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Introduction: Triple-negative breast cancer (TNBC) accounts for twelve percent
of all breast cancer cases, with a survival rate around ten percent lower than
ER+/PR+ positive breast cancers. There are limited therapeutic options as these
tumors do not respond to hormonal therapy or HER2-targeted treatments.
We hypothesized that new insights into pathogenic mechanisms in TNBC can
be obtained from studying epigenetic alterations through Hi-C (genome-wide
chromosome conformation capture) data analysis.

Methods:We developed a computational strategy that captured key properties
of chromatin conformation while incorporating statistical measures of
interaction significance. This model addresses limitations in Hi-C data analysis
without relying on predefined features like TADs and compartments. We applied
this model to Hi-C and RNA-seq data from TNBC patients, representing
the data as multilayer networks to identify genome-wide properties of the
TNBC 3D genome.

Results: Our network-based analysis revealed distinct chromatin interaction
patterns in TNBC compared to healthy contralateral controls. Hi-C data can
distinguish interaction patterns related to diseased phenotypes or interaction
patterns with potential to exert regulatory effects instead of incidental contacts,
but some apparently random interactions may also support important genome
regulatory activities.

Discussion: Our findings demonstrate that network-based Hi-C analysis can
capture the genome-wide complexity of chromatin interactions in TNBC. This
integrative approach provides new insights into the epigenetic mechanisms
underlying TNBC pathogenesis and contributes to the advancement of analysis
methods for future investigations into novel therapeutic targets.

KEYWORDS

triple negative breast cancer, chromosome conformation capture, hi-c, complex
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1 Introduction

Triple-negative breast cancer (TNBC), characterized by the
absence of estrogen (ER) and progesterone (PR) receptors, and
HER2 amplification, is one of the most challenging subtypes of
breast cancer. TNBC accounts for 12% of all breast cancer cases,
with a higher prevalence observed in younger women. Despite
advancements in early detection and treatment, the 5-year survival
rate for TNBC remains 8%–16% lower than for ER+/PR + positive
breast cancers (Howard and Olopade, n.d.). Currently, there are
limited therapeutic options to target the molecular profile of TNBC,
as these tumors do not respond to hormonal therapy or HER2-
targeted treatments.

TNBC is characterized by a rapid proliferation rate, high
histological grade (Dent et al., 2007), and often affects younger
patients (Malorni et al., 2012). Compared to other breast cancer
subtypes, TNBC has a greater propensity tometastasize, particularly
to visceral organs such as the brain, liver, and lungs (Xiao et al.,
2018). The absence of hormone receptors and HER2 amplification
complicates treatment of TNBC, as targeted therapies remain
unavailable for this subtype. These factors collectively contribute
to the poor prognosis and survival (Carey et al., 2006) associated
with TNBC, highlighting the urgent need for novel approaches to
better understand its underlying biology and develop more effective
therapeutic strategies (Bianchini et al., 2022).

The epigenetic characterization of diseases at the molecular
level has become increasingly important for understanding
pathogenic mechanisms. Epigenetic alterations, including
chromatin remodeling, can impact transcriptional programs and
contribute to cancer initiation, progression, and maintenance. Hi-C
is a genome-wide chromosome conformation capture technique
that identifies physical interactions between genomic regions
by crosslinking chromatin, digesting DNA, ligating spatially
proximal fragments, and sequencing the resulting junctions to
map chromosomal contacts. These interactions enable spatial and
temporal regulation of gene expression, and their disruption has
been implicated in various disease phenotypes (Lupiáñez et al., 2015;
Martin et al., 2015), the activation of protoncogenes (Hnisz et al.,
2016), and enhancer hijacking (Weischenfeldt et al., 2017). However,
identifying biologically meaningful chromatin interactions remains
a significant challenge. DNA, as a long polymer confined within
the nucleus, naturally exhibits numerous random interactions.
Therefore, a fundamental task is to analyze Hi-C data distinguishing
interaction patterns related to diseased phenotypes or interaction
patterns with potential to exert regulatory effects instead of
incidental contacts, while simultaneously recognizing that some
apparently random interactions may support important genome
regulatory activities.

Hi-C analyses, to identify chromatin interactions in
cancer phenotypes, traditionally rely on strategies such as
observed/expected methods and iterative correction matrix
balancing and ultimately detecting predetermined structural
features such as Topologically Associating Domains (TAD) and A/B
compartments (Peng et al., 2022; Zhang et al., 2024). While these
approaches have successfully identified important organizational
principles of the genome and incorporate key factors, including the
distance-decay effect, correcting for technical biases inherited from
the experimental procedures, and the equal visibility principle,

they may not capture the genome-wide complexity of chromatin
interactions.

In this work, we analyzed publicly available Hi-C data from
TNBC tumors by developing a computational model that captures
key properties of chromatin conformation while incorporating
statistical measures of interaction significance. By representing
the data as networks, we identified genome-wide properties
of the TNBC 3D genome. While several groups have utilized
network representations of chromosome conformation capture
data primarily for 3D molecular-polymer modeling, Pancaldi and
colleagues pioneered the application of network approaches to
regulatory genomics (Pancaldi et al., 2016a; Madrid-Mencía et al.,
2020; Malod-Dognin et al., 2020; Pancaldi, 2021), demonstrating
howpromoter chromosome conformationdata could be represented
as networks to study regulatory interactions (Pancaldi, 2023).
Building on this foundational work, our approach extends
these network-based concepts to genome-wide Hi-C data for
comprehensive regulatory analysis. Following Pancaldi’s insight that
Hi-C data inherently represents a physical interaction network,
we leverage this property to enable natural integration with
inferred networks from other -omics data such as RNA-seq. In
this study, we integrated these networks with transcriptional
data to examine how chromatin organization relates to gene
expression, demonstrating the power of network-based Hi-
C analysis to perform integrative analysis and advance our
understanding of genomic regulation across different biological
contexts.

2 Materials and methods

2.1 Hi-C data collection and processing

2.1.1 Human genome reference
We utilized the GRCh38 reference genome and Gencode

V36 annotation (https://gdc.cancer.gov/about-data/gdc-data-
processing/gdc-reference-files) to ensure compatibility with TCGA
Breast Cancer RNA-seq datasets.The reference genomewas digested
in silico using HiC-Pro’s digest_genome.py script at MboI and
HindIII restriction sites, corresponding to the Arima protocol.
Chromosome sizes were obtained from the UCSCGenome Browser
(GRCh38 assembly).

2.1.2 Hi-C data analysis
Raw sequencing reads (FASTQ files) were obtained from

GEO (accession GSE167150) and processed through HiC-
Pro (Servant et al., 2015), which performs independent alignment of
read pairs to the reference genome using bowtie2, quality filtering to
remove i) reads with lowmapping quality, ii) PCRduplicates, and iii)
ligation artifacts such as self-ligations and dangling-end reads, valid
interaction assessment, and construction of raw contact matrices.

We assessed replicate correlation between each
phenotype’s three raw matrices using hicCorrelate
(HiCExplorer, Ramírez et al., 2018). After confirming high
correlation (Supplementary Figures S1A, B), we merged the three
paired TNBC and three contralateral healthy tissue samples at the
deduplicated valid pairs stage. The genome was binned at 40 kb
resolution for subsequent analyses.
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2.1.3 Hi-C data normalization
Hi-C raw data was normalized to address multiple potential

biases in Hi-C data using the Matrix Balancing approach. Iterative
correction and eigen vector decomposition (ICE) was employed
to correct for known biases including GC content variation,
mappability differences, restriction fragment length, and other
systematic biases. The ICE method assumes all genomic regions
should have equal “visibility”, iteratively balancing the matrix until
row and column sums converge. HiCExplorer tools were used
to calculate and plot log2 fold change Hi-C matrices and Hi-C
frequency distance decay.

2.1.4 Hi-C intrachromosomal networks
We used the non-central hypergeometric distribution model

through theHiEdge implementation (Paulsen et al., 2014; Stav, 2024)
to identify significant interactions while accounting for the distance-
dependent decay of interaction frequencies. For intrachromosomal
interactions, HiEdge accounts for the distance-dependent decay of
interaction frequency by fitting a monotonically decreasing spline
that serves as a null model for significance testing. The probability
of observing nij interactions between loci i and j is given by:

P(nij|n,ni,nj,ωij) =

(
nj
nij
)(

2n− ni
nj − nij
)ω

nij
ij

∑
n′ij
(
nj
n′ij
)(

2n− ni
nj − n
′
ij
)ω
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Where:
n is the total interaction count
ni and nj are individual loci contact frequencies
ωij is the distance-dependent odds ratio.
This approach is particularly suitable for Hi-C data because it

models distance-dependent decay explicitly, it accounts for both
local and global interactionpatterns, and it provides robust statistical
significance estimates.

We identified significant intrachromosomal interactions
from 40 kb resolution Hi-C data (processed with HiC-
Pro) using HiEdge. We removed interactions involving
GRCh38 blacklisted regions (https://www.encodeproject.
org/files/ENCFF356LFX/), centromeres (https://hgdownload.soe.
ucsc.edu/goldenPath/hg38/database/cytoBand.txt.gz), and self-
interactions. We used HiC-Pro bias files to correct for expected
interaction frequencies (lower bound 0.5, upper bound 2) and fitted
the monotonically decreasing spline to the interaction frequency
decay with genomic distance using 200-bin metabins to generate
the null model. We used a false discovery rate threshold of 0.05 to
correct for multiple testing the binomial survival test p-values.

We retained Hi-C interactions with a q-value <0.001 from
the 40 kb binned Hi-C matrices for both Normal and Triple-
Negative Breast Cancer (TNBC) phenotypes and constructed igraph
objects to represent the Normal and TNBCHi-C intrachromosomal
networks for all human chromosomes (chr1-chr22, chrX) by reading
the edge lists into R (Csardi et al., 2025). We represented genomic
regions (40 kb bins) as nodes and chromatin interactions between
them as edges. For each chromosome, we generated an undirected,
unweighted graph where edges correspond to significant chromatin
interactions.

We included bin genomic coordinates (start, end, midpoint)
as node attributes. We assigned GENCODE (v36) annotated genes
to nodes containing their transcription start sites (TSS) using the
GenomicRanges package (Lawrence et al., 2013).We classified nodes
into three categories based on their gene content: coding genes (C),
non-coding RNAs (R), or no annotated features (N), and stored this
information in the “node_type” attribute.

We included several edge attributes: q-value (corrected p-value
of interaction significance), genomic distance in base pairs, Hi-C
interaction count, Hi-C count Z-score, and “edge_type” (defined by
the node types of the interacting regions, e.g., “C-C″ for interactions
between coding regions).

2.1.5 Hi-C interactions Z-Score
We calculated Z-scores for Hi-C interaction counts on a

chromosome-by-chromosome basis to account for chromosome-
specific interaction patterns. For each chromosome, we subtracted
the mean interaction count from each individual count value and
divided by the standard deviation of counts within that chromosome

Z =
x− μ
σ

This chromosome-specific normalization allowed us to identify
statistically significant interactions while accounting for differences
in chromosome size, gene density, and overall chromatin structure.

We stored the processed networks as R objects for subsequent
analysis, with separate network objects for each chromosome and
phenotype. This approach facilitated chromosome-specific analyses
while maintaining the ability to perform cross-chromosome
comparisons.

2.2 Network structure analysis

2.2.1 Jaccard index
The Jaccard index was used to quantify the similarity between

normal and TNBC networks. For nodes, the Jaccard index was
calculated as the ratio of the number of common nodes to the
total number of unique nodes across both networks (|A∩B|/|A∪B|).
Similarly, for edges, the Jaccard index was determined by
comparing the edge sets between networks, with edges identified
by their endpoint node pairs. This measure provided an objective
assessment of topological similarity between the normal and TNBC
chromosome-specific networks.

2.2.2 Degree calculation
Network connectivity was assessed through degree calculations

for each node in both normal and TNBC networks. The degree
of a node represents the number of direct connections (edges)
it maintains with other nodes. For each chromosome-specific
network, we calculated the degree distribution, average degree,
and identified hub nodes (those with significantly higher degrees).
Thesemetrics were instrumental in understanding the differences in
connectivity patterns between normal and TNBC networks.

2.2.3 Z-weighted degree
To account for the significance of connections, we implemented

a Z-weighted degree metric that incorporated edge Z-scores. For
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each node, the Z-weighted degree was calculated as the sum of
the absolute Z-scores of all its connected edges. This provided a
more nuanced measure of node importance by considering both
the quantity and the statistical significance of connections. The Z-
score values represent the strength of correlation between genomic
regions, with higher absolute values indicating stronger associations
in the chromatin interaction network.

2.2.4 Chromatin interaction profile comparison
To identify regions of the genome that preserve their three-

dimensional architecture in TNBC, we implemented a Jaccard
dissimilarity analysis comparing chromatin interaction profiles
between normal and TNBC samples. For each genomic node,
we calculated the Jaccard dissimilarity index between the sets of
interactions in normal and tumor samples. Lower dissimilarity
values indicate higher preservation of chromatin interactions.

We ranked nodes based on their dissimilarity scores and
determined an optimal threshold for selecting highly preserved
nodes using the kneedle elbow point detection algorithm. This
approach identifies the point of maximum curvature in the ranked
dissimilarity plot, achieving an optimal balance between stringency
and inclusivity in node selection.

2.2.5 Gene Ontology enrichment analysis
We extracted genes located within the preserved chromatin

interaction nodes (dissimilarity ≤0.489) for functional enrichment
analysis. To facilitate this process, we converted gene symbols
to Entrez IDs using the org.Hs.e.g.,.db annotation package. We
then performed Gene Ontology (GO) enrichment analysis using
the clusterProfiler R package (Yu et al., 2012), focusing on
biological processes (BP) ontology. We calculated enrichment using
a hypergeometric test with Benjamini–Hochberg correction for
multiple testing, applying a significance threshold of adjusted p-
value <0.05 and q-value <0.1.

We used the enrichplot R package to visualize the enriched GO
terms. Specifically, we employed the cnetplot function to generate a
network representation where edges connect GO terms that share
gene annotations, highlighting functional clusters and relationships
between biological processes. The resulting network visualization
illustrates the functional relationships between GO terms and
their associated genes, with node size proportional to statistical
significance (p-value).

2.2.6 RNA-seq data collection and preprocessing
RNA-seq data were obtained from The Cancer Genome Atlas

(TCGA), comprising 197 Primary Tumor (basal breast cancer)
samples and 112 Normal Breast (adjacent tissue) samples. The
raw counts matrix initially contained 23,258 genes. Low-expression
genes were filtered out using the criterion of ≤10 reads in >80%
of samples. Data normalization and batch effect correction were
performed using DESeq2 (Love et al., 2014).

2.2.7 Differential gene expression
Raw counts matrices were filtered to exclude lowly expressed

genes (<10 reads), size factor normalization based on median
ratio normalization between samples was applied and differential
gene expression was identified comparing TNBC samples to
Normal samples.

We identified differentially expressed genes using DESeq2 on
normalized, corrected, and filtered counts matrices. We considered
genes differentially expressed if they had a log2 fold change >2 or <
−2 and an adjusted p value <0.05.

2.3 RNA-seq intrachromosomal
coexpression networks

2.3.1 Mutual information calculation and MI
threshold

Gene regulatory networks were inferred from the TCGA RNA-
seq data using ARACNe (Algorithm for the Reconstruction of
Accurate Cellular Networks) (Lachmann et al., 2016). In these
networks, genes were represented as nodes, with edges between
them indicating mutual information, which quantifies the statistical
dependence or shared information between gene expression
levels. These networks provided insights into the dynamics of
gene expression changes between normal breast tissue and basal
breast cancer.

The inference of gene regulatory networks using ARACNE-AP
required two primary inputs: a gene expression matrix and a list
of regulators. For each chromosome, the corresponding expression
matrix derived from the TCGA samples was used, while the list
of regulators consisted of the set of expressed genes for each
chromosome in each phenotype (normal breast and basal breast
cancer). To optimize processing, network inference was executed
in parallel, allowing for simultaneous construction of multiple
networks. The process was conducted in three key stages:

1. Estimation of the mutual information (MI) threshold: A
significance threshold for MI values was determined based on
the TCGA gene expression data, using a p-value of 1E-8 as the
statistical criterion.

2. Network reconstruction via bootstrapping: A total of 100
MI networks were inferred from random resampling of
gene expression profiles from the 197 tumor and 112
normal samples.

3. Consensus network construction: From the 100 generated
networks, a final network was obtained by considering the
frequency with which each interaction appeared across the
bootstrapped networks. The statistical significance of these
interactionswas assessed using a Poisson distribution, and only
those surpassing a significance threshold (P < 0.05, Bonferroni
correction) were retained.

2.3.2 Multilayer network construction and
analysis

We employed a multilayer network approach to integrate
chromatin interaction data (Hi-C) with gene expression correlations
to investigate the complex interplay between genomic architecture
and gene regulation in normal breast tissue and triple-negative
breast cancer (TNBC).

2.3.3 Data integration and network construction
Two primary data types were integrated: (1) Hi-C interaction

networks representing three-dimensional chromatin organization at
40 kb resolution, and (2) gene co-expression networks derived from
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mutual information (MI) calculations using theARACNE algorithm
on TCGA expression data.

Our multilayer networks consisted of two distinct layers: Hi-
C layer: Nodes represent genomic regions (40 kb bins), and edges
represent significant chromatin interactions between these regions,
MI layer: Nodes represent individual genes, and edges represent
significantmutual information values between gene pairs, indicating
co-expression relationships.

To establish connections between the two layers, we mapped
genes from the MI layer to their corresponding genomic regions in
the Hi-C layer using the GenomicRanges framework. Each gene in
the MI layer was connected to its corresponding Hi-C bin through
interlayer edges.

2.3.4 Community detection and comparison
We applied the Louvain community detection algorithm to

identify functional modules in the multilayer networks. We
implemented the analysis using the cluster_louvain function
from the igraph package, which optimizes modularity to find
communities in the network. Communities were detected separately
for normal and TNBC conditions on a unified graph that
combined Hi-C edges (chromatin interactions), MI edges (gene
co-expression), and interlayer edges (gene-region mapping).

Edge weights were preserved during community detection,
with: Hi-C layer weights representing interaction strength between
genomic regions. MI layer weights representing mutual information
strength between gene pairs. Interlayer weights set to a default value
of 1 to indicate the presence of a connection.

For visualization, we used the Fruchterman-Reingold
algorithm to generate network layouts that emphasize community
structure. Nodes were shaped according to their layer
(squares for Hi-C regions, circles for genes) and colored by
community membership. Edges were colored according to
their layer (red for Hi-C, blue for MI, gray for interlayer
connections).

To quantify changes in community structure between
normal and TNBC conditions, we extracted community
assignments for each node in both conditions, identified
nodes present in both conditions, calculated the percentage of
nodes that changed community membership, performed this
analysis for all nodes combined and separately for each layer
(Hi-C and MI).

3 Results

3.1 Development of the HiC network
analysis pipeline

We analyzed Hi-C data from Triple Negative Breast Cancer
tumors (N = 3), and contralateral healthy breast samples (N
= 3) obtained from three patients. Raw sequencing reads were
aligned to the CRCh38 reference genome using GENCODE V36
annotation (Figure 1A). The aligned reads were processed using
HiC-Pro (Servant et al., 2015) to generate interaction matrices
at 40 kb resolution. To identify statistically significant chromatin
interactions, we applied the noncentral hypergeometric distribution
model implemented in HiEdge (Stav, 2024). Significant interactions

were defined using a stringent threshold (q-value <0.001 after
multiple testing correction).

This analysis generated paired intrachromosomal interaction
networks (one Normal, one TNBC) for each human chromosome.
Within these networks, individual nodes represent 40 kb genomic
regions, each typically containing one of the following: (a) a
transcription start site (TSS) of a protein-coding gene, (2) a non-
coding RNA feature (miRNA or lncRNA), or (3) no annotated
genomic features (ncDNA) (Supplementary Figure S1C).

3.2 TNBC exhibits widespread disruption of
intrachromosomal chromatin interactions

Our analysis revealed a genome-wide reduction in chromatin
interactions across all chromosomes in TNBC compared to normal
tissue. This finding emerged from our systematic comparison
of chromosomal interaction patterns, which we quantified
both through the absolute number of interactions and their
log fold changes between TNBC and normal samples (Figure 1B;
Supplementary Figure S1D). We validated that these changes in
interaction patterns reflect genuine biological differences rather
than technical artifacts: our finding is supported by a Jaccard index
analysis of chromosomal node sets (Figure 1B), which demonstrated
near-perfect overlap (index∼1) betweenTNBCandnormal samples,
confirming that the same genomic regions are being compared.This
widespread loss of interactions showed no correlation with either
chromosome size or gene density (Supplementary Figures S2A, B),
which suggests a specific biological mechanism. The most
pronounced interaction losses were observed in chromosome 18,
while chromosome 21 showed the most modest changes, despite
their comparable sizes, highlighting the chromosome-specific
nature of these alterations.

To further characterize these changes, we performed
pairwise Jaccard Similarity analyses of the interaction networks
edge sets (Figure 1C). This revealed chromosome-specific patterns
of interaction rewiring. We observed that the specific chromatin
interactions established in TNBC are changed relative to the
Normal interactions as a function of the interaction loss, since
the higher Jaccard values match the largest negative log fold change
interaction number values. Chromosomes 2, 8, and 4 exhibited
unexpectedly low Jaccard indices relative to the other chromosomes
with similar levels of interaction loss, which points towards
substantial reorganization of their remaining interactions. In
contrast, chromosome 19, despite showing considerable interaction
loss (logFC <0.50), maintained a relatively conserved pattern of
specific interactions.

These findings reveal previously unrecognized complexity
in TNBC chromatin architecture, where global interaction
loss is followed by chromosome-specific patterns of structural
reorganization. While traditional Hi-C contact matrices
(Supplementary Figures S3A–C) corroborate this widespread loss
of interactions, visual inspection of these heatmaps alone proves
insufficient for capturing the full extent of the alterations. The
subtle visual differences in these classical representations mask
the quantitative changes we detected through or analytical network
comparison.
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FIGURE 1
(A) Analysis workflow diagram. Hi-C raw data from Triple Negative Breast Cancer tumors (N = 3) and contralateral healthy breast samples was obtained
from GEO and aligned to the same reference genome and Gencode annotation than TCGA breast cancer harmonized data, the alignments were
processed with HiC-Pro. Hi-C raw interaction matrices were processed using the noncentral hypergeometric distribution in HiEdge to obtain matrices
(edge lists) of significant chromatin contacts. The threshold for significant interactions was set at qvalue <0.001. This resulted in one Normal and one
TNBC intrachromosomal interactions network for each human chromosome. (B) Upper panel: barplots of number of Normal and TNBC edges
grouped by chromosome. Middle panel: log fold change of number of TNBC edges relative to Normal edges for each chromosome. Lower panel:
Jaccard index for each chromosome’s node set. (C) Heatmap of Jaccard index for each chromosome’s edge type set. Edges are classified by
Interaction type according to the node’s they are connecting (C: Coding Gene Node, R: ncRNA Node, N: noncoding DNA Node). Created in BioRender.
Nixon, D. (2025) https://BioRender.com/lo4eeew/.
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3.3 Loss of long-range chromatin
interactions in TNBC tissue

Analysis of the edge distance attribute distributions revealed
a distinct pattern between Normal and TNBC networks.
TNBC showed a marked reduction in significant long-range
interactions (>50 Mb), particularly evident in larger chromosomes
(Figure 2A). This pattern was consistent across all edge types,
whether the nodes they connect contain protein-coding genes,
noncoding RNAs, or regions without annotated features
(Supplementary Figure S4). This observation is interesting given
the biological potential of long-range chromatin contacts, which
can mediate enhancer-promoter interactions and in some cases
are associated with disease-relevant GWAS variants in non-
coding regions, including examples in other breast cancer
molecular phenotypes (Dryden et al., 2014; Baxter et al., 2018;
Beesley et al., 2020).

Interestingly, at first our findings appear to differ from previous
studies surveying Hi-C in other breast cancer models, where
increased contact probabilities were reported at the 1–10 Mb
range or “long-range interactions”. Kim et al. observed higher
relative contact probability at these distances in HCC70 and
BT549 TNBC cell lines compared to HMEC normal mammary
epithelial cells (Kim et al., 2022). However, these studies
analyzed contact probability distributions from corrected Hi-
C counts with no confidence or estimate of significance, while
our network-based approach focuses on statistically significant
interactions (q < 0.001) by modeling the probability of finding
the observed number of interactions using the non-central
hypergeometric distribution. The methodological and distance
range differences are crucial, as classical visualization of the log2
fold-change matrices (TNBC/Normal) from corrected Hi-C counts
(Supplementary Figure S3C) confirms the depletion of interactions
at extreme distances in TNBC tissue, seen as negative fold-changes
(dark blue) inmatrix regions far from the diagonal. Indeed, whenwe
examined the relationship between genomic distance and corrected
Hi-C counts (Figure 2B), we observe that TNBC tissue shows higher
relative contact probability in the 1–10 Mb range compared to the
normal tissue, a pattern that was consistent across all chromosomes
(Supplementary Figures S3D–F; Supplementary Figure S5).

Previous work in another model comparing normal breast cells
(MCF10A) to luminal breast cancer cells (MCF7) reported that
long-range interactions at very large genomic distances (>200 Mb)
were uniquely present in normal cells. This preservation of long-
range contacts in normal cells mirrors our observations in healthy
breast tissue samples compared to TNBC tissue samples, suggesting
that the loss of these ultra long-range interactions may be a feature
of malignant transformation across breast cancer. These findings
parallel our lab’s previous observations regarding gene co-expression
patterns across multiple cancer types, including breast cancer.
We have consistently reported a cancer-specific reorganization
pattern characterized by increased local and decreased long-range
gene-gene transcriptional relationships (García-Cortés et al., 2020;
2021; 2022; Dorantes-Gilardi et al., 2021). The current Hi-C
network analysis provides towards physical evidence supporting
these expression-based findings, suggesting a principle of genome
reorganization in breast cancer that manifests both functionally and
structurally.

3.4 Intrachromosomal chromatin
interactions are strengthened in TNBC

We plotted each node’s Hi-C interaction count z-score weighted
degree in the TNBC network compared to the Normal network and
found that the nodes in each chromosome’s cancer network follow a
different pattern (Figure 3A).Most of the nodes of the chromosomes
2, 3, 7, 9, 14, 15, 16, 19, 20, 21, and 22 Hi-C networks are positioned
above the identity line, their intrachromosomal interactions have
overall higher normalized Hi-C count values in cancer, despite the
general loss of interactions. For chromosomes 1, 4, 5, 6, 8, 10,
11, 12, 13, 17, 18, and X, we observed an additional set of Hi-C
nodes below the identity line, indicating a decrease of Hi-C count
values in TNBC. We then determined the nodes with the absolute
largest distance from the identity line and found that in many cases
they contain genes previously reported to play a role specifically
in the context of TNBC (Supplementary Table S1), including the
tumor suppressor gene PTEN (Chai et al., 2022) in chromosome
10 (Figures 3B–D), DHCR7 in chromosome 11, and the Androgen
Receptor (AR) in chromosome X (Supplementary Figure S6). We
also found within the most altered nodes, genes that have not
been previously reported in the context of TNBC but have been
reported in other cancer types, for example, the Microtubule
Actin Crosslinking Factor 1 (MACF1) in chromosome 1, and
olfactomedin 2 (OLFM2) in chromosome 19. Overall, most of the
genome changed its chromatin interaction profile (i.e., in all cases
few nodes are on the identity line), andwe observed an increasedHi-
C interaction count z-score distribution in all the TNBC networks
compared to the Normal networks (Supplementary Figure S7). This
observation togetherwith the fact that themeannode degree is lower
in all the TNBC distributions (Supplementary Figure S8), means
that the cancer genome retains strong local chromatin interactions
and discards a large proportion of weaker interactions.

3.5 The TNBC genome preserves the
chromatin interactions of specific genes

While extensive remodeling of the three-dimensional genome
structure was observed across most regions in TNBC, our
analysis identified a subset of genomic regions that maintained
their chromatin interaction profiles. Using Jaccard dissimilarity
index (DI) analysis, we quantified the degree of interaction
profile preservation across the genome and identified nodes with
the lowest dissimilarity scores, representing the most conserved
chromatin architecture (Figure 4A). The dissimilarity index ranged
from 0 to 1, with values closer to 0 indicating a node has
preserved its exact chromatin interactions in the TNBC Network
compared to the Normal network. The DI mean of every
chromosome is above 0.5, so for a given node there is a
significant rewiring of its intrachromosomal contacts, except
for chromosome 21, whose network also has the smaller loss
of interactions. Three nodes in chromosome 2, one node in
chromosome 5, and one node in chromosome 18 have DI values
equal to or very close to zero, meaning their intrachromosomal
interactions are intact in the TNBC genome. The genes within
these nodes include Transmembrane Protein 18 (TMEM18) and the
lncRNA TMEM18 Divergent Transcript (TMEM18-DT), Interactor
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FIGURE 2
(A) Loss of long-range chromatin interactions. Histograms by chromosome of the number of chromatin interactions that occur at each genomic
distance (DNA Mb) between nodes in the Normal network (green) and nodes in the TNBC network (dark red). (B) Genomic distance (basepairs) versus
Hi-C corrected counts plot for all combined intrachromosomal interactions.

Frontiers in Cell and Developmental Biology 08 frontiersin.org

https://doi.org/10.3389/fcell.2025.1597245
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Reyes-Gopar et al. 10.3389/fcell.2025.1597245

FIGURE 3
(A) Scatterplot of Z-Score weighted node degree. Each panel corresponds to the nodes of the chromosome’s intrachromosomal network. In each plot,
one point is a node in the network and its position corresponds to the sum of its edges Hi-C interaction count Z-Score in the normal network (x-axis)
and the TNBC network (y-axis). Nodes above the x = y line gain chromatin interaction strength in TNBC and nodes below the x = y line lose chromatin
interaction strength in TNBC. The genes within nodes with the largest overall chromatin strength difference in TNBC are indicated in red (gain) or blue
(loss) and labeled. (B) Z-score distribution dot plot comparing PTEN’s interactions between Normal and TNBC. (C) and (D) Chromosome 10 chord
diagram with the node containing the PTEN gene as the point-of-view (blue). The chromosome’s coordinates increase clockwise, and the first base
pair position is at the top. PTEN’s top 200 (Z-score) intrachromosomal interactions with other nodes in normal breast tissue (C) and TNBC (D) are
drawn. Edge color reflects Hi-C interaction Z-Score value. The genes within each node are labeled.
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Of Little Elongation Complex ELL Subunit 1 (ICE1), Elastin
Microfibril Interfacer 2 (EMILIN2), and Phosphatidate Phosphatase
LPIN2. None of these showed statistically significant differential
expression (Figure 4B).

To determine an optimal threshold for selecting highly
preserved regions, we implemented an elbow point detection
algorithm on the ranked dissimilarity scores. This approach
identified a dissimilarity threshold of approximately 0.4, below
which genes were considered to have preserved chromatin
interactions (Supplementary Figure S9A). We analyzed 1,395 genes
throughout all the chromosomes contained within the 1,270 nodes
(5.2% of the total nodes) that below the threshold and notably, genes
within these conserved regions demonstrated specific functional
enrichment patterns.

Gene Ontology (GO) enrichment analysis of the genes located
in the most preserved regions revealed significant enrichment
of several biological processes (Figure 4C). These processes were
primarily related to nucleic acid metabolism and modification,
particularly focusing on cytidine processing. The most significantly
enriched pathways included cytidine deamination, cytidine to
uridine editing, and pyrimidine nucleoside catabolic processes,
highlighting the importance of RNA editing mechanisms in these
regions with conserved chromatin interactions. Additionally, we
observed enrichment in glycoprotein biosynthetic processes and
DNA deamination.

Among these genes were several members of the APOBEC
family (APOBEC3A, APOBEC3B, APOBEC3C, APOBEC3D,
APOBEC3F, and APOBEC3G), which are known to play crucial
roles in cytidine deamination and RNA editing. Other notable
genes included ADARB1, involved in RNA editing, and various
genes associated with glycosylation processes (B3GALT4, POMT1,
and DOLK).This functional conservation of chromatin architecture
around genes involved in RNA editing and modification suggests
that these biological processes may be particularly important for
maintaining TNBC cellular identity and function despite broader
genomic architectural changes.

3.6 Multilayer networks reveal differential
reorganization of chromatin structure and
gene expression in TNBC

We constructed multilayer networks integrating Hi-C and
gene co-expression data for both normal TNBC. These networks
consisted of two interconnected layers: the Hi-C layer representing
chromatin interactions between the 40 kb genomic regions and
the Mutual Information layer representing gene co-expression
relationships. The 40 kb resolution was selected as it represents
an optimal balance where most bins contain a single gene’s
transcription start site (Supplementary Figure S9B), enabling a
mapping between chromatin structure and gene regulation. Genes
in the MI layer were connected to their corresponding genomic
regions in the Hi-C layer through interlayer edges.

Our community detection analysis revealed substantial
reorganization of network structure between normal and TNBC
conditions across all chromosomes (Figure 5A). On average,
86% of nodes changed their community membership between
conditions, indicating widespread rewiring of functional genomic

modules during cancer progression. When analyzing layer-specific
changes, we found that the Hi-C layer consistently showed a higher
percentage of nodes changing community membership (90.8% on
average, red points) compared to the MI layer (79.8% on average,
blue points), suggesting that chromatin structure undergoes more
extensive reorganization than gene expression patterns in TNBC.

We observed chromosome-specific patterns in the extent
of layer-specific reorganization. While some chromosomes
exhibited concurrent changes in both chromatin structure and
gene expression, others showed divergent patterns. For example,
chromosome 1 (Figures 5B,C) displayed substantial community
restructuring in both layers, with 93% of Hi-C nodes and 99% of
MI nodes changing their community membership. The multilayer
network of chromosome 1 reveals 13 major communities in normal
tissue that reorganize into 17 communities inTNBC,with significant
rewiring of connections both within and between layers. In contrast,
chromosome 20 (Figures 5D,E) exhibited a disparity between
layers, with 84% of Hi-C nodes changing community membership
while only 18.7% of MI nodes were affected. This suggests that
at the chromosome level extensive reorganization of chromatin
structure in chromosome 20 occurs without corresponding changes
in gene co-expression patterns. Chromosome 20s network structure
maintains 11 distinct communities in both normal tissue andTNBC,
though the composition of these communities undergoes significant
restructuring occurs within the Hi-C layer, while the MI layer
exhibits relatively stable community organization despite the disease
state transition.

These chromosome-specific patterns of community
reorganization suggest that the relationship between chromatin
structure alterations and gene expression changes is not uniform
across the genome. Some chromosomal regions exhibit coordinated
changes across both regulatory layers, while others show more
independent reorganization patterns. This heterogeneity in
multilayer network restructuring may reflect different mechanisms
of gene regulation disruption in cancer, with some regions
experiencing primarily structural reorganization and others
undergoing more complex rewiring involving both chromatin
structure and transcriptional programs.

3.7 Global structure-expression correlation
patterns

Our analysis of the relationship between chromatin
interaction strength and gene co-expression revealed distinct
correlation patterns across chromosomes in both normal breast
tissue and TNBC (Figure 6A). In normal tissue (green points),
we observed positive correlations between chromatin interaction
strength and gene co-expression for most chromosomes, with
correlation coefficients ranging from 0.18 to 0.42. In TNBC (red
points), these correlations were generally maintained but with some
chromosome-specific variations, ranging from 0.15 to 0.45.

Interestingly, the correlation between changes in Hi-C and
changes in MI values between conditions (purple triangles) showed
a different pattern. These change correlations, which capture
how alterations in chromatin structure relate to changes in gene
expression during the transition fromnormal toTNBC, ranged from
0.21 to 0.39 across chromosomes.This suggests that while chromatin

Frontiers in Cell and Developmental Biology 10 frontiersin.org

https://doi.org/10.3389/fcell.2025.1597245
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Reyes-Gopar et al. 10.3389/fcell.2025.1597245

FIGURE 4
(A) Boxplots of Dissimilarity Index distribution from each chromosome's intrachromosomal interactions. The Dissimilarity index ranges from 0 to 1,
values closer to 0 indicate a node has preserved its chromatin interactions with the same partner nodes in the TNBC Network compared to the Normal
network. The genes within the nodes with the lowest DI are labeled. (B) Volcano plot showing differential gene expression between TNBC and Normal
samples. Genes with the lowest DI are labeled. (C) Functional enrichment of the set of genes preserving their chromatin interactions profile. Network
visual representation of the enriched Gene Ontology (GO) terms. Edges connect GO terms that share gene annotations highlighting functional clusters
and relationships between the biological processes and molecular functions.
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FIGURE 5
(A) Percentage of Hi-C Network nodes changing community membership between Normal and TNBC across all chromosomes. The bar plots
represent the overall percentage of nodes that changed community assignment. Red points indicate the percentage of Hi-C nodes that changed
community membership, and blue points show the percentage of MI nodes (gene coexpression) that changed. (B–D) Multilayer network community
structure for chromosome 1 (B, C) and chromosome 20 (D, E). Nodes represent either chromatin interaction 40 kb genomic regions (squares) or genes
(circles), with edges indicating interactions between nodes. Red edges connect chromatin regions (Hi-C layer), blue edges connect co-expressed
genes (MI layer), and gray edges represent interlayer connections between genes and their corresponding genomic regions. Node colors indicate
community membership, with each community shown in a distinct color. The network layout is generated using the Fruchterman-Reingold algorithm.
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FIGURE 6
Structure-Expression correlation. (A) Correlation coefficients between chromatin interaction strength and gene co-expression across all chromosomes.
Green points represent correlation coefficients in Normal breast tissue, red points show correlations in TNBC, and purple triangles indicate correlations
between changes in Hi-C and MI values between conditions. (B–E) Relationship between chromatin structure and gene expression changes in Normal
versus TNBC for chromosomes 1 (B), 19 (C), 22 (D), and X (D). Each point represents a gene pair, with the x-axis showing log2 fold change in chromatin
interaction strength (Hi-C layer) and the y-axis showing log2fold change in gene co-expression (Mi layer) between Normal and TNBC. Gray points
indicate all gene pairs, colored points highlight significant changes (red: both Hi-C and MI increased; blue: both decreased; orange: Hi-C increased and
MI decreased; green: Hi-C decreased and MI increased). The blue line represents the linear regression fit with 95% confidence interval. The correlation
coefficient (r) is show in the subtitle. Dashed lines divide the plot into quadrants representing different patterns of change.
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structure and gene expression are generally correlated within each
condition, the relationship between their changes during cancer
progression is more complex and varies by chromosome.

3.8 Chromosome-specific
structure-expression relationships

Detailed analysis of individual chromosomes revealed striking
differences in structure-expression relationships (Figures 6B–E).
Chromosome 1 (Figure 6B) showed a moderate correlation (r =
0.28) between changes in chromatin interaction strength and gene
co-expression, with a relatively balanced distribution of gene pairs
across the four possible patterns of change. In contrast, chromosome
19 (Figure 6C) exhibited a stronger correlation (r = 0.36), with
a notable enrichment of gene pairs showing concordant changes
(both increased or both decreased). Chromosome 22 (Figure 6D)
displayed one of the strongest correlations (r = 0.39), with a
particularly high proportion of gene pairs showing concordant
decreases in both chromatin interaction and gene co-expression.The
X chromosome (Figure 6E) presented a unique pattern with a lower
correlation coefficient (r = 0.23) and a more dispersed distribution
of gene pairs, suggesting a less coordinated relationship between
chromatin structural changes and gene expression alterations in this
sex chromosome.

3.9 Gene pair-specific effects diverge from
global patterns

While the global analysis showed positive correlations between
chromatin structure and gene expression changes, examination of
individual gene pairs revealed more nuanced patterns that often
diverged from these global trends. Across all chromosomes, we
identified substantial numbers of gene pairs exhibiting discordant
changes (orange and green points in Figures 6B–E), where
chromatin interaction strength increased while gene co-expression
decreased or vice versa.

Specifically, chromosome 1 showed a relatively high proportion
of gene pairs with discordant changes, including gene pairs with
increased chromatin interaction but decreased gene co-expression
(orange points) and gene pairs with decreased chromatin interaction
but increased gene co-expression (green points). This suggests that
for a substantial subset of gene pairs, the relationship between
chromatin structure and gene expression in TNBC is inverse rather
than direct.The proportions of gene pairs showing different patterns
varied considerably across chromosomes. On chromosome 19, most
significantly changed gene pairs showed concordant change, while
fewer pairs showed discordant patterns. In contrast, chromosome X
had nearly equal proportions of concordant and discordant change
patterns, suggesting distinct regulatory mechanisms.

These gene pair-specific effects highlight the complexity of
genomic regulation in cancer and demonstrate that while global
patterns suggest a positive correlation between chromatin structure
and gene expression changes, the relationship at the level of
individual gene pairs is more heterogeneous. This divergence
between global patterns and gene pair-specific effects underscores
the importance of analyzing structure-expression relationships at

multiple levels to understand the complex regulatory changes
occurring during cancer progression. Overall, our results suggest
that TNBC involves complex rewiring of the relationship between
chromatin structure and gene expression, with effects that can be
concordant or discordant depending on the specific genomic context
and gene pairs involved.

4 Discussion

In this study, we constructed integrated network graphs
from intrachromosomal Hi-C data, that enabled an unbiased,
comprehensive examination of chromatin interactions that
traditional approaches would miss. We chose to analyze primary
tumor samples rather than cell lines, capturing complexity of
chromatin organization in actual disease states. Chromatin
architecture has previously been shown to influence tumorigenic
transcriptional programs. We chose to study TNBC as this
type of breast cancer is a major health problem with limited
treatment options. Our network-based analysis approach yielded
results that align with findings from the original study where we
obtained the data (Kim et al., 2022). For instance, despite our
focus on integrated network graphs rather than directly examining
TADs (Topologically Associated Domains), we similarly observed
a decrease in chromatin interactions in TNBC samples. This
consistency validates our methodological approach while offering
complementary insights through network analysis. The reduction
in interactions we detected supports previous observations
about altered chromatin architecture in TNBC, contributing to
the dysregulated transcriptional programs characteristic of this
aggressive cancer subtype.

Our study reveals significant alterations in PTEN chromatin
interactions within TNBC tumors, providing a structural basis
for the dysregulated PI3K/AKT signaling commonly observed in
this aggressive breast cancer subtype. Our observations of altered
PTEN chromatin interactions support the mechanistic context of
a recently described therapeutic strategy (Schade et al., 2024), as
EZH2 inhibitionmay restore normal chromatin architecture around
the PTEN locus, thereby reestablishing tumor suppressor function
and enhancing sensitivity to AKT inhibition. This chromatin-level
understanding of PTEN regulation offers new insights into how
the PI3K pathway might be more effectively targeted in TNBC,
particularly in tumors where PTEN function is compromised
through epigenetic rather than genetic mechanisms.

We identified patterns of alterations in chromatin structure
that directly correlated with changes in gene co-expression
networks. Our findings showed an altered chromatin architecture
in genes previously implicated in TNBC pathogenesis, providing
a mechanistic link between structural changes and phenotypic
outcomes. The network approach revealed new structure-
function relationships which would not have been discovered
by analyzing Hi-C and RNA-seq data separately. This gene-
centered approach of mapping genomic features to network nodes
revealed biologically relevant insights into the pathophysiology
of TNBC. By analyzing Hi-C networks alongside information
on regulatory networks inferred from RNA-seq data we created
a unified perspective on expression patterns and chromatin
structure. This integration showed that certain TNBC-associated
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genes exhibited coordinated changes in both their spatial
organization and transcriptional relationships, suggesting that
chromatin restructuring may play a general role in the altered gene
expression of TNBC.

The methodological framework we developed in this study
offers several technical advantages. First, our approach provides
a unified platform that contextualizes genome architecture in
relation to transcriptional regulation. Second, it enables both
high-resolution gene-level investigation and broader genome-
wide analysis within the same analytical framework. Third,
by representing complex genomic interactions as network
properties, we transform multidimensional Hi-C data into
interpretable, quantifiable metrics that facilitate comparison across
conditions.

A key advantage of representing Hi-C data as networks is
the flexibility in how edge weights can be defined and modified
based on specific analytical objectives. While we primarily utilized
unweighted networks to capture the fundamental topology of
chromatin interactions, our framework allows for dynamic weight
assignment using various metrics -from raw interaction frequencies
to normalized scores from diverse normalization methods-enabling
multi-faceted investigation of chromatin organization. Network
representation additionally accommodates variation in Hi-C data
resolution, as nodes can be defined at different genomic scales,
which would imply a different interpretation of differential and
multilayer analyses. For instance, increasing a bin size to 100 kb
might reveal higher-order organizational changes while potentially
obscuring gene-specific effects, whereas reducing resolution
to 10 kb could expose fine-grained regulatory interactions
between DNA sequences but might fragment the communities
identified at 40 kb resolution that correspond to coordinated gene
regulation domains.

Our multilayer network approach offers significant advantages
over traditional single-layer analyses by revealing layer-specific
changes, as the differential reorganization of Hi-C and MI
layers would not be apparent from analyzing either data type in
isolation. It also provides a systems-level view: the simultaneous
visualization of chromatin interactions, gene co-expression, and
their interconnections offers a comprehensive perspective on the
genomic regulatory landscape. Importantly, our computational
biology approach has generated several observations worthy
of experimental follow-up. The patterns of change observed
between chromatin interactions (Hi-C) and gene co-expression
(MI) networks provide intriguing biological hypotheses. Gene
pairs exhibiting increased Hi-C interactions but decreased
mutual information (“Hi-C up, MI down”) might represent cases
where enhanced chromatin proximity in cancer paradoxically
disrupts transcriptional coordination, possibly by preventing
access to transcription factors or other DNA-binding proteins.
Conversely, gene pairs showing decreased chromatin interactions
but increased co-expression (“Hi-C down, MI up”) could
indicate regions where chromatin becomes more accessible in
cancer, enabling co-regulation of genes that would normally be
transcriptionally independent. We also observed cases where both
chromatin interactions and transcriptional coordination intensify
simultaneously. For example, APOBEC3G (which maintained a
largely stable interaction profile) andGRAP2 (GRB2-related adaptor
protein) demonstrated concurrent increases in Hi-C interaction

strength and mutual information, suggesting an intensification
of transcriptional regulation via existing chromatin interaction
frameworks. This pattern reveals how cancer can also leverage the
existing three-dimensional genome architecture to enhance specific
transcriptional programs rather than necessarily remodeling the
architecture itself.

While our current study focused on intrachromosomal
interactions and therefore on chromosome territories, the network
analysis framework we developed could be readily extended to
incorporate interchromosomal interactions. Such an extension
would provide a more complete picture of the nuclear architecture
and potentially uncover long-range regulatory mechanisms that
cross chromosomal boundaries. Interchromosomal interactions,
though less frequent than intrachromosomal contacts, may play
roles in coordinating the expression of functionally related genes
located on different chromosomes. A network-based approach
is particularly well-suited to capture these complex, multi-
chromosomal relationships and could reveal higher-order principles
of genome organization relevant to TNBC biology.

Despite these advantages, we acknowledge certain limitations.
The resolution of Hi-C data can restrict granularity of the
interactions we can detect, although other groups (Pancaldi et al.,
2016b) have used targeted chromosome conformation capture
techniques like promoter capture to overcome this limitation.
Additionally, while network inference algorithms provide valuable
insights, they require validation to ensure biological relevance.
Future iterations could benefit from incorporating additional
epigenomic features as network attributes and developing more
sophisticated network topology analyses. Integration of single-cell
Hi-C data would also address heterogeneity concerns inherent in
bulk tissue analyses. This integrated network approach could be
extended to other cancer types, facilitating comparative studies
of chromatin reorganization across malignancies. Furthermore,
our methodology can leverage growing availability of multi-omics
datasets in public repositories, enabling integrative analyses across
chromatin conformation, transcriptomics, and epigenomics in
various conditions.
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