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Skin lamellar bodies (LBs) are crucial for forming and renewing the protective
skin barrier, which regulates the body’s internal environment and integrity.
LB dysfunction is associated with severe disease conditions such as atopic
dermatitis, Netherton syndrome and Harlequin ichthyosis, among others.
Despite its importance in human physiology, the intracellular origin and
biogenesis mechanism of LBs remain largely unknown. LBs are lysosome-
related organelles (LRO), a group of cell type-specific organelles having
unique structures, cargo content, and function. Classical LROs such as
melanosomes, lung lamellar bodies andWeibel-Palade bodies share overlapped
molecular machinery/mechanisms and are co-affected in genetic disorders
like Hermansky-Pudlak syndrome (HPS) or Chédiak-Higashi syndrome (CHS). In
contrast, LBs contain a diverse array of protein and lipid cargo that are notably
different from those found in other LROs, and LBs are not reported to be affected
in HPS/CHS. LBs form in an advanced differentiation state of keratinocytes
while cells are experiencing high ions and low nutrients in their exterior, the
plasma membrane (PM) undergoing modifications, and intracellular organelles
starting to disappear. This article discusses atypical conditions of LB biogenesis
in comparison to classical LROs, which may potentially guide future research on
LB biogenesis.
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keratinocytes, differentiation, lamellar body, secretory lysosomes, lysosome-related
organelles, skin barrier

Highlights

• Skin lamellar bodies (LBs) regulate the formation of the skin barrier.
• LBs are classified as Lysosome Related Organelles (LROs)
• LBs are not affected by congenital disorders that impact other LROs.
• LBs are produced in an altered physiological state of keratinocytes.
• Keratinocyte lysosomes likely contribute to LB biogenesis/maturation.

1 Introduction

Intracellular organelles adapt to support specific cellular functions, which contributes
to tissue specificity. LROs are examples of endo-lysosomal adaptations contributing to
specialized functions of resident tissues. They share lysosomal cargo and membrane
proteins, maintain an acidic internal environment, transport cell-type-specific cargoes, and
exhibit distinct shapes and functions (Dell'Angelica et al., 2000; Delevoye et al., 2019).
Typical examples of LRO include melanosomes in melanocytes, providing protection from
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ultraviolet light; lung lamellar bodies of alveolar Type II cells, which
stabilize lung alveoli and reduce surface tension; and Weibel-Palade
bodies (WPBs) in endothelial cells, which play a crucial role in blood
clotting, among many others (Bowman et al., 2019).

Skin LBs (also known as lamellar granules, Odland bodies,
and epidermal LBs) are the LROs of keratinocytes providing
functional components of the skin barrier (SB) (Odland, 1960;
Elias and Feingold, 2005; Feingold, 2012). SB is the hydrophobic,
selectively permeable, and immunologically active outermost
skin layer that combats environmental challenges and protects
internal organs (Madison, 2003; Elias, 2007; Proksch et al., 2008).
Keratinocytes are the main cells of the skin epidermis that undergo
a step-wise differentiation process in response to the epidermal
calcium gradient and generate epidermis sublayers, arranged
as proliferative basal layer ‘stratum basale’ in the base of the
dermis, to gradually differentiating upper layers called stratum
spinosum (SS), granulosum (SG), and corneum (SC) (illustrated
in Figure 1A) (Bikle et al., 2012; Mahanty and Setty, 2021). Each
sublayer represents a unique differentiation state that ends with
terminal differentiation in the SC, and keratinocytes are now called
corneocytes devoid of intracellular organelles, having cornified PM
envelope and act as the structural components of the SB (Évora et al.,
2021). Corneocytes remain embedded in a mixture of functional
components secreted by LBs present in the granulosum layer, and
together establish the functional barrier in the SC (Figure 1A)
(Elias et al., 1998; Marks, 2004; Proksch et al., 2008; Menon et al.,
2018). LB deformities result in dysfunctional SB which is associated
with several socio-economically significant diseased conditions,
including atopic dermatitis, Netherton syndrome and Harlequin
ichthyosis (Fartasch et al., 1999; Scott et al., 2013; Elias and
Wakefield, 2014; Le Lamer et al., 2015).

Despite their importance in human health, the biogenesis
mechanism of LBs is largely unknown due to a lack of
fundamental/molecular studies. Most of the identified LROs
share significant similarities in cargo content and are generated
through overlapped biogenetic machinery/molecular mechanisms
(Marks et al., 2013; Banushi and Simpson, 2022). Exceptionally, skin
LBs are significantly different in cargo content, cellular status they
are produced, and also likely the molecular machinery involved
(Elias et al., 1998; Ridsdale et al., 2011; Mahanty and Setty, 2021).
Thus, modeling classical LRO/s might not help understanding
LB biogenesis. In the previous review article, we discussed
the possible biogenesis mechanism of skin LBs, represented in
three different models (Mahanty and Setty, 2021). Our recent
research finding (Mahanty et al., 2024) additionally support our
ideas on LB maturation from a lysosomal precursor, which is
elaborated in this article. Moreover, the unique characteristics of
LBs in comparison to other LROs are discussed.

2 LBs regulate skin barrier
development/homeostasis

The terminally differentiated keratinocytes, or corneocytes, are
the structural components that remain embedded in functional
components secreted by LBs and together form the functional
SB (Madison et al., 1987; Madison, 2003; Menon et al., 2018).
LBs predominantly present in the granulosum layer cells and

secrete barrier lipid precursors, such as glucosylceramide,
phospholipids, sphingomyelin, cholesterol; lipid hydrolases such as
β-glucocerebrosidase, sphingomyelinase; AMPs such as cathelicidin,
LL-37; and proteases such as cathepsins and kallikreins KLK5/7/14
that help in SB renewal (Elias and Feingold, 2005; Feingold, 2012).
These cargoes are secreted to the SG-SC junction, where the lipid
precursors are digested by the co-secreted enzymes to form barrier
lipids (Figures 2A,B) (Elias, 1981; Freinkel andTraczyk, 1985;Wertz,
1992; Madison, 2003; Elias and Feingold, 2005). The metabolites of
lipid digestion also contribute additively to barrier formation, for
instance, phospholipid digestion produces fatty acids and glycerol,
which respectively contribute to maintaining an acidic pH of 5.5
in the SC and skin hydration; and intermediates of cholesterol
digestion help in desquamation (Elias et al., 1984; Fluhr et al.,
2001; Feingold et al., 2007). SB is renewed on a monthly basis by
the desquamatory proteases secreted from LBs and replaced by a
new batch of cells entering differentiation from the basale layer
(Bikle et al., 2012; Hänel et al., 2013).

Mechanical damage to the skin destabilizes the SB, resulting
in the loss of the epidermal calcium gradient. These changes
are sensed by SG cells that trigger the regulated secretion of
the existing pool of LBs (Menon et al., 1994; Elias et al., 1998;
Denda et al., 2003). At the same time, it also promotes keratinocyte
differentiation and the formation of new LBs (Menon et al., 1992;
Proksch et al., 1993; Menon et al., 1994; Feingold et al., 2007).
Thus, SB formation, keratinocyte differentiation and LB biogenesis
regulate each other in a positive feedback loop, which is disrupted
in skin disorders and wounding. Hence, LBs are crucial for SB
development/homeostasis.

3 Debated LB shape/morphology

To restore a damaged SB, the simultaneous release of all the
barrier components (LB cargoes) is necessary, which would be
influenced by the LB’s shape/size and morphology (Grubauer et al.,
1989; Menon et al., 1992). There is debate on skin LB morphology
and, thus, on their secretion mechanism. Two different models exist
on this: the Landmann model, which describes LBs as discrete
organelles that carry a multitude of cargoes into distinct disks
(Figures 1B, 2A,C) (Landmann, 1986; Madison, 2003). Upon LB
fusion with the PM during exocytosis, these disks, containing
separate cargoes, are released into the SG-SC junction (Figures 1B,
2B). The released disks then fuse together to form a continuous
structure. This model would require several checkpoints and
sophisticated machinery to control multiple fission/fusion steps
involved. In the contrary, the Norlén model also known as the
“membrane folding model”, describes LBs as part of a continuous
network that extends from the TGN to the PM, and exocytose as
a uniform sheet (Figure 1C). This model is biologically favorable
as it maintains membrane continuity and involves fewer fission
and fusion steps (Norlén, 2001; den Hollander et al., 2016).
Although the Norlén model does not explain the mechanism of
cargo packaging, an immuno-electron microscopy study provides
insights showing five different LB cargoes appeared as separate
aggregates in the bulb regions of the TGN, suggesting the
possibility of the presence of different LB pools containing
distinct cargoes (Ishida-Yamamoto et al., 2004). Thus, in the Norlén
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FIGURE 1
(A) Schematic of keratinocyte differentiation stages represented by epidermis sublayers called as stratum basale, spinosum, granulosum and corneum.
Proliferative stem cells in the stratum basale gradually differentiate and move upwards. Increasing calcium and decreasing nutrients in the upper layers
influence differentiation. Differentiation stages are distinguished by unique morphology and marker protein expression: the basal layer keratinocytes
express Keratin5/14 (K5/K14), early differentiating spinosum layer express involucrin (IVL), keratin1/10 (K1/K10) and, advanced differentiation stage in the
granulosum layer express filaggrin (FIL), and loricrin (LOR). Intracellular organelles, specifically the Golgi apparatus and lysosomes modify during
differentiation. The Golgi apparatus disperses as small ministacks and establishes physical apposition/contact with lysosomes that facilitates the
transport of Golgi cargoes, generating secretory lysosomes in the stratum spinosum layer (Mahanty et al., 2024). The stratum granulosum layer
contains skin LBs (yellow) that secrete cargoes between the granulosum and corneum layer (SG-SC junction). Differentiation ends with the formation
of corneocytes, that are metabolically arrested keratinocytes, devoid of intracellular organelles. Corneocytes along with the LB secreted components
form the skin barrier on the top. The barrier is renewed through desquamation which is regulated by LB secreted enzymes. (B) Illustration of LB
structure/morphology and secretion mechanism as described in Landmann model (Landmann, 1986). Defining LBs as discrete structures that carry
wide array of cargoes into discrete disks like structures. Different colours inside these disks representing separate cargoes, packed in single LB. These
disks are secreted in the SG-SC junction, upon fusion of LBs with the PM (C). Representation of LB structure according to the Norlén model. It
describes LBs as continuous tubulovesicular structures that span from the TGN to the PM and secrete separate cargoes in the SG-SC junction
(Norlén, 2001). The bulb regions of the TGN with separate cargoes representing the presence of separate pool of LBs is based on the study by
(Ishida-Yamamoto et al., 2004), and is not explained in the Norlén model. During secretion, a single fusion event forms a continuous sheet in the
SG-SC junction. Please note that model B, and C is representing events in a granulosum layer cells, as LBs are enriched in this layer. TGN = Trans Golgi
network; SC = stratum corneum; SG = stratum granulosum, PM = plasma membrane.

model LB biogenesis may depend on specific changes at the TGN,
while LBs maturation in Landmann model requires a precursor
organelle.

Although the LB morphology significantly differs between these
models, the presence of characteristic cargo-containing disks is
common in both and these disks are present in both human and
mouse LBs (Figures 2A–C). There are multiple questions associated
with characteristic disk structures: a) how are cargoes packed into
these disks? b) what are these disks made up of? c) whether
these disks are free or attached to the limiting membrane of
LBs? d) in what proportion separate cargo-containing disks are
loaded into individual LBs? (if LBs are discrete) e) in what order
these disks are arranged within the LBs (if LBs are discrete)? f)
how the formation of these disks and LB appearance is related?
Nonetheless, while the secretion machinery of LROs typically

involves Rab27a, CD63, VAMPs, syntaxins, and small GTPases,
nothing has yet been identified for LBs (Raposo et al., 2007;
Marks et al., 2013; Delevoye et al., 2019). Altogether, resolving LB
morphology would significantly lead us forward in understanding
its biogenesis mechanism.

4 Insights into the possible
mechanism of LB biogenesis

LROs are formed through a unique amalgamation of the endo-
lysosomal and secretory pathways. They share features similar
to lysosomes, and most, if not all, undergo regulated secretion
similar to secretory granules (SGs) (Delevoye et al., 2019). While
some, such as melanosomes and lung lamellar bodies, originate
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FIGURE 2
LB morphology and hypothetical maturation model: (A,B) The images were taken from (Madison, 2003). (A) The morphology of a single LB from the
mouse epidermis shows characteristic disk structures. Arrows pointing to the limiting membrane of the LB. Original magnification ×,300,000. A
lower-magnification image of this LG was published in (Madison et al., 1987). Copyright permission were taken from both Madison (2003) and
Madison et al. (1987). (B) Appearance of LB-secreted disks in the intercellular space (ICS) between granulosum and corneum layer cells. Arrows
pointing to the plasma membrane of a granular cell (G). Original magnification ×,125,000. (C) Electron microgram of a LB from human ex vivo skin
epidermis showing similar disk structures. The image is taken with permission from Menon et al. (2018). The arrow is pointing to the limiting membrane
of the LB. Scale bar = 200 nm. (D) Possible biogenesis/maturation mechanism of LBs through lysosomal maturation. During differentiation, the
conventional lysosomes in the basal layer modify into secretory lysosomes through the Golgi input in the spinosum layer (Mahanty et al., 2024). These
lysosomes likely further mature into LBs in the granulosum layer upon receiving additional input from the Golgi and endocytic compartments. The ‘?’
indicates unknown molecular machinery involved in LB maturation.

respectively from the early and late endosomes and acquire
secretory input from the Golgi apparatus during maturation,
others, such as WPBs, originate from the trans-Golgi network
(TGN) and mature upon receiving endosomal input (Luzio et al.,
2014; Bowman et al., 2019; Delevoye et al., 2019). Despite the
fact that LBs are not co-affected with other LROs in congenital
disorders CHS or HPS, their biogenesis still likely involves endo-
lysosomal and secretory pathways (Boissy and Nordlund, 1997;
Dell'Angelica et al., 2000; Huizing et al., 2008; Mahanty and
Setty, 2021). The reported tubulovesicular morphology of LBs
resembling the cross-section of the TGN, and inhibition of
LBs with Golgi apparatus inhibition suggests their TGN origin
(Madison et al., 1998; Tarutani et al., 2012; Yamanishi et al.,
2019). Therefore, the biogenesis mechanisms of TGN-
derived WPBs and SGs may offer valuable insights into the
formation of LBs.

The biogenesis of WPBs and SGs starts with major cargo
accumulation at the TGN. von Willebrand factor (vWF), the
primary cargo of WPBs accumulates by multimerization which
determines the size/shape of these organelles critical for their
functioning (Michaux and Cutler, 2004; Michaux et al., 2006).
Similarly, in neuroendocrine cells, the biogenesis of SGs depends
on the accumulation of peptide hormones (Tooze and Stinchcombe,
1992; Tooze, 1998). Multiple mechanisms, for instance, the role of
specific receptors in the accumulation or the interaction of already

accumulated cargo to the TGN membrane were hypothesized
(Tooze, 1998). Receptor-independent mechanisms such as slightly
acidic pH at the TGN, high calcium concentrations at the TGN,
liquid-liquid phase separation, and protein-protein interactionsmay
also play primary or additive roles (Tooze and Stinchcombe, 1992;
Parchure et al., 2022; Campelo et al., 2023). Nonetheless, cargo
accumulation ‘only’ may not be sufficient, and the role of other
adaptor proteins such as AP1 and clathrin, are essential requisites
for the biogenesis of both WPBs and SGs (Lui-Roberts et al., 2005;
Burgess et al., 2011).

The hypothesis that a similar biogenesis mechanism could
generate skin LBs through “primary cargo accumulation” has
key limitations. First, this mechanism is described in normal
proliferative cells, while skin LBs are produced in a physiologically
modified state of keratinocytes (described below) where this
mechanism may not be relevant. Second, the primary cargo vWF
is exclusive to WPBs, whereas glucosylceramide, the primary cargo
of LBs, is shared with lysosomes. Third, vWF is secreted in its
functional form, but glucosylceramide, as a precursor, must be
processed by the enzyme β-glucocerebrosidase to become ceramide,
the barrier lipid (Holleran et al., 1993; Holleran et al., 1994).
This indicates that glucosylceramide secretion must at least be
coordinated with β-glucocerebrosidase secretion, which is also a
lysosomal enzyme. Overall, these facts support our idea that skin
LBs likely mature from a lysosomal precursor.
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5 Insights into the biogenetic
machinery of LBs

Although the fundamental trafficking mechanisms regulating
LB biogenesis are largely unknown, experimental evidence
is ample supporting active contribution of the Golgi, early
endocytic organelles, and late endosome/lysosomes, as reviewed
before (Mahanty and Setty, 2021). Glucosylceramide, the major
cargo of LBs is synthesized in the Golgi by the enzyme
glucosylceramide synthase (GCS). GCS expression works in
a linear fashion with LB biogenesis (Madison et al., 1998).
Unsurprisingly, functional inhibition of the Golgi apparatus
using brefeldin-A or by the inhibition of Golgi pH regulator
GPR89 blocks LB biogenesis (Madison and Howard, 1996;
Tarutani et al., 2012). Similarly, lysosomal dysfunction due to
mutation in β-Glucocerebrosidase in Gaucher’s disease and,
acid sphingomyelinase dysfunction in Niemann pick disease are
associated with LB deficient ichthyosis conditions and barrier
dysfunction, suggesting the importance of lysosomes in LB
biogenesis (Holleran et al., 1994; Schmuth et al., 2000). The
critical role of shared molecular pathways involving molecules
such as the biogenesis of lysosome-related organelles complex1,
2, 3 (BLOC1, BLOC2, BLOC3), small GTPases like RAB32/38,
Rab9, SNAREs such as STX13, VAMP7 are defined for most
of these LROs, however, disease models or available knockout
mouse models for these molecules do not provide much insight
on skin LB dynamics (Raposo et al., 2007; Jani et al., 2016;
Bowman et al., 2019; Delevoye et al., 2019; Banushi and Simpson,
2022). Moreover, the genetic disorder HPS caused by mutations
in HPS genes and/or mutation in BLOC/s, and CHS caused
by a mutation in LYST (lysosomal trafficking regulator) likely
do not present phenotypes of LB dysfunction, pressing unique
origin and functional mechanisms of skin LBs (Boissy and
Nordlund, 1997; Dell'Angelica et al., 2000).

Nonetheless, diseased models such as CEDNIK (Cerebral
dysgenesis–neuropathy–ichthyosis–keratoderma) syndrome caused
by a mutation in the SNARE protein SNAP29 and MEDNIK
(mental retardation, enteropathy, deafness, neuropathy, ichthyosis,
keratoderma) syndrome caused by S1 subunit of AP1 (AP1S1) are
associated with LB dysfunction and severe ichthyosis conditions
(Montpetit et al., 2008; Fuchs-Telem et al., 2011; Martinelli and
Dionisi-Vici, 2014; Schiller et al., 2016). A mutation in AP1S1 is
shown to be associated with defective copper metabolism caused
by ATP7A and ATP7B dysfunction (Martinelli and Dionisi-
Vici, 2014), suggesting a possible role of copper metabolism
in LB biogenesis. ATP7A plays a critical role in melanosome
biogenesis by supporting the copper-dependent activity of
tyrosinase (Setty et al., 2008). Thus, I assume that cell-type-specific
modulation of common molecular mechanisms contributes to LRO
biogenesis.

ARC (Arthrogryposis–renal dysfunction–cholestasis)
syndrome caused by amutation in the VPS33B causes dysfunctional
LBs alongside platelet alpha granule dysfunction (Gissen et al.,
2004; Gissen et al., 2006; Ambrosio and Di Pietro, 2019).
VPS33B interacts with VIPAR or VIPAS39 and constitutes the
CHEVI (class C Homologs in Endosome-Vesicle Interaction)
complex, an early endocytic machinery that helps in integrin
recycling and maintaining cell polarity (Cullinane et al., 2010;

Dai et al., 2016; Rogerson and Gissen, 2016; 2018). CHEVI
interacts with Rab11, which further acts in a cascade of Rab3
and sec15 (Ishida-Yamamoto et al., 2007; Escrevente et al.,
2021), and the intracellular trafficking is likely regulated by
CLIP-170/restin along with Cdc42 and Rab7 (Raymond et al.,
2008). Although these molecules are likely involved in
the biogenesis of LBs, their specific functions are not
yet defined.

The primary cargo glucosylceramide is transported to the
maturing LBs by the ABC transporter ABCA12 localized on its
limiting membrane, and accordingly, the loss of function mutations
of ABCA12 blocks LB biogenesis/maturation, resulting in the fatal
condition Harlequin ichthyosis (Akiyama, 2011; Scott et al., 2013).
ABCG1, another ABC transporter is suggested to be involved in
cholesterol transport (Jiang et al., 2010). However, the mechanisms
by which other lipids and protein cargoes are packed into the
maturing LBs and how they coordinate with the major cargo
glucosylceramide remain unclear. Thus, cell models of this disease
condition/s would help us understanding the mechanism and
molecular pathways involved in LB biogenesis.

6 Cellular physiology is a possible
dominating factor for skin LB
biogenesis

Most LROs are produced in a metabolically active state
of harbouring cells and coexist with housekeeping organelles.
In contrast, LBs appear in an advanced differentiation state of
keratinocytes just before cells entering cornification. In addition
to the loss of proliferative capacity, the PM is also modified
with the formation of desmosomes and corneo-desmosomes, and
intracellular organelles begin to disappear (Elias et al., 1998;
Proksch et al., 2008; Bikle et al., 2012; Ishida-Yamamoto et al.,
2018; Mahanty and Setty, 2021). Consequently, in this condition,
the maturation of LBs from already existing precursor organelles
is more likely over initiation of biogenesis. The apparent absence
of lysosomes and the enrichment of LBs in the SG layer
further suggest that LBs may mature from lysosomes (Wolff and
Schreiner, 1970; Ishida-Yamamoto et al., 2004). The functional
overlap of lysosomes and LBs in epidermis barrier formation
and dysfunction of both in common disease conditions further
supports this idea (Holleran et al., 1994; Monteleon et al., 2018;
Klapan et al., 2021; Mahanty and Setty, 2021).

We demonstrated the formation of dual-function secretory
lysosomes in an in vitro model of human primary keratinocytes
that represent the SS layer of the epidermis (Mahanty et al.,
2019; Mahanty et al., 2024). These secretory lysosomes are formed
through Golgi-lysosome contact, facilitated by the Golgi tethering
protein GRASP65 (Golgi ReAssembly Stacking Protein of 65 kDa),
which atypically localizes on the membrane of lysosomes in
differentiated keratinocytes (Mahanty et al., 2024). The presence of
dual-function secretory lysosomes supports our hypothetical model
of LB biogenesis where we described the generation of a precursor
organelle through the Golgi input, followed by their maturation
into LBs upon receiving Golgi/endocytic input (Mahanty and
Setty, 2021).
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Under electronmicroscopy (EM), secretory lysosomes appear in
a vacuolar or multi-vesicular morphology but lack the characteristic
disc-like structures of LBs (Mahanty et al., 2024). This indicates
that additional cargo/inputs are needed for LB formation, which
likely occurs only at a higher differentiation stage in the SG layer. I
hypothesize that either the secretory lysosomes directly mature into
LBs upon receiving additional cargo with higher differentiation or
the secretory lysosomes undergo exocytosis at the SS-SG junction,
followed by cargo re-packaging into disks and their subsequent
maturation into LBs. Cargo repackaging is logical as LBs share a
large amount of lysosomal cargo and enzymes. In the latter case,
the LB limitingmembrane, having secretory properties, could either
be derived from the Golgi apparatus or from the membrane of the
secretory lysosomes, recycled after exocytosis. In both cases, input
from early endosomes and additional cargoes from the Golgi will be
necessary for LB maturation (Figure 2D).

7 Organelle disappearance linking LBs
biogenesis

LBs are abundant in the SG layer cells. In contrary,
conventional organelles undergo degradation in the SG layer, a
process essential for the entry of SG keratinocytes into terminal
differentiation/cornification (Eckhart et al., 2013; Yoshihara et al.,
2015; Jaeger et al., 2019). Defects in “organelle removal” can lead to
improper cornification and barrier formation, as seen in psoriasis
(Eckhart et al., 2013; Akinduro et al., 2016). High levels of autophagy
are reported to support organelle removal, that also support
cells survival in nutrient-deficient environments, in the SG layer
(Yoshihara et al., 2015; Akinduro et al., 2016). However, the absence
of lysosomes in the SG layer suggests that they may transform into
LBs (Wolff and Schreiner, 1970; Ishida-Yamamoto et al., 2004).
This hypothesis raises several important questions: a) how does
high autophagy is supported in the absence of lysosomes? b) are
intracellular organelles eliminated through a different mechanism
during cornification? c) is there a strict temporal regulation between
these processes? d) whether artificially induced autophagy will favor
LBs biogenesis in vitro? Nonetheless, keratinocyte-specific Atg5
and Atg7 knock-out mouse models do not show a cornification
defect (Rossiter et al., 2013; Sukseree et al., 2013), likely suggesting
that autophagy is dispensable. In any of these cases, however, the
maturation of LBs in the SG layer likely temporally coordinates with
organelle removal to receiving Golgi and endosomal input.

8 Discussion

Despite nearly six decades since their discovery (Odland, 1960),
the molecular mechanisms underlying the biogenesis of LBs remain
largely unknown. A significant challenge in LB research is the lack
of a suitable cellular model system, which limits the use of advanced
cell biology techniques, microscopy methods, and genetic tools.
Our current understanding of LBs functional characteristics and
cargo composition primarily comes from invaluable biochemical
and electron microscopy studies conducted in the 1990s and
2000s, utilizing in situ skin samples and mouse models. There is
debate on LB morphology as well, which further complicates our

understanding of their secretion mechanisms. Developing an LB-
enriched cellular model that accurately represents the SG layer is
particularly difficult, given it is a physiologically modified state.
Although the 3D organoid models are promising in understanding
the complexities of human skin and cellular organization and may
serve as alternatives to animal models, they are still limited for
studying molecular interactions to study intracellular trafficking or
at least at the level of sophistication it requires. Therefore, we need
an appropriate cellular model and taken the unique features of LBs
into account to understand their biogenesis, which is crucial for
effectively targeting skin diseases. The key questions regarding the
understanding of LBbiology and associated drawbacks are discussed
in the respective sections.
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