with the regulation of cellular circadian
rhythms. This is closely linked to processes such as the cell
cycle and metabolism (Figure 2B). During the analysis of cellular
component (CC) enrichment, the main enrichment was observed
in the extracellular matrix. In the molecular function (MF)
enrichment analysis, the predominant enrichment was related
to transcriptional corepressor binding (Figure 2C,D). KEGG
pathway analysis indicated that these genes were enriched in
pathways associated with circadian rhythms, apoptosis, and the RAS
signaling pathway (Figure 2E). For the BP enrichment analysis of
mitochondria-related DEGs, the primary enrichment was related
to circadian rhythms. In the CC enrichment analysis, it was
mainly associated with presynaptic and postsynaptic cytoplasm,
and in the MF enrichment analysis, it was predominantly linked
to transcription factor binding (Figures 3B–D). KEGG pathway
analysis demonstrated that these genes were enriched in pathways
related to insulin resistance, adipokine signaling, and arginine and
proline metabolism (Figure 3E).

3.3 Identifying key mitochondrial genes
and their diagnostic significance

Using the LASSO algorithm, we identified 8 and 9
mitochondrial-related genes in the DN and SP datasets, respectively
(Figures 4A–D). Using the RF approach, we pinpointed the top
five genes in the DN and SP categories (Figures 4E–H), while the
SVM algorithm identified 8 and 10 genes in DN and SP, respectively
(Figures 5A–D), and the XGB algorithm identified 7 genes in both
DN and SP (Figures 5E,F). By taking the intersection of the results
from these four algorithms, we identified two key mitochondrial-
related genes (HTT and TTC19) (Figures 6A–C). We then used
ROC curves to estimate the diagnostic value of these two key
genes (Figures 6D,E); it was observed that HTT was upregulated
in DN (Figure 6F), while TTC19 was upregulated in DN and
downregulated in SP (Figure 6G).

3.4 Construction and evaluation of the
diagnostic model

A nomogram model was developed, incorporating the scores
from the two hub genes. (Figures 7A,B).The decision curve analysis
(DCA) curve showed that patients using this model benefited
more than those without intervention or with full intervention
(Figures 7C,D). The bias-adjusted curve closely approximated the
perfect calibration curve, suggesting that the model was effectively
calibrated (Figures 7E,F).

3.5 Immune infiltration analysis

Utilizing the CIBERSORT method, we assessed the infiltration
of immune cells in the case and control cohorts within the DN
and SP dataset. Significant variations in the distribution of diverse
immune cell populations were observed between DN and SP
(Figures 8A,B). The DN group exhibited a significant increase in
the number of M1 macrophages and M2 macrophages (Figure 8C),

while SP patients demonstrated a significant elevation in the number
of M2 macrophages (Figure 8D). Two pivotal genes were also found
to be closely associated with multiple immune cells (Figures 8E,F).
In the context of DN,HTT was positively correlated with regulatory
T cells and negatively correlated with M2 macrophages and
eosinophils, whereas TTC19 was negatively correlated with M1
macrophages. The results imply that these genes could be critical in
shaping the molecular and immune cell recruitment landscape in
individuals with DN and SP.

3.6 Enrichment analysis of characteristic
genes

To gain a deeper understanding of the enrichment pathways
associated with characteristic genes, we performed Gene Set
Enrichment Analysis (GSEA) on a single-gene basis. Utilizing
variations in expression levels, the target genes were sorted, thereby
establishing groups characterized by high and low expression. The
enrichment degree was evaluated by calculating the cumulative
scores of the target gene sets in the ranked list. Enrichment analysis
of single genes reveals that HTT and TTC19 are significantly
associated with mitochondrial and fatty acid metabolism in patients
with DN (Figures 9A,B), while in patients with SP, HTT and
TTC19 were found to be enriched within the mismatch repair
signaling pathway (Figures 9C,D).

3.7 Drug prediction and molecular docking

Utilizing the Cytoscape, we developed a networkmapping drugs
to genes (Table 2). The results indicated that acetaminophen targets
two genes (Figure 10A). Subsequently, we employed molecular
docking techniques to evaluate the binding stability with the two
hub genes in order to identify the optimal gene. Typically, a
binding energy below −5 kcal/mol is considered to denote a high
binding affinity, and a score lower than −7 kcal/mol is indicative
of a strong binding interaction. A strong binding interaction is
observed between acetaminophen and HTT, characterized by a
binding energy of −6.2 kcal/mol (Figures 10B,C).

4 Discussion

Diabetic nephropathy (DN), a prevalent complication of
diabetes mellitus, has emerged as a leading global contributor
to end-stage renal failure. Identifying reliable biomarkers for
chronic kidney disease (CKD), especially DN, is crucial for early
detection and understanding the disease. Recent advancements
have introduced a variety of novel biomarkers, including protein-
based biomarkers such as serum secreted leukocyte protease
inhibitor (SLPI), which has proven to be a valuable predictor of
DN progression (Sun et al., 2024). Urine biomarkers, such as
neutrophil gelatinase-associated lipocalin (NGAL), kidney injury
molecule-1 (KIM-1), and periostin, have shown potential as
tools for the noninvasive monitoring of DN (V et al., 2024).
Microbiome interventions, such as targeting Lactobacillus johnsonii,
have been proposed as potential strategies for reversing CKD
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FIGURE 2
Identification of DEGs and functional enrichment between DN and SP. (A) Venn diagram of the DEGs. (B) GO enrichment analyses of DEGs with the
same expression trends in DN; (C) KEGG enrichment analyses of DEGs with the same expression trends in DN. (D) GO enrichment analyses of DEGs
with the same expression trends in SP. (E) KEGG enrichment analyses of mitochondria-related DEGs in SP. DN, Diabetic nephropathy; SP, Sarcopenia;
DEGs, differentially expressed genes; GO, Gene ontology; KEGG, Kyoto encyclopedia of genes and genomes; BP, Biological process; CC, Cellular
component; MF, Molecular function. The screening criteria for GO/KEGG enrichment items were p. Adj <0.05 and FDR value (q. value) <0.25, and the
p value correction method was Benjamini–Hochberg (BH).
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FIGURE 3
Identification of mitochondria-related DEGs and functional enrichment between DN and SP. (A) Venn diagram of the mitochondria-related DEGs. (B)
GO enrichment analyses of mitochondria-related DEGs in DN; (C) KEGG enrichment analyses of mitochondria-related DEGs in DN. (D) GO enrichment
analyses of mitochondria-related DEGs in SP; (E) KEGG enrichment analyses of DEGs with the same expression trends in SP. DN, Diabetic nephropathy;
SP, Sarcopenia; DEGs, differentially expressed genes; GO, Gene ontology; KEGG, Kyoto encyclopedia of genes and genomes; BP, Biological process;
CC, Cellular component; MF, Molecular function. The screening criteria for GO/KEGG enrichment items were p. Adj <0.05 and FDR value (q.
value) <0.25.

(Miao et al., 2024a). Metabolite-based biomarkers, including p-
cresol sulfate and indole sulfate, have been investigated for their
role in predicting renal function based on glomerular filtration

rate (GFR) categories (Corradi et al., 2024). Additionally, research
on the diagnostic complexities of CKD in the elderly has
highlighted the importance of considering biomarkers specifically
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FIGURE 4
Construction of machine learning models. (A) Variables determined by LASSO analysis in DN- Datasets. (B) LASSO Coefficient distribution map-LASSO
coefficient distribution of all variables in DN- Datasets. (C) variables determined by LASSO analysis in SP- Datasets. (D) LASSO Coefficient distribution
map-LASSO coefficient distribution of all variables in SP- Datasets. (E) The relative importance of genes in random forest models in DN- Datasets. (F)
Confidence intervals for error rates of random forest models in DN- Datasets. (G) The relative importance of genes in random forest models in SP-
Datasets. (H) Confidence intervals for error rates of random forest models in SP- Datasets. DN, Diabetic nephropathy; SP, Sarcopenia. LASSO, Least
Absolute Shrinkage and Selection Operator.
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FIGURE 5
Screening of mitochondria-related hub genes. (A) The accuracy of the SVM model in DN- Datasets. (B) The accuracy of the SVM model in SP-
Datasets. (C) The error of the SVM model in DN- Datasets. (D) The error of the SVM model in SP- Datasets. (E) The feature gene importance for the XGB
model in DN- Datasets. (F) The feature gene importance for the XGB model in SP- Datasets. DN, Diabetic nephropathy; SP, Sarcopenia; SVM, Support
Vector Machine; XGB, eXtreme Gradient Boosting.

for this population (Muglia et al., 2024). Furthermore, metabolites
such as serum 5-methoxytryptophan (5-MTP), homocysteine, and
citrulline have been identified as biomarkers in patients with

advanced DN through a combination of untargeted and targeted
metabolomics approaches (Chen et al., 2024). A hyperglycemic
environment fosters the overproduction of reactive oxygen species
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FIGURE 6
Identification of mitochondria-related hub genes. (A) The intersected genes of three machine learning analyses shown by Venn diagram in DN-
Datasets. (B) The intersected genes of three machine learning analyses shown by Venn diagram in SP- Datasets. (C) Venn diagram of
mitochondria-related hub genes. (D) ROC curve of HTT and TTC19 between different groups (DN/Control) of DN-Datasets. (E) ROC curve of HTT and
TTC19 between different groups (SP/Control) of SP-Datasets. (F) Expression levels of HTT and TTC19 in DN-Datasets. (G) Expression levels of HTT and
TTC19 in SP-Datasets. DN, Diabetic nephropathy; SP, Sarcopenia. The symbol∗∗is equivalent to P < 0.01, which is highly statistically significant. The
symbol∗∗∗is equivalent to P < 0.001 and highly statistically significant. The closer the AUC in the ROC curve is to 1, the better the diagnostic effect is.
When AUC was 0.7–0.9, it had a certain accuracy. AUC > 0.9 had high accuracy. ROC, Receiver operating characteristic curve; AUC, Area
under the curve.
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FIGURE 7
Construction of nomogram model. (A) Nomogram predicting the probability of DN. (B) Nomogram predicting the probability of SP. (C) DCA curves of
the DN risk models. (D) DCA curves of the DN risk models. (E) Calibration curves of the DN risk models. (F) Calibration curves of the SP risk models.

(ROS), leading to mitochondrial DNA (mtDNA) impairment
and ultimately resulting in renal impairment (Takasu et al.,
2025). Emerging therapeutic strategies targeting mitochondrial
homeostasis, particularly through AMP-activated protein kinase

(AMPK) activation and nitric oxide (NO) production modulation,
demonstrate potential for halting DN progression (Börgeson et al.,
2017; Gao et al., 2004). Concurrently, mitochondrial DNA content
serves as a critical biomarker for muscle injury and exhibits strong
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FIGURE 8
Immune cell infiltration analyses. (A) Immune cell distribution map in DN. (B) Immune cell distribution map in SP. (C) boxplot showing the comparison
of 22 kinds of immune cells between DN and the control group. (D) boxplot showing the comparison of 22 kinds of immune cells between SP and the
control group. (E) heatmap representing the associations of the differentially infiltrated immune cells with the two hub genes in DN. (F) heatmap
representing the associations of the differentially infiltrated immune cells with the two hub genes in SP. DN, Diabetic nephropathy; SP, Sarcopenia. The
symbol∗∗is equivalent to P < 0.01, which is highly statistically significant. The symbol∗∗∗is equivalent to P < 0.001 and highly statistically significant.

associations with sarcopenia (SP) progression (Short et al., 2005;
Rygiel et al., 2016). Given the high mitochondrial density in
skeletal muscle fibers essential for ATP production via oxidative
phosphorylation, mitochondrial dysfunction has been implicated

as a central mechanism in SP pathogenesis (Calvani et al.,
2013). Through systematic cross-disease analysis, we identified
mitochondrial-related hub genes shared between DN and SP,
revealing their pivotal role in disease pathogenesis.

Frontiers in Cell and Developmental Biology 13 frontiersin.org

https://doi.org/10.3389/fcell.2025.1596204
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Chen et al. 10.3389/fcell.2025.1596204

FIGURE 9
GSEA of DN Datasets dataset. (A) GSEA for the HTT in DN. (B) GSEA for the HTT in DN. (C) GSEA for the TTC19 in SP. (D) GSEA for the TTC19 in SP.
GSEA, Gene set enrichment analysis; DN, Diabetic nephropathy; SP, Sarcopenia. The screening criteria of gene set enrichment analysis (GSEA) were p.
Adj<0.05 and FDR value (q value) <0.25.

In this study, we identified 80 genes exhibiting similar patterns
in two diseases, including 10 genes related to mitochondrial
function: CKB, FAM162A, HSPE1, HTT, NFKBIA, PPARGC1A,
PRKDC, QDPR, TTC19, and UCHL1. Machine learning algorithms
prioritized HTT and TTC19 as core diagnostic biomarkers, with
logistic regression models demonstrating high discriminative
accuracy. Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses indicated
that these genes are significantly involved in the regulation of
circadian rhythms, cellular metabolism, and apoptosis. These
findings suggest two important considerations: first, the regulation
of circadian rhythms, cellular metabolism, and apoptosis may
constitute a shared pathogenic mechanism in both diseases; second,
impaired mitochondrial function could potentially influence
these processes.

HTT (Huntingtin) is a multifunctional cytoplasmic protein
(Prowse et al., 2025), whose expression is downregulated in
both DN and SP as demonstrated in our study. HTT interacts
with proteins such as dynein to regulate vesicular transport
and synaptic transmission, which are essential for maintaining
the normal physiological functions of neurons and muscle cells
(Prowse et al., 2025). Furthermore, HTT plays a critical role in
the regulation of mitochondrial function, impacting adenosine
triphosphate (ATP) production and oxidative stress (Prowse et al.,
2025; Browne et al., 1999). In the brains of patientswithHuntington’s

disease (HD), markers of oxidative stress, including 8-hydroxy-
2′-deoxyguanosine and malondialdehyde (MDA), are significantly
elevated (Polidori et al., 1999). Observations have indicated the
presence of oxidative stress in the peripheral blood of individuals
with HD (Chen et al., 2007), as well as in animal models simulating
HD (Bogdanov et al., 2001). Oxidative stress plays a pivotal role
in the onset of DN (Samsu, 2021; Jin et al., 2023) and is a
major pathogenic factor in SP (Chen et al., 2022), characterized
by neurogenic denervation at the neuromuscular junction, muscle
fiber atrophy, and mitochondrial dysfunction (Xu et al., 2025). We
propose that HTT contributes to mitochondrial damage in patients
with DN and facilitates the progression of SP. Tetratricopeptide
repeat domain 19 (TTC19) encodes a protein with a molecular
weight of 35 kDa, which was initially considered a complex III
(CIII) assembly factor. This discovery was based on the detection
of the absence of this protein in some biochemical patients
presenting with isolated CIII deficiency (Ghezzi et al., 2011).
Through in - depth molecular studies on the Ttc19−/− mouse
model, we found that TTC19 plays an important role in clearing
the N - terminal fragments generated during the processing of
the catalytic Fe - S Rieske subunit (Uqcrfs1), which is crucial
for maintaining the functional and structural integrity of CIII
(Bottani et al., 2017; Fernandez-Vizarra and Zeviani, 2018). This
complex is essential formitochondrial function, and any disruptions
in its function can result in mitochondrial dysfunction. TTC19 is
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TABLE 2 mRNA-Drug interaction network nodes.

mRNA Drug

HTT Cadmium Chloride

HTT Bisphenol A

HTT Manganese

HTT Minocycline

HTT Aflatoxin B1

HTT Tetrachlorodibenzodioxin

HTT Vinclozolin

HTT Atrazine

HTT Bisphenol F

HTT Cadmium

HTT Copper

HTT Dioxins

HTT Dronabinol

HTT Endosulfan

HTT Ethinyl Estradiol

HTT Indomethacin

HTT Isoflurane

HTT Lead

HTT Lipopolysaccharides

HTT Manganese chloride

HTT Nanotubes, Carbon

HTT 1,2-Dimethylhydrazine

HTT 1-Methyl-3-isobutylxanthine

HTT 2,2′,4,4′-tetrabromodiphenyl ether

HTT 2,3,7,8-tetrachlorodibenzofuran

HTT 2,4-dinitrotoluene

HTT 2,6-dinitrotoluene

HTT 4-hydroxyphenyl 4-isopropoxyphenylsulfone

HTT 7,8-Dihydro-7,8-dihydroxybenzo(a)pyrene 9,10-oxide

HTT Abrine

HTT Acetaminophen

HTT Aflatoxin B2

(Continued on the following page)

TABLE 2 (Continued) mRNA-Drug interaction network nodes.

mRNA Drug

HTT Air Pollutants

HTT Ammonium Chloride

HTT Arsenic

HTT Arsenite

HTT Asbestos, Crocidolite

HTT Benoxacor

HTT Benzo(a)pyrene

HTT Benzophenoneidum

HTT Bisphenol S

HTT Caffeine

HTT Chlorine

HTT Cisplatin

HTT Corosolic acid

HTT Coumarin

HTT Cypermethrin

HTT Decamethrin

HTT Desflurane

HTT Dexamethasone

HTT Dicrotophos

HTT Dicyclohexyl phthalate

HTT Dietary Fats

HTT Diethylhexyl Phthalate

HTT Dimethyl phthalate

HTT Estradiol

HTT Ethanol

HTT Ethylnitrosourea

HTT Flavonoids

HTT Formic acid

HTT FR900359

HTT Gallic Acid

HTT Geldanamycin

HTT Genistein

(Continued on the following page)
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TABLE 2 (Continued) mRNA-Drug interaction network nodes.

mRNA Drug

HTT Gentamicins

HTT Hexachlorocyclohexane

HTT Hypoxanthine

HTT Inulin

HTT Iron

HTT Ivermectin

HTT JP8 aviation fuel

HTT (+)-JQ1 compound

HTT Lactones

HTT Lead acetate

HTT Menthol

HTT Monomethyl phthalate

HTT Nickel monoxide

HTT Onjisaponin B

HTT Ozone

HTT Paraquat

HTT Particulate Matter

HTT Pentabrominated diphenyl ether 100

HTT Perfluorooctane sulfonic acid

HTT Pirinixic acid

HTT Pregnenolone Carbonitrile

HTT Procymidone

HTT Sevoflurane

HTT Silver

HTT Sodium arsenite

HTT Soman

HTT Superoxides

HTT TAK-243

HTT Tetrabromobisphenol A

HTT Thalidomide

HTT Titanium dioxide

HTT Toluene

(Continued on the following page)

TABLE 2 (Continued) mRNA-Drug interaction network nodes.

mRNA Drug

HTT Trimellitic anhydride

HTT Triphenyl phosphate

HTT Tris (1,3-dichloro-2-propyl)phosphate

HTT Tungsten

HTT Valproic Acid

HTT Xestospongin C

TTC19 Valproic Acid

TTC19 Bisphenol A

TTC19 Acetaminophen

TTC19 Cadmium

TTC19 Dibutyl Phthalate

TTC19 Nanotubes, Carbon

TTC19 Tetrachlorodibenzodioxin

TTC19 Vehicle Emissions

TTC19 1,2-Dimethylhydrazine

TTC19 4-hydroxyphenyl 4-isopropoxyphenylsulfone

TTC19 Acetamide

TTC19 Acrylamide

TTC19 Air Pollutants

TTC19 Amitrole

TTC19 Benz(a)anthracene

TTC19 Benzene

TTC19 Bisphenol S

TTC19 Cadmium Chloride

TTC19 Cyclosporine

TTC19 Decamethrin

TTC19 Diazinon

TTC19 Doxorubicin

TTC19 Ethanol

TTC19 Ethinyl Estradiol

TTC19 Fenthion

TTC19 Fulvestrant

(Continued on the following page)
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TABLE 2 (Continued) mRNA-Drug interaction network nodes.

mRNA Drug

TTC19 Gentamicins

TTC19 Ginger extract

TTC19 Hexabromocyclododecane

TTC19 Ionomycin

TTC19 K 7174

TTC19 Manganese

TTC19 Manganese chloride

TTC19 Methamphetamine

TTC19 Methidathion

TTC19 Methimazole

TTC19 mono-(2-ethylhexyl)phthalate

TTC19 Oils, Volatile

TTC19 Particulate Matter

TTC19 Perfluorooctanesulfonamide

TTC19 Plant Extracts

TTC19 Propylthiouracil

TTC19 Resveratrol

TTC19 Sodium arsenite

TTC19 Soot

TTC19 Sulfadimethoxine

TTC19 Temozolomide

TTC19 Tetradecanoylphorbol Acetate

TTC19 Thapsigargin

TTC19 Titanium dioxide

TTC19 Tretinoin

TTC19 Troglitazone

TTC19 Tunicamycin

TTC19 Vinclozolin

integral to mitochondrial dynamics; however, research examining
the association between TTC19 and DN remains limited. Despite
this, TTC19 expression is linked to mitochondrial dysfunction,
a process critically involved in the development and progression
of both DN (Zhang et al., 2021) and SP (Kamarulzaman and

Makpol, 2025). Therefore, addressing mitochondrial dysfunction is
a fundamental concern in the management of DN and SP.

Gene Set Enrichment Analysis (GSEA) reveals that HTT and
TTC19 are significantly enriched in the mitochondrial and fatty
acid metabolism pathways in individuals with DN, whereas these
genes are overrepresented in the mismatch repair signaling pathway
among individuals with SP. As mentioned above, the functional
abnormalities of HTT and TTC19 can lead to mitochondrial
dysfunction. The enrichment of HTT and TTC19 in mitochondrial
and fatty acidmetabolic pathways in patients with DNmay suggest a
correlation between the functional anomalies of these genes and the
mitochondrial dysfunction and fatty acid metabolic dysregulation
observed in DN. In DN, the enrichment of mitochondrial and
fatty acid metabolism pathways suggests a disruption in energy
homeostasis and an increase in oxidative stress. This mitochondrial
dysfunction likely contributes to key pathological processes,
including epithelial-mesenchymal transition (EMT), which is a
well-established driver of renal fibrosis in DN (Balakumar, 2024).
Moreover, mitochondrial impairment is critically associated with
podocyte injury, another hallmark of DN. Podocytes, which are
essential for maintaining the integrity of the glomerular filtration
barrier, are particularly vulnerable to mitochondrial damage caused
by hyperglycemia and oxidative stress (Liu et al., 2022). Protective
mechanisms, such as the upregulation of Sirtuin 6 (Sirt6), have
been demonstrated to alleviate podocyte injury by inhibiting
harmful pathways, including the Wnt/β-catenin signaling pathway
and the renin-angiotensin system (RAS) (Miao et al., 2024b).
The interaction between mitochondrial health and these crucial
signaling pathways, which are dysregulated in DN, such as
RAS and Wnt/β-catenin, highlights the fundamental importance
of maintaining mitochondrial homeostasis (Balakumar, 2024;
Miao et al., 2024b). The observed enrichment of HTT and
TTC19 in the mismatch repair signaling pathway among SP
patients suggests a potential pivotal role for these genes in the
maintenance of genomic stability. Mismatch repair constitutes
a fundamental component of the cellular DNA damage repair
system, crucial for averting the accumulation of mutations and
preventing genomic instability. The presence of HTT and TTC19
enrichment within this pathway may indicate compromised DNA
repair capabilities in SP patients (Narciso et al., 2007). Furthermore,
the variation in enrichment pathways of HTT and TTC19 across
different patient populations suggests that these genes may perform
distinct functional roles under varying pathological conditions.
This observation carries significant implications for elucidating the
molecular mechanisms underlying DN and SP.

Our study found a significant increase in macrophages in DN,
consistent with their known role as the main immune cells in renal
biopsies for DN (Tesch, 2010; Liu et al., 2021). In addition to
macrophages, the dysregulation of other immune cell populations
plays a substantial role in the pathogenesis of DN. For example,
emerging subsets of T-cells have been identified as non-invasive
biomarkers for vascular injury during the pre-dialysis stages of
CKD (Martín-Vírgala et al., 2024), underscoring the extensive
involvement of adaptive immunity. The activation of macrophages
and the progression of DN are driven by factors such as advanced
glycation end-products (AGEs), oxidized low-density lipoprotein
(Ox-LDL), reactive oxygen species (ROS), and proteases (Hickey
and Martin, 2013). These mechanisms exacerbate tissue damage,
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FIGURE 10
Prediction of drugs for three genes (A) A drug-genes network. (B,C) Schematic diagram of resveratrol-HTT molecular docking.

ultimately leading to renal fibrosis. Moreover, renal injury is
notably prevalent among patients with idiopathic inflammatory
myopathies (IIMs) (Conticini et al., 2023). Biomarkers such as
neutrophil gelatinase-associated lipocalin (NGAL), kidney injury
molecule-1 (KIM-1), Activin A, CD163, and Cystatin C have proven
to be reliable for the early diagnosis of CKD in this context
(Conticini et al., 2023), thereby reinforcing the crucial connection

between immune dysregulation, and renal damage across different
conditions. In addition, clinical studies have demonstrated age-
related variations and changes in macrophage phenotype responses
in human skeletal muscle following injury (Zhang et al., 2024).
Muscle biopsies from older adults (aged 60–75 years) exhibit a
significant decrease in CD68+CD11b+M1 macrophages compared
to younger individuals (aged 18–35 years). Furthermore, an 8-week
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lower limb eccentric exercise rehabilitation program resulted in a
more pronounced increase in CD206+M2 macrophages in older
adults than in younger individuals (Reidy et al., 2018), aligning with
our research findings.

A variety of chemical compounds and medications have been
explored as potential treatments for DN and SP. Nonetheless,
as of now, no definitive pharmacological interventions have
been pinpointed for patients suffering from both DN and SP.
Our research aimed to identify potential therapeutic targets and
found acetaminophen to be a promising treatment option for
both conditions. While predicting acetaminophen-HTT binding
computationally is intriguing, clinical validation of HTT is crucial.
Specific miRNAs in urine exosomes, like miR-320a, are early
biomarkers for kidney disease (Mishra et al., 2024). Exosome-based
therapies, such as delivering miRNA-23a/27a/26a clusters, have
shown promise in reducing tubulointerstitial fibrosis in DN models
(Ji et al., 2023). Additionally, using specificLactobacillus strains, such
as Lactobacillus reuteri, can improve membranous nephropathy by
affecting the aryl hydrocarbon receptor pathway (Miao et al., 2024c).
These findings emphasize the potential of targeting the gut-kidney
axis and microbial metabolites. Consequently, future research
should concentrate on two main areas: validating the diagnostic
and prognostic value of miRNA biomarkers through non-invasive
methods like urinary exosomal analysis, and advancing clinical
research on new therapies, including exosomes and microbial
interventions, to evaluate their effectiveness and safety in patients.

Although prior research has noted links between DN and SP,
the common molecular pathways underlying these diseases have
not been analyzed through bioinformatics methods. Our study
marks the first identification of key mitochondrial genes that may
be implicated in the pathogenesis of DN and SP. Through the
application of sophisticated machine learning techniques, we have
illuminated potential connections between these genes and the
overlapping pathological mechanisms of DN and SP. Nevertheless,
our study has certain limitations. Firstly, the study’s dataset,
sourced from public repositories, had limited and uneven data,
potentially missing key genes in disease progression. Secondly,
although the predictive model was developed and evaluated using
cross-validation with strict data partitioning to reduce overfitting
risks, external validation in independent clinical cohorts remains
necessary. Thirdly, the four models built on small public datasets
may have limited generalizability despite cross-validation. Future
studies should expand cohorts and employ algorithms tailored
for small samples (e.g., sPLS-DA) to enhance reliability. Fourthly,
the current overlap of the results of the four machine learning
models relies on empirical intersections, and in the future, consensus
strategies such as weighted voting and integrated learning need to be
introduced and combined with statistical tests (e.g., Bootstrapping)
to quantify gene selection stability.

Ultimately, to corroborate our findings, the pathological causal
pathways of diseases linked to key genes and immune infiltration
require additional experimental confirmation fromexternal sources.
This study investigated the relationship between DN and SP
through transcriptomic data analysis, identifying common DEGs
and hub genes pertinent to both conditions. Multiple bioinformatics
analyses were conducted based on these findings. The research
indicates that DN and SP share certain pathogenic mechanisms
potentially mediated by specific key genes. The present research

provides innovative biological targets and understanding, which
can enhance investigations into the molecular pathways, facilitate
the creation of novel treatments, and support the early detection
and efficient management of individuals suffering from DN and SP.
IdentifyingHTT and TTC19 as crucial links betweenmitochondrial
dysfunction and DN pathogenesis highlights their potential as
therapeutic targets. These genes are enriched in pathways vital
for DN, such as mitochondrial and fatty acid metabolism, which
may affect EMT and podocyte injury. Targeting these genes or
their downstreameffects, likemodulatingmitochondrial function or
protecting podocytes, shows promise. Innovative approaches, such
as exosome-mediated miRNA delivery or microbiome modulation,
expand the therapeutic options for DN. However, the biological
implications of these findings necessitate additional investigation,
which should be conducted through a combination of in vitro and
in vivo experimental approaches.

5 Conclusion

We identified two mitochondrial-related hub genes that are
common to both DN and SP, demonstrating their significant
diagnostic value. The genes HTT and TTC19 are implicated
in the mitochondrial metabolic pathways of these conditions.
Our investigation reveals new understanding of the common
pathological processes involved in DN and SP. However, further
clinical research is essential to confirm the functions and pathways
of these genes in individuals affected by DN and SP.
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