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Recent studies have shown that epidermal sensory receptors intercept and
direct responses to potentially threatening environmental factors, including
shifts in temperature, electric potential, sound, acidity, light, taste, and odor.
In addition to stimulating epidermal responses, activation of keratinocytes by
these stressors can directly signal the central nervous system. Changes in
epidermal permeability barrier homeostasis also depend upon ion dynamics,
particularly alterations in intraepidermal gradients of calcium (Ca2+) and pH.
The purpose of this review is to update readers about recent advances in the
field of cutaneous sensory receptors, focusing upon their roles in mediating not
only permeability barrier function, but also whole-body physiology and certain
aspects of mental status.
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1 Introduction

Maintenance of epidermal permeability barrier homeostasis is the most essential
of mammalian cutaneous functions in humans, because a compromised water barrier
inevitably triggers inflammatory dermatoses as well as potentially leading to dehydration
and even death, as shown in patients with extensive burns and blistering disorders.
Epidermal keratinocytes are the epithelial cells of mammalian skin. In the basal layer of
the epidermis, these cells proliferate avidly, and as they move outwards towards the skin
surface, epidermal differentiation proceeds. In the uppermost layer of the viable epidermis,
keratinocytes undergo physiologic apoptosis, forming a thin, water-impermeable layer
called the stratum corneum.The stratum corneum, which, is composed of two components,
i.e., protein-enriched nonviable cells and extracellular lipid domains. The extracellular
lipid enriched lamellar membranes develop following the secretion of myriad lamellar
bodies from stratum granulosum cells. Hence, immediately after acute barrier disruption,
regardless of whether the specific insult results fromorganic solvents, detergent applications,
or mechanical insults, normal epidermis mounts an immediate, lamellar body secretory
response leading to permeability barrier normalization (Grubauer et al., 1989). Hence,
the epidermis works diligently to restore optimal function when challenged by diverse
environmental stressors.

In normal skin, after acute disruption, the permeability barrier recovers
swiftly. However, with repeated or sustained abrogations, inflammatory
responses occur (Denda et al., 1996). Thus, prevention of the barrier dysfunction is
very important for cutaneous pathology.
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TABLE 1 Alterations IN SKIN surface electrical potential.

Application Biochemical impact Electric potential Effect on impact on barrier recovery

Sodium azide 5% Induces cell death Decreases NYP

Ouabain 50 M Inhibits Na+K+ATPase Decreases NYP

Trifluoperazine 50 M Inhibits Ca2+ Mg2+ ATPase Decreases NYP

Amitripyline 50 M Inhibits Ca2+ Mg2+ ATPase Decreases NYP

Verapamil 50 M Blocks Ca2+ channel Decreases Accelerates

Nifedipine 50 M Blocks Ca2+ channel Decreases Accelerates

4-aminopyridine 50 M Blocks K+ channel Decreases NYP

Tetrodotoxin 50 M Blocks Na+ channel Decreases NYP

Ionomycin 50 M Calcium specific ionophore Decreases Delays

Valinomycin 50 M Potassium ionophore Decreases Accelerates

A23187 50 M Calcium, magnesium ionophore No effect NYP

EGTA 2 mM Chelates calcium Decreases NYP

EDTA 2 mM Chelates calcium and magnesium No effect NYP

CRF 0.5 M Corticotropin releasing factor Decreases NYP

 +antagonist 0.5 M No effect NYP

Substance P 0.5 M Neurotransmitter Decreases NYP

 +antagonist 0.5 M No effect NYP

Barrier disruption Decreases

 + Verapamil 50 M No effect Accelerates

 + 4-aminopyridine 50 M No effect NYP

 + Tetrodotoxin 50 M Decreases NYP

Denda et al. (2001a), Denda et al. (2006), Denda et al. (2007b).
NYP, experiment not yet performed.

The state of barrier homeostasis is linked to a gradient of
calcium ions that peaks in the outer, nucleated layers of the
epidermis (Lee et al., 1992; Menon et al., 1994), which in turn,
regulates epidermal terminal differentiation, surface potential,
and lipid secretion. We hypothesized therefore that epidermal
keratinocytes possess cation-sensitive, electrical sensory systems
that protect against environmental stressors. Pertinently, nerve
transmissions similarly rely upon the electrochemical behavior
of neurons in the central nervous system. We hypothesized
accordingly that the epidermis, which develops in concert with
the nervous system from a primitive ectodermal layer that
envelopes the developing embryo, could also be influenced
by electrochemical gradients. Hence, we evaluated changes in
skin surface electric potential in an ex vivo, hairless mouse
organ culture system, following exposure to either exogenous

calcium or calcium ionophores (Denda et al., 2001a) (results are
summarized in Table 1).

Importantly, the epidermis is an active endocrine tissue–it not
only generates a variety of biomodulators, that include cortisol
releasing factor (CRF), cortisol, opioids, cannabinoids, substance P,
oxytocin (OT), thyroid hormone, and melatonin but also receptors
for these mediators (Vukelic et al., 2011; Denda et al., 2012a;
Takei et al., 2013; Vidali et al., 2016; Slominski et al., 2022;
Datta et al., 2022; Samra et al., 2023). For example, the negative
consequences of psychological stress on both barrier homeostasis
and antimicrobial peptide production are inhibited by both the
CRF antagonist, antalarmin, as well as the glucocorticoid receptor
antagonist, mifepristone (Ru-486) (Denda et al., 2000; Aberg et al.,
2007). Together, these results suggest that a series of hormones
and their receptors could regulate epidermal permeability barrier
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homeostasis and likely antimicrobial defense. In the following
sections, we will update current knowledge about how activation of
these receptors impacts epidermal structure, function, metabolism,
as well as whole body physiology.

2 Epidermal sensory systems that
respond to physical factors

2.1 Temperature

The epidermis expresses a series of transient receptor potential
receptors (TRPs), which localize to the upper layer of the epidermis
where they monitor and direct responses to fluctuations in
potentially threatening environmental stressors. Epidermal TRPV1
is activated by heat (>42°C) and by alterations in acidity, as well
as the ‘hot’ chemical ingredient, capsaicin (Caterina et al., 1997).
TRPV2 is activated by still higher temperatures (>52°C), while
TRPV3 instead is activated at cooler temperatures, as well as by
‘cooling’ chemicals like menthol and camphor. TRPM8 is activated
at still lower temperatures (<22°C), as well as by menthol. TRPA1
is activated at even lower temperatures (<17°C), and by several
different types of chemical substances (Dhaka et al., 2006). Finally,
TRPV4 is activated by warm temperatures, as well as by the receptor
agonist, 4αPDD (Watanabe et al., 2002).

We and others demonstrated that these TRPs not only localize
to the outer epidermis, but some also regulate permeability barrier
homeostasis (Denda et al., 2001b; Inoue et al., 2002; Peier et al.,
2002; Chung et al., 2003; Atoyan et al., 2009; Biro and Kovacs,
2009; Tsutsumi et al., 2010; Tsutsumi et al., 2011). For example,
activation of TRPV1 by either short exposures to 42°C, or by
topical applications of capsaicin delays barrier recovery after acute
disruption in mouse epidermis. In contrast, activation of TRPV4
by short exposures to 36–40°C, or by topical application of 4αPDD
accelerate recovery in mouse epidermis (Denda et al., 2007a).
Likewise, activation of TRPM8 by short exposures to 10–15°C, or by
topical applications of menthol accelerate barrier recovery in mouse
epidermis (Denda et al., 2010a). Finally, activation of TRPA1 by
short exposures to 10–15°C, or by topical application of a TRPA1
agonist also accelerate recovery in mouse epidermis (Denda et al.,
2010b). This series of studies indicate that epidermal keratinocytes
deploy a variety of sensory systems that respond to challenges
from potential external physical factors, which in turn protect
permeability barrier homeostasis. Yet, how this system itself is
regulated, and the mechanisms by which receptor activation
enhances barrier function remain unknown.

The function of each TRP channel might have a variety of
activators. For example, previous review indicated that TPPV1
function is regulated by several endogenous factors (Shuba, 2021).
Moreover, a recent study demonstrated that TRPV4 forms a complex
structure with Rho GTPase, and that interactions with RhoA
influencedTRPV4-madiatedcalciumhomeostasis (Kwonetal., 2023).

Though a large number of studies have been demonstrated both
epidermal and neural TRP, most have focused on neural sensation,
like pain sensation. Recently, by using cryoelectron microscopy, the
structure of TRP channels has been partially clarified (Zhang et al.,
2021). TRPs have six transmembrane spanning domains, with a
pore-forming loop whose structure resembles voltage-gated ion

channels (Huang et al., 2024). However, how these thermosensitive
mechanisms operate has not yet been clarified. Moreover, recent
review indicated that TRPs are permeable to a variety of cations
such as Ca2+,Mg2+,Na+, and K+ (Zhang et al., 2023). We previously
demonstrated that influx ofCa2+ into epidermal keratinocytes delays
the barrier recovery (Denda et al., 2003b), while influx of K+ instead
accelerates recovery (Denda et al., 2007b).

2.2 Electric potential

Once again, the common origin of the epidermis and the
nervous system prompted us to compare the impact of positive
and negative electric potential on barrier recovery after acute
perturbations. While applications of a positive potential delayed
barrier recovery, negative potentials instead accelerate barrier
recovery in mouse epidermis (Denda and Kumazawa, 2002).
Moreover, applications of either cationic polymers (Denda et al.,
2005a), or barium sulfate (Fuziwara et al., 2004), with its
negative zeta-potential, accelerate recovery in mouse epidermis.
This series of studies indicate that epidermis likely possesses a still
uncharacterized sensory system that recognizes and responds to
changes in electric potential (Denda, 2005b).

Increase in intracellular calcium ions induce exocytosis of
neuromediators at synapses. Analogously, when we applied external
negative electric potential onto the surface of the skin, elevations
of intracellular calcium and exocytosis of lamellar body contents
were observed in human skin ex vivo (Kumamoto et al., 2013). Thus,
we speculated that exocytosis from both neurons and keratinocytes
might be regulated by the electrochemical status of these cell
membranes.

Because permeability homeostasis is linked intimately to
calcium dynamics, we assessed whether voltage-gated, calcium
channels (VGCC) are functionally expressed and active in
epidermis. Indeed, topical applications of two VGCC antagonists,
nifedipine and verapamil, accelerated barrier recovery kinetics,
while in contrast, applications of a VGCC activator, (S)-(−)-BAY
K8644, delayed recovery in mouse epidermis (Denda et al., 2006).
These studies are consistent with a prior study, which demonstrated
that topical applications of calcium chloride delay barrier recovery,
while co-applications of two VGCC blockers, verapamil and
nifedipine, reverse the delay (Lee et al., 1992). We speculated
that VGCC antagonists might block the expected increases in
intracellular calcium ion and accelerate lamellar body exocytosis
(Denda et al., 2006; Kumamoto et al., 2013). Thus, VGCC could
serve as the key keratinocyte sensor of electric potential.

2.3 Visible radiation

Visible radiation occupies electromagnetic wavelengths between
the ultraviolet and infrared. Because both ultraviolet and infrared
radiation impact skin function (Rijken and Bruijnzeel, 2009),
we hypothesized that intermediate wavelengths of visible light
could also influence permeability barrier homeostasis. When we
compared the impact of different wavelengths of colored light
on barrier recovery, red light exposure accelerated, but blue light
delayed barrier recovery, while green and white light exerted no
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influence. Accordingly, red light accelerated lamellar body secretion
into the interstices between the stratum corneum and stratum
granulosum, while blue light inhibited organelle secretion in hairless
mouse epidermis (Denda and Fuziwara, 2008). Notably, Nishizawa
and colleagues subsequently demonstrated that red light blocks
alterations in skin surface electric potential after acute barrier
disruption (Abe et al., 2019). Finally, red light also increases
mitochondrial activity and epidermal proliferation (Umino and
Denda, 2023).

We next asked whether the epidermis expresses the same types
of visual receptors that are found in the retina, where rhodopsin
senses brightness vs. darkness, while opsins distinguish red, green,
and blue colors. Indeed, all known types of opsins are expressed
in human keratinocytes (Tsutsumi et al., 2009a; Suh et al., 2020).
Activation of opsins in the retina leads to electrochemical signaling
by transducin and phosphodiesterase, while pertinently, an inhibitor
of phosphodiesterase blocked the positive impact of red light on
barrier recovery in mouse epidermis (Goto et al., 2011).

Another signal transduction cascade occurs in drosophila
(Randall et al., 2015). In this case, signals from certain opsins
activated phospholipase C followed by PIP2 formation, and TRP
channel opening, while in contrast other known opsins trigger
hyperpolarization. This cascade could also exist in the epidermal
keratinocytes.

Recent studies elucidated a variety of effects of visible light on
epidermis (Pierfelice et al., 2023; Pourang et al., 2022; Sutterby et al.,
2022; Brown et al., 2024), suggesting that epidermal keratinocytes
deploy a sensory system for visible radiation that functions similarly
to the retina, though the details of its operation remain uncertain.
Because ultraviolet (UV) radiation displays much stronger energy
than visible radiation, it could damage keratinocyte metabolism
in a variety of ways. Accordingly, a recent study demonstrated
that UVA induces keratinocyte supranuclear melanin cap formation
via opsin 3 (Lan et al., 2023). Another study demonstrated that
toll-like receptor 3 can sense self-RNA released from necrotic
keratinocytes followingUVdamage (Borkowski et al., 2015), further
indicating that keratinocytes deploy sensory systems that protects
the epidermis from damage induced by UV radiation.

Slominski and his co-workers demonstrated that UV
radiation triggers local responses secondary to the induction
of chemical, hormonal, immune, and neural signals that are
defined by epidermal chromophores. These signals reach the
brain, endocrine, and immune systems, as well as other central
organs, which in concert regulate body homeostasis. Thus, these
authors concluded that photo-neuro-immunoendocrinology
can offer novel therapeutic approaches for psychological,
autoimmune, neurodegenerative, endocrinological disorders
(Slominski et al., 2018; Slominski et al., 2024).

A variety of photoreceptors are expressed in the epidermal
keratinocytes and visible radiation and UV radiation influenced
pathophysiology of the skin. Studies of this field could prove
important for clinical dermatology.

2.4 Sound

We paraphrase an age-old question here: ‘Can the skin
hear a tree fall in the forest?’. Indeed, Oohashi et al. (2006)

illuminated the impact of completely inaudible, high-frequency
sounds (hypersonic effects) on the human brain and endocrine
system, suggesting further that epidermis could be the sensor of
these sounds (Kawai et al., 2022). To address this possibility, we
evaluated the impact of sound on permeability barrier homeostasis.
While sub-detectible, 5 kHz sounds did not influence recovery
rates, low register 10, 20, and 30 kHz sounds accelerated barrier
recovery, accompanied by enhanced lamellar body secretion in
mouse epidermis (Denda and Nakatani, 2010). Interestingly, hair
growth, too, was induced by inaudible sounds (Choi et al., 2022).
These results strongly suggest that epidermal keratinocytes possess
a still uncharacterized sensory system that recognizes sounds
above 10 kHz.

Though the receptors for sound in keratinocytes remain
uncertain, one emergent candidate could be Piezo1 (Liao et al.,
2019), consistent with its expression in keratinocytes (Mikesell et al.,
2022). Pertinently, a recent study demonstrated that Piezo1 and
Piezo2 might construct a mechano-sensitive complex in inner ear
hair cells (Lee et al., 2024). Further studies on the role of both Piezo1
and Piezo2 could clarify the mechanisms by which the epidermis
detects sound.

Recent report demonstrated that the benefits of activation of
TRPV4 channels by low intensity ultrasound on knee osteoarthritis
in mice (Wu et al., 2024). Another study indicated that PM
2.5 pollutants inhibit the growth of cilia in both epidermal
keratinocytes and retinal pigment epithelium cells (Bae et al.,
2019). These reports suggested that primary cilia in the
keratocytes might serve as another sensory system for ultrasound
in epidermis.

2.5 Pressure

We previously demonstrated that mechanical stimulation
of keratinocyte monolayer cultures with a glass micropipette
induces elevations in intracellular calcium, as well as calcium
ion propagation via gap junctions and ATP receptors in human
keratinocytes (Tsutsumi et al., 2009b). Accordingly, we compared
changes in intracellular calcium levels produced in response to
25, 50, and 100 hPa hydraulic pressure in human keratinocytes
(Goto et al., 2010). In response to 100 hPa pressure, elevations
in intracellular calcium occur in both undifferentiated and
differentiated keratinocytes, but lower pressures (25 or 50 hPa) only
stimulated calcium levels in differentiated human keratinocytes
(Goto et al., 2010). As described above, mechano-sensitive
receptor, Piezo1 was expressed in keratinocytes (Mikesell et al.,
2022). These results suggest that Piezo and/or a TRP-like,
calcium ion channel could regulate the sensation of hydraulic
pressure, and that keratinocytes in the upper viable layers of
the epidermis could respond to changes in mechanical stress
(Chien and Tsai, 2023).

2.6 Humidity

The impact of changes in environmental humidity on the skin
have been investigated for over 2 decades. Because the stratum
corneum becomes thicker and barrier recovery accelerates in a
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dry environment in mouse epidermis (Denda et al., 1998a), these
changes could reflect helpful adaptations to arid environmental
conditions. However, when hairless mice were shifted in extremis
from an extremely dry to a humid environment, barrier function
was temporarily compromised due to shedding of all suprabasal
layers of the epidermis (Sato et al., 2002), paralleled by a decline
in filaggrin levels in mouse epidermis (Katagiri et al., 2003). Thus,
while barrier function does not adjust quickly to drastic reductions
in humidity, more gradual reductions in external humidity stimulate
concurrent improvements in barrier homeostasis. Notably, \such
a reduced humidity also drives protease-driven hydrolysis of
filaggrin into its constituent amino acids, followed by their
deimination into hygroscopic polycarboxylic acids that enhance
stratum corneum hydration, while also generating trans-urocanic
acid, the principle UVB photophore in human stratum corneum
(Moodycliffe et al., 1996).

Prolonged reductions in external humidity place additional
stress on the permeability barrier that command an appropriate
response. Cytokines represent one class of candidates that could
respond. Because IL-1α is known to stimulate epidermal lipid
synthesis (Barland et al., 2004), we hypothesized and then
demonstrated that not only IL-1α levels increase after the mouse
epidermis is exposed to a dry environment (Ashida et al., 2001b),
but also mRNA levels of three other pro-inflammatory mediators,
TNFα, IL-1β, and GM-CSF also increase (Wood et al., 1992;
Elias et al., 1999). Indeed, under dry conditions even minor
skin perturbations can provoke significant inflammation in
mouse epidermis (Denda et al., 1998b; Denda, 2001). Hence,
cytokine production and/or release could be stimulated by
environmental aridity.

In our previous experiments using epidermal organotypic
culture system, exposure to environmental dry condition
increased cortisol secretion and mRNA levels of cortisol-
synthesizing enzyme (steroid 11b-hydroxylase, CYP11B1) and IL-1β
(Takei et al., 2013).

Pertinently, allergic reactions are amplified in a dry
environment, and Langerhans cell densities increase under such dry
conditions, again consistent with a more pronounced inflammatory
response in mouse epidermis (Hosoi et al., 2000). Because TRPV4
activation and expression increase in corneal epithelia following
exposure to hypotonic solutions (simulating dry conditions)
(Lapajne et al., 2020), TRPV4, a known sensor of changes in
osmotic pressure (Galindo-Villegas et al., 2016), could serve as
the key humidity sensor in epidermis.

We previously demonstrated that exposure of cultured
human keratinocytes to air increased intracellular calcium
concentration and secretion of ATP. When we removed calcium
from the medium or applied suramin, a purinergic receptor
antagonist, reduced the increase of intracellular calcium (Denda
and Denda, 2007). We also demonstrated that application of
ATP induced IL-6 expression and secretion from cultured
human keratinocytes (Inoue et al., 2007). Another report showed
that following ATP stimulation, IL-1β is also released from
keratinocytes and might induce inflammation (Burnstock and
Knight, 2018). Those studies suggested that ATP might play a
crucial role in inflammatorymechanisms induced by environmental
dry conditions.

3 Chemical factors

3.1 Odorants

A variety of olfactory receptors (OR) have been identified in
keratinocytes during the past decade. Previous studies demonstrated
that activation of OR2AT4 and OR51B5 accelerates wound
healing, and that activation of OR2A4/7 is linked to keratinocyte
proliferation (Busse et al., 2014; Tsai et al., 2017). Moreover,
applications of Sandalore® , a synthetic sandalwood odorant
increased OR2AT4 expression in human skin organ cultures
and induced dermcidin synthesis in the epidermal keratinocytes
(Edelkamp et al., 2023). Sandalore® is an agonist of the cutaneous
olfactory receptor OR2AT4. It induces strong Ca2+ signals in
cultured human keratinocytes (Busse et al., 2014). Another study
demonstrated that activation of OR2AT4 in human hair follicle
epithelium prolonged hair growth (Cheret et al., 2018).

We recently found that OR5P2, OR5P3, and OR10A6 are
also expressed in human keratinocytes, and that activation of
OR10A6 accelerates terminal differentiation (Nakanishi et al., 2023).
Moreover, UV exposure downregulated OR expression (Kang et al.,
2021). These studies suggested that ORs might play important roles
in a variety of aspects of epidermal homeostasis.

On the other hand, we recently demonstrated that odorant
molecules could influence human keratinocyte metabolism
not only via receptors, but also by changes in cell membrane
conformation. Accordingly, trans-2-nonenal (2 TN) induces
physiologic apoptosis in cultured keratinocytes, while ‘masking’
odorants, benzaldehyde and 4-anisaldehyde, rescued cells from
2 TN-induced apoptosis (Nakanishi et al., 2021). Rather than
binding to olfactory receptors, these interactions reflect changes in
cell membrane conformity in the olfactory epithelium, as detailed
further below.

It has long been recognized that odorant receptors play a
crucial role in molecular recognition in all living systems. Yet, how
keratinocytes recognize and respond to odorants will remain elusive
until their receptors have been cloned. Although the mechanism
of human perception of odorant molecules remains only partially
characterized, further studies of odorant sensory activation within
cell membranes could open a new paradigm for our overall
perception of volatile molecules.

3.2 Tastants

Bitter taste receptors, TAS2Rs, are expressed in epidermal
keratinocytes (Shaw et al., 2018). Keratinocytes express the bitter
taste receptors TAS2R1 and TAS2R38 promotes keratinocyte
differentiation. Moreover, Amarogentin, an agonist for TAS2R1
and other TAS2Rs, reduces histamine-induced IL-8 and MMP-1
secretion (Wölfle et al., 2015). Among these, a TAS2R14 ligand
induced an increase in intracellular free Ca2+ concentrations
(Ho et al., 2021). TAS2R16 and TAS2R10 are expressed in
HaCaT cells and regulate wound healing in aged HaCaT cell
monolayers (Chung et al., 2022). A recent study demonstrated that
activation of TAS2R38 leads to production of ABC transporters
(Mori et al., 2024). The authors of this report suggest that TAS2Rs
in the keratinocytes could facilitate the excretion of harmful
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molecules via ABCB1. Another recent report described a decrease
of TAS1R3 in tape-stripped skin samples from children with
allergic asthma (Del Duca et al., 2024).

A broader array of taste receptors could still be found in
keratinocytes, which could in turn influence epidermal homeostasis.

3.3 Hormones and other small molecules

Epidermal keratinocytes express a variety of hormone receptors
and some of these hormones influence epidermal pathophysiology.
For example, application of melatonin downregulated the
intraepidermal activity of the aging-promoting mTORC1pathway
and MMP-1 protein expression (Samra et al., 2023). Slominski and
his coworkers suggested that melatonin and some of its metabolites
inhibit melanogenesis. Moreover, melatonin also accumulates in
melanocytes where its antioxidative effects could stimulate the
synthesis and activity of ROS scavenging enzymes and other
antioxidants, while also promoting DNA repair, and enhancing
mitochondrial function (Sevilla et al., 2022).

CYP11A1, a member of the cytochrome P450 family,
generated in epidermal keratinocytes, plays several critical
roles in the skin through its initiation of local steroidogenesis
and specific metabolism of vitamin D, lumisterol, and 7-
dehydrocholesterol. Products of these pathways regulate the
protective barrier and skin immune functions in a context-
dependent fashion through interactions with a large number of
receptors (Slominski et al., 2021; Evendt et al., 2025).

Though the skin synthesizes and secretes a variety of hormones
(Slominski et al., 2022), prior studies have demonstrated that among
these hormones, testosterone and estrogen exert opposing effects on
epidermal barrier function (Hanley et al., 1996). Examples of the
negative effects of testosterone include: 1) Barrier recovery kinetics
are delayed in adult vs. juvenile hairless mice (Kao et al., 2001);
2) Blockade of testosterone production with finasteride accelerates
barrier recovery (Kao et al., 2001); 3) Epidermal lipid production
is reduced in male vs. female hairless mice (Feingold et al., 1983);
4) Topical beta-estradiol enhances epidermal functions likely by
increasing ceramide synthesis (Kendall et al., 2022). 5) In a patient
receiving testosterone replacement by bi-monthly injections, barrier
function declined immediately after injections, but returned back
to baseline just prior to the next injection (Kao et al., 2001); and
6) while androgens (testosterone or androsterone) delayed barrier
recovery, their impact could be countered by co-applications of
beta-estradiol in mouse epidermis (Tsutsumi and Denda, 2007).

Because these phenomena occurred within 30 min after acute
barrier disruption (+/- hormone applications), we suspected that
these changes likely reflect interactions between these hormones and
target cell membranes, achieved through a series of physicochemical
changes rather than by more time-consuming genomic phenomena.
Hence, we evaluated their impact on surface monolayers of 1,2-
di-O-myristoyl-sn-glycero-3-phosphocholine (DMPC). While the
surface pressure (π) isotherm for the monolayer increased in the
presence of β-estradiol, testosterone had no effect (Nakata et al.,
2011). Together, these results suggest that testosterone perturbs cell
membranes, while β-estradiol exerts beneficial effects, paralleling
their known impact on permeability homeostasis (Table 2).

Pertinently, molecules that influence phospholipid membrane
phase transitions also impact lipid lamellar structures in
differentiated keratinocytes as well as exocytosis of pro-lamellar
lipids during epidermal terminal differentiation in human skin ex
vivo (Umino et al., 2019; Denda et al., 2020). Thus, the effects of sex
hormones on barrier homeostasis could reflect interactions between
hormones and cell membranes.

We next evaluated the effects of added saturated and unsaturated
free fatty acids on cultured keratinocytes, and in parallel, on
permeability barrier homeostasis. Only unsaturated fatty acids
induced intracellular calcium elevation and barrier dysfunction
(Katsuta et al., 2005) (Table 2). Pertinently, the (π) isotherm for
1,2-di-stearoyl-sn-glycero-3-phosphocholine (DOPC monolayers
declined after addition of oleic acid, while addition of stearic acid
exerted no impact (Nakata et al., 2017) (Table 2).

As described above, 2-trans-nonenal (2 TN) induced apoptosis
of cultured human keratinocytes, while two ‘masking’ odorants,
blocked 2 TN-induced apoptosis (Nakanishi et al., 2021). The
surface pressure of such DOPC monolayers increased upon the
addition of 2TN, while the ‘masking’ odorants blocked the expected
increase (Fujita et al., 2022) (Table 2). This series of studies
suggest that phospholipid-enriched monolayers, as models of cell
membranes, respond differently to volatile molecules in parallel to
their known impact on barrier function (Denda et al., 2020).

A variety of hormones synthesized and released from epidermal
keratinocytes could influence epidermal homeostasis and whole-
body physiology, including psychological conditions (Denda et al.,
2013). To clarify the effects of keratinocytes derived hormones,
keratinocytes-specific, conditional knock-out animal study would
be required.

4 Additional biological factors
relevant to barrier homeostasis

1. Toll-like receptors (TLRs), also called ‘alarmins’ (Gallo and
Nakatsuji, 2011), were originally found in immune cells, such
as macrophages and dendric cells, where they distinguish
characteristic structures of bacteria and viruses. But TLR 3,
4, 5, and 9 also are functionally expressed in keratinocytes
(Lebre et al., 2007), and activation of TLR3 is required for
barrier recovery following UVB-induced damage (Borkowski
and Gallo, 2014; Borkowski et al., 2015). Thus, keratinocytes
should be included, along with Langerhans cells, as outermost
guardians of the cutaneous immune system.

2. Protease activated receptors: Four types of protease-activated
receptors (PAR) are expressed in epidermis; i.e., PAR-1, PAR-
2, PAR-3, and PAR-4. While thrombin activates PAR1, PAR-2
is activated by trypsin (kallikreins) (Rattenholl and Steinhoff,
2008). Previous studies demonstrated that PAR2 expression
in keratinocytes regulates both epidermal barrier homeostasis
and epidermal terminal differentiation in human and hairless
mice skin (‘physiological apoptosis’) (Hachem et al., 2006).
Moreover, mite and cockroach allergens display protease
activity and are capable of disrupting barrier function in
human and hairless mice skin (Jeong et al., 2008). Accordingly,
we demonstrated that Japanese cedar pollen allergen (Cry
J1) activates protease activity in keratinocytes, leading to
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TABLE 2 Physicochemical studies using phospholipid monolayers.

Test molecule Phospholipid Surface Pressure (π) Impact on Barrier
Recovery/Differentiation

Testosterone (Nakata et al. 2011) DMPC No effect Delays recovery (Denda and Denda, 2007) 10 mM

Beta-estradiol (ibid) DMPC Increase Blocks the effect of testosterone (ibid) 10 mM

Mannose, fructose (Nakata et al. 2012) DOPC Increase Accelerates recovery (Denda, 2011) 0.1 M

Galactose, glucose (ibid) DOPC No effect No effect (ibid) 0.1 M

Oleic acid (Nakata et al. 2017) DOPC Decrease Barrier dysfunction (Katsuta et al., 2005) 10 mg/ml

Stearic acid (ibid) DOPC No effect No effect (ibid) 10 mg/ml

2-trans-nonenal (Fujita et al. 2022) DOPC Increase Keratinocyte apoptosis (Nakanishi et al., 2021) 50 mM

2-trans-nonenal DOPC No effect No effect (ibid)

+ masking odorants (ibid) 50 mM

DMPC, 1,2-di-O-myristoyl-sn-glycero-3-phosphocholine.
DOPC, 1,2-dioleoyl-sn-glycero-3-phosphocholine.

a PAR1-mediated compromise in barrier homeostasis in
human skin ex vivo (Kumamoto et al., 2016; Nakanishi et al.,
2018). In each case, elevations in intracellular calcium ions
were observed, which in turn could be blocked by calcium
channel blockers and calmodulin antagonists in hairless
mouse skin (Lee et al., 1992).

5 Regulation of barrier homeostasis,
desquamation, and inflammation by
alterations in surface pH

Consider next that the skin surface exhibits an extremely low
surface pH (4.5-5.0), with the lowest levels observed in deeply
pigmented skin (Gunathilake et al., 2009; Hatano and Elias, 2023;
Brooks et al., 2024) (Figure 1). The functional implications of a
reduced pH aremanifold. First, the reduced pH of deeply pigmented
skin accounts for its functional superiority (see below). Second,
several kallikreins (serine proteases) that regulate the shedding
of corneocytes (and conversely its cohesion) require a neutral-
to-alkaline pH to be activated. Hence, an acidic surface pH
slows desquamation rates (Hachem et al., 2003; Hachem et al.,
2005). Third, the acidic surface of the stratum corneum is well
known to inhibit the growth of pathogenic staphylococci and
streptococci, while conversely, the risk of colonization by these
pathogens increases at the elevated surface pH that characterizes
inflammatory dermatoses. Fourth, the two enzymes that regulate the
generation of ceramides from their immediate precursors (i.e., β-
glucocerebrosidase and acidic sphingomyelinase) require an acidic
surface pH (Takagi et al., 1999). Finally, the same neutral pH-
requiring kallikreins that regulate desquamation also can initiate
inflammation by converting corneocyte reservoirs of the pro-forms
of epidermal IL-1α&β into their active, pro-inflammatory products.

But the ‘pH story’ does not end there–keratinocytes express
plasminogen activator receptors type 2 (PAR2) on their surface,

which also are activated by kallikreins. PAR2 in turn triggers
terminal differentiation (physiologic apoptosis) leading to stratum
corneum formation, while inhibitors of PAR2 delay barrier recovery
after acute abrogations (Demerjian et al., 2008). Together, these
studies illuminate the important roles of acidification for epidermal
homeostasis (Fluhr and Elias, 2002).

A recent report demonstrated that an acid-sensitive ion channel
(ASIC1a) was expressed in airway epithelial cells and inhibition of
ASC1a reduced the pyroptosis induced by an extracellular acidic
environment (Tan et al., 2024). TRPV1 in keratinocytes is also
activated by low pH (Inoue et al., 2002). Hence, ASICs and/or
TRPV1 might play an important role in the epidermal barrier
homeostasis.

6 Keratinocyte-brain axis

6.1 Direct communication between
keratinocytes and the peripheral nervous
system

Because the epidermis and central nervous system arise in
parallel from the primitive neuroectodermal layer that encases
the early embryo, the epidermis has retained features typically
associated with nervous tissues. Accordingly, we previously
demonstrated that mechanical stimulation of human keratinocytes
induced retrograde excitation of rat neurons (Tsutsumi et al.,
2009b). When we applied apyrase, an ATP-degrading enzyme,
excitation declined significantly, suggesting that ATP release from
keratinocytes could mediate signal transfer between keratinocytes
and the peripheral nervous system. On the other hand, because
excitation was not completely abolished by apyrase, there could
be additional types of communication between keratinocytes
and the peripheral nervous system, including direct synaptic
communication between keratinocytes and peripheral nerves
(Talagas et al., 2020a; Talagas et al., 2020b; Xu et al., 2022).

Frontiers in Cell and Developmental Biology 07 frontiersin.org

https://doi.org/10.3389/fcell.2025.1598326
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Denda and Elias 10.3389/fcell.2025.1598326

FIGURE 1
Schematic illustration of the epidermal water-impermeable barrier and visual images of pH and calcium ion gradations in the epidermis [modified from
Denda et al. (2000); Hatano and Elias (2023)].

A series of prior studies demonstrated that excitation of
keratinocytes is recognized by the brain. First, Pang et al. (2015)
demonstrated that keratinocyte stimulation by capsaicin, after
prior binding to TRPV1, induced nociception-related responses.
These researchers then developed a keratinocyte-specific, TRPV1
knockout mouse model, and observed that immediately after
capsaicin applications, wild-type mice started paw-licking, while no
such behavior was observed in the knockout mice.

Similarly, Baumbauer et al., 2015 established transgenic mice
that express the light-sensitive protein, rhodopsin, in the epidermis.
When these mice were exposed to otherwise harmless, visible light,
they retreated as if in response to painful stimuli.These authors then
demonstrated that eithermechanical stress, heat, or laser stimulation
of mouse skin induces electric responses in dorsal-root-ganglia.

6.1.1 Potential mechanisms
Painful tactile stimuli (Moehring et al., 2018), UVB irradiation,

acute barrier disruption (Denda et al., 2002a; Denda et al., 2002b;

Inoue et al., 2007), as well as exposure to a reduced humidity all
induce ATP release from keratinocytes, and the released ATP in
turn activates the peripheral nervous system via the ATP receptor,
P2X4 (Denda and Denda, 2007; Moehring et al., 2018). These
results suggest that a variety of environmental stimuli stimulate
ATP release from keratinocytes. Epidermal keratinocytes generate
not only ATP but also a variety of other mediators, including
dopamine and nitrous oxide that can impact the peripheral
nervous and/or vascular systems in mouse skin (Fuziwara et al.,
2005; Ikeyama et al., 2010). Furthermore, Sadler et al. (2020)
demonstrated that both ATP from keratinocytes and P2X4 in the
peripheral nervous system play an important role in cold and
heat sensation. Finally, Talagas et al. (2020b) suggested that either
prostaglandin E2 or endothelin-1 released from keratinocytes could
be involved in cutaneous nociception (pain perceived from the skin).
Together, these results suggest that epidermal keratinocytes mediate
cutaneous sensation and CNS responses in response to a variety of
environmental stimuli.
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TABLE 3 Effects of receptor agonists and antagonists on skin permeability barrier recovery.

Neurotransmitter Receptors Barrier Recovery
Acceleration

Barrier Recovery Delay

Ionotropic Receptors

P2X receptor (Denda et al., 2002a) Antagonist TNP-ATP (100 nM) Agonist α,β-methylene ATP (1 mM),

NMDA receptor (Fuziwara et al., 2003) Antagonist MK-801 (1 mM) Agonist NMDA (1 mM)

Cholinergic receptor (Denda et al., 2003b) NYP Agonist nicotine (1 mM)

GABA(A) receptor (Denda et al., 2002b) Agonist GABA (100 μM) NYP

Glycine receptor (Denda et al., 2003b) Agonist Glycine (1 mM) NYP

VGCC (Denda et al., 2006) Antagonist nifedipine (1 mM) Agonist S-(–)-BAY K8644 (1 mM)

Potassium channel (Denda et al., 2007b) Agonist diazoxide (1 mM) NYD

G-Protein coupled Receptors

Adrenergic β2 receptor (Denda et al., 2003a) Antagonist ICI-118 551 (1 mM) Agonist procaterol (1 mM)

Dopamine 2-like receptor (Fuziwara et al., 2005) Agonist bromocriptine (100 nM) Antagonist L-741626 (100 nM)

Serotonin receptor (Denda, 2005b) Agonist 5-Hydroxytryptamine (1 mM) NYP

Endocrine Receptors

Histamine receptor H1, H2 (Ashida et al., 2001a) Antagonist diphenilhydoramine (5% wv) NYP

Ryanodine receptor (Denda et al., 2012a) Antagonist dantrolene (100 μM) Agonist 4-chloro m-cresol (2.5 mM)

All barrier recovery studies were carried out using hairless mice. When we observed intracellular calcium ion dynamics, we used cultured human keratinocytes. All reagents were applied as
aqueous solution.

6.2 Endocrine factors released from
keratinocytes appear to influence barrier
homeostasis

When the epidermis is exposed to stressful, arid conditions,
cortisol is generated and released from human epidermal
keratinocytes as described above (Takei et al., 2013). Moreover,
such conditions induce ATP release from keratinocytes, and ATP in
turn induces IL-6 release from human keratinocytes via purinergic
receptors (Inoue et al., 2007). Elevations of cortisol and cytokines,
particularly IL-6, damage the hippocampus, potentially inducing
anxiety or depression.Thus, factors that stress the epidermal barrier,
such as xeric conditions, could impact human emotions, though
further research is needed to illuminate this potential relationship.

Though not yet directly linked to barrier homeostasis,
oxytocin (OT) is both generated by and sensed by human
keratinocytes (Denda et al., 2012b). Non-invasive, tactile stimuli
that increase plasma OT levels positively influence emotional status
(Portnova et al., 2020), while also enhancing barrier function.
Moreover, systemic OT infusions dampen repetitive behavior in
patients with autism and Asperger’s syndrome (Hollander et al.,
2003; Li et al., 2022), and improve wellbeing in war veterans
suffering from post-traumatic stress (Eidelman-Rothman et al.,
2015). Thus, OT generated and released from keratinocytes could
play an important role in mediating the effects of tactile stimuli on

both emotion and barrier function. Together, these studies suggest
that a suite of sensory receptors in keratinocytes could influence
human psychological status.

Slominski and his co-workers have published important
reviews about the neuro-immuno-endocorinology of the skin.
In these reviews, they suggest that environmental factors,
including solar radiation, biological, physical and chemical insults,
and pollutants, a variety of mediators, including pituitary and
hypothalamic hormones, neuropeptides, cytokines and chemokines,
biogenic amines, serotonin, melatonin, cannabinoids, steroids, and
secosteroids are generated in the epidermal cells and regulate
protective responses against environmental insults. Recently,
they suggested that topical application of melatonin or its
metabolites can be used to prevent and treat skin disorders and
cutaneous aging (Slominski AT. et al., 2025). Moreover, this skin
neuro–immuno–endocrine system communicates with the local
microbiome, neural, endocrine and immune systems and regulate
local and central homeostasis (Slominski and Wortsman, 2000;
Slominski et al., 2022; Slominski RM. et al., 2025).

7 Neurotransmitters and barrier
function

As described above, epidermal keratinocytes deploy a
large complement of sensory receptors that detect potential
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FIGURE 2
Schematic illustration of the role of sensory systems of epidermal keratinocytes and their potential influence on whole body physiology [modified from
Tagalas et al. (2020b); Denda and Nakanishi (2022)].

environmental threats. This series of epidermal neurotransmitters
could in turn play crucial roles in signaling the brain
(Table 3). Pertinently, these receptors are not only functionally
expressed in keratinocytes, but they also have been shown
to influence permeability barrier homeostasis. Moreover,
receptors for endogenous molecules like histamine and
ryanodine are also expressed in keratinocytes and have been
shown to impact permeability barrier function in mouse
skin (Ashida et al., 2001a; Denda et al., 2012a; Lin et al.,
2013) (Table 3). Keratinocytes also express nuclear-hormone
receptors (Schmuth et al., 2008), as well as cannabinoid
receptors (Roelandt et al., 2012), both of which are known
to regulate epidermal barrier function, though by different
mechanisms.

8 Conclusion

That the epidermis deploys a broad suite of sensory functions
should not be surprising from an evolutionary and developmental
biology standpoint. Cnidarians, which are among the earliest
multicellular organisms, express a series of sensory receptors,
including rhodopsin and a neurotransmitter receptor that
recognize NMDA (Watanabe et al., 2009). Because a scattered
nervous system coats the surface of their bodies, most of these
sensory receptors likely are expressed in their ‘skins.’

During the earliest stages of human development, a primitive
ectodermal layer coats the surface of the embryo, forming a
neuroectodermal layer from which the central nervous develops,
while leaving the remaining ectoderm to generate the epidermis.
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Thus, a variety of sensory receptors, as well as receptors for
endogenous factors, like hormones and neurotransmitters, are co-
expressed in the epidermis and central nervous system. Parts of
various human sensory organs, including the eyes, ears, and nose
also derive from this neuroectodermal layer. Odorants and taste
sensations represent two deeply preserved sensory systems that
have persevered throughout human evolution. Because epidermal
keratinocytes express a full panoply of such sensory mechanisms,
as well as the necessary information processing systems, awareness
of the epidermis’ updated capabilities could lead to a new medical
discipline that embraces a role for the skin’s powerful sensory
systems in multiple aspects of psychological health (Figure 2).
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