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Aim: Generative adversarial networks (GANs) were employed to predict the
morphology of OBL before femtosecond laser scanning during SMILE.

Methods: A retrospective cross-sectional analysis was conducted on 4,442 eyes
from 2,265 patients who underwent SMILE surgery at the Ophthalmic Center
of the Second Affiliated Hospital of Nanchang University between June 2021
and August 2022. Surgical videos, preoperative panoramic corneal images, and
intraoperative OBL images were collected. The dataset was randomly split into a
training set of 3,998 images and a test set of 444 images for model development
and evaluation, respectively. Structural similarity index (SSIM) and peak signal-
to-noise ratio (PSNR) were used to quantitatively assess OBL image quality. The
accuracy of intraoperative OBL image predictions was also compared across
different models.

Results: Seven GAN models were developed. Among them, the model
incorporating a residual structure and Transformer module within the
Pix2pix framework exhibited the best predictive performance. This model’s
intraoperative OBL morphology prediction demonstrated high consistency with
actual images (SSIM = 0.67, PSNR = 26.02). The prediction accuracy of Trans-
Pix2Pix (SSIM = 0.66, PSNR = 25.76), Res-Pix2Pix (SSIM = 0.65, PSNR = 23.08),
and Pix2Pix (SSIM = 0.64, PSNR = 22.97), Pix2PixHD (SSIM = 0.63, PSNR = 23.46),
DCGAN (SSIM = 0.58, PSNR = 20.46) was slightly lower, while the CycleGAN
model (SSIM = 0.51, PSNR = 18.30) showed the least favorable results.

Conclusion: The GAN model developed for predicting intraoperative OBL
morphology based on preoperative panoramic corneal images demonstrates
effective predictive capabilities and offers valuable insights for ophthalmologists
in surgical planning.

KEYWORDS

artificial intelligence, generative adversarial networks, opaque bubble layer, small-
incision lenticule extraction, complication
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Introduction

Myopia, the most prevalent refractive error, emerges as a
significant public health concern due to its rising global incidence
(Baird et al., 2020; Medina, 2022). Laser refractive surgery, a
widely used treatment, has been proven to enhance visual quality
safely and effectively, significantly improving quality of life and
work performance in individuals with myopia (Kim et al., 2019;
Wilson, 2020). Small Incision Lenticule Extraction (SMILE),
a relatively novel femtosecond laser technique, offers several
advantages over traditional Laser-Assisted in Situ Keratomileusis
(LASIK). However, it is technically demanding and associated
with a steep learning curve (Lin et al., 2024; Zhao J. et al.,
2023). During the early learning phase, surgeons may encounter
unforeseen complications, which can negatively affect surgical
outcomes (Wan et al., 2021; Titiyal et al., 2017).

A common intraoperative complication in femtosecond laser
photofracture of corneal tissue is the formation of opaque bubble
layers (OBL), caused by the accumulation of air bubbles between
corneal layers (Zhu et al., 2024). This condition may complicate
lenticule separation during surgery or increase the complexity,
potentially delaying postoperative vision recovery (Zhu et al.,
2024; Yang S. et al., 2023). While previous studies have identified
several risk factors for OBL formation (Yang S. et al., 2023;
Son et al., 2017; Ma et al., 2018), no comprehensive model currently
exists to predict the morphology of OBL. The development of such
a predictive model would significantly improve surgical decision-
making accuracy and enhance the safety of SMILE procedures.

The creation of the lenticule during laser scanning is a crucial
step in SMILE surgery. This process, fully automated and controlled
by machine, is critical (Teo and Ang, 2024). If complications
arise during this phase, surgeons typically need to halt the
surgery promptly and use alternative techniques or adjustments
to resolve the issue (Wan et al., 2021). This not only poses
a significant challenge to the surgeon’s skills but also increases
patient anxiety, potentially affecting both the postoperative visual
acuity and recovery (Yang S. et al., 2023; Titiyal et al., 2018).
For minimizing these risks, pre-laser-scanning anticipation and
identification of potential intraoperative complications are essential,
especially in the suction-initiated step. Identifying any abnormalities
during this phase enables surgeons to interrupt and restart the
procedure without affecting the laser scanning. Research has shown
that the major risk factors for OBL during SMILE surgery are
associated with special corneal parameters (Yang S. et al., 2023;
Son et al., 2017; Ma et al., 2018). An important question arises:
Can artificial intelligence (AI) technology predict the morphology
of OBL by analyzing the panoramic corneal images captured during
the negative pressure suction phase of SMILE surgery?

With the rapid development of AI, it has increasingly become an
impotant auxiliary tool in the filed of ophthalmology, demonstrating
substantial potential in improving clinical management and
workflows (Zheng et al., 2021; Xu and Yang, 2023; Yang W.-H. et al.,

Abbreviations: OBL, Opaque bubble layer; SMILE, Small incision lenticule
extraction; AI, Artificial intelligence; GAN, Generative adversarial networks;
SSIM, Structural similarity index; PSNR, Peak signal-to-noise ratio; PS, Adobe
Photoshop; D, Dioptre.

2023). In the field of image prediction, Generative adversarial
networks (GANs), a key area within AI, offer substantial advantages
in processing high-dimensional data and images, showing great
promise in automated medical analysis, particularly for managing
large, complex datasets related to human diseases (Saeed et al.,
2021; Gong et al., 2021; Waisberg et al., 2025). Compared to other
models, such as Conditional Diffusion Models or Autoregressive
Models, GANs can directlymodel image-to-imagemapping through
adversarial training, which is suitable for tasks such as intraoperative
OBL prediction that require detail preservation (Waisberg et al.,
2025). Pix2Pix is a universal image-to-image translation model in
GANs (Kim and Chin, 2023; Zhang et al., 2022; Abdelmotaal et al.,
2021). However, when it was used in medical image generation,
it often resulted in blurred and distorted outputs, and it was
difficult to capture details, and the generated image lacks texture
(Zhang et al., 2022; Kim et al., 2025). While the residual structure
helps preserve shallow andhigh-frequency information across layers
(Wang et al., 2017; Park et al., 2019), and the Transformer network
enhances global understanding through its attention mechanism
(Chen et al., 2021; Cao et al., 2021).

To address this, the study incorporated a combination of residual
structure and Transformer module into the Pix2Pix to predict
the morphology of OBL during SMILE surgery, providing crucial
intraoperative support for surgeons. Given the increased difficulty
when OBL forms at the posterior interface of the lenticule during
laser scanning, this study focused primarily on analyzing OBL
during this critical phase (Son et al., 2017; Titiyal et al., 2018).
The model allows surgeons to implement timely interventions,
such as promptly releasing negative pressure and adjusting surgical
parameters. These measures can effectively reduce OBL incidence,
thereby minimizing its negative impact on both the surgical
process and postoperative visual recovery. This approach holds
significant practical value for enhancing the quality and safety of
SMILE surgery.

Materials and methods

Research object

This retrospective cross-sectional study was conducted in strict
adherence to the Declaration of Helsinki and received approval
from the Ethics Committee of the Second Affiliated Hospital of
Nanchang University (Approval No. 2024086). It is registered with
ClinicalTrials.gov (Identifier: NCT06577012). The study included
patients who underwent SMILE surgery at the Ophthalmic Center
of the Second Affiliated Hospital of Nanchang University between
June 2021 and October 2022.

Inclusion criteria were as follows: (1) age between 18 and 45
years; (2) Corrected Distance Visual Acuity (CDVA) of 16/20 or
better; (3) preoperative spherical equivalent (SE) ≥ −10.0 diopters;
(4) relatively stable refractive error, with annual changes of less than
0.50 diopters over the past 2 years; (5) no contact lens use in the
2 weeks preceding surgery.

Exclusion criteria were as follows: (1) presence of ocular
conditions other thanmyopia and astigmatism, such as keratoconus,
severe dry eye, uncontrolled glaucoma, visually significant cataracts,
or a history of ocular trauma; (2) prior ocular surgery; (3)
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history of systemic diseases that could compromise surgical
outcomes or patient safety, including psychiatric disorders,
severe hyperthyroidism, systemic connective tissue diseases, or
autoimmune diseases.

Surgical procedure

In this study, all patients underwent SMILE surgery for
the correction of myopia and astigmatism. The procedures were
performed by two experienced surgeons with 10 and 20 years of
refractive surgery experience, respectively, each having performed
thousands of procedures including PRK, FS-LASIK, and SMILE.

To minimize the risk of infection, patients were prescribed
0.3% gatifloxacin eye gel starting 3 days before surgery. Fifteen
minutes prior to surgery, the nurse administered surface anesthesia
using 0.5% proparacaine hydrochloride eye drops, with one drop
every 5 min for a total of two drops. During the procedure, a
femtosecond laser system (Carl Zeiss, VisuMax, Germany) was
used. The laser settings were as follows: pulse energy of 135 nJ,
spot and track spacing of 4.5 μm, corneal cap thickness between
100–120 μm, and a cap diameter of 7.5 mm. The femtosecond laser
performed sequential cuts in the following order: initial posterior
lenticule cut, followed by the lenticule side cut, anterior lenticule
cut, and cap side cutting. The corneal micro-incision was made
at the 2 mm mark at the 12 o’clock position, with an angle of
90°. The transition zone for astigmatism treatment was set to the
default value of 0.1 mm (Table 1). During the procedure, the surgeon
stabilized the eyeball usingmicroscopic toothed forceps with the left
hand, while employing a lenticule separation spatula with the right
hand to sequentially separate the anterior and posterior interfaces
of the lenticule. Once these steps were completed, the lenticule was
extracted, followed by the removal of the eyelid speculum, marking
the end of the surgery.

Postoperative care began on the first day after surgery, with the
following regimen: 0.3% gatifloxacin eye gel four times daily for
1 week; 0.1% flumetholone eye drops four times daily for 4 weeks,
with weekly frequency reductions; and sodium hyaluronate eye
drops four times daily for 4 weeks.

Data set building

Data acquisition
Thepanoramic corneal view during SMILE surgery and the laser

scanning image of the posterior lenticule interface were captured
from the SMILE surgical video in the VisuMax system.

TheOBL areawasmeasured according to themethods described
in previous literature (Zhu et al., 2024; Yang S. et al., 2023; Son et al.,
2017). Adobe Photoshop 2020 software (Adobe Systems, San Jose,
CA) was used, and the OBL area was defined as the percentage
of pixels that are two standard deviations (SD) brighter than the
average background,with the corneal region selected by the elliptical
marquee tool. To ensure measurement accuracy and consistency
and reduce software operation errors, each measurement was
independently completed by three senior surgeons and cross-
checked.

TABLE 1 SMILE surgical parameters.

Surgical parameters Range

Wavelength/nm 1,053

Pulse duration/fs 400

Pulse emission frequency/kHz 500

Optical zone/mm 6.5

The transition zone for astigmatism treatment/mm 0.1

Cap diameter/mm 7.5

Cap thickness/μm 100-120

The line and spot separations/μm 4.5

Cap side cut angle/° 90

Incision width/mm 2

Energy/nJ 135

Data preprocessing
As the images obtained from the femtosecond laser system (Carl

Zeiss, VisuMax, Germany) include both the cornea and portions of
the surgical instrument, the focus for OBL prediction is solely on the
corneal region. Consequently, it is essential to systematically remove
non-corneal elements from the images to minimize potential errors.
The images were initially processed using OpenCV within Python,
employing binarization and closing operations to distinguish the
corneal and non-corneal regions. Next, the Canny algorithm
was applied for edge detection to identify and trace the image
boundaries. A polygon approximation method was then used to
smooth the contours, followed by ellipse fitting to determine the
optimal fitting ellipse. The area within the ellipse was marked as
the corneal region, and the regions outside this ellipse were masked
in black to achieve segmentation. These preprocessing steps were
applied consistently to both preoperative and postoperative images.
The segmented images are presented in Figure 1.

The dataset was randomly divided into a training set (n = 3,998)
and a test set (n = 444) using a random split method, ensuring that
the network was trained and tested on different subsets of the data.

Model construction
The task involves generating an intraoperative image of the

posterior interface, including the OBL area, from the panoramic
corneal image captured before laser scanning. To tackle this image-
to-image challenge, an image generation model that integrates
a transformer block and a residual structure into the Pix2Pix
framework was developed. This model leverages the Pix2Pix
architecture to map the input image to the output image and
enhances the network’s deep feature extraction capabilities by
incorporating a residual structure. Additionally, the transformer
block, with its self-attention mechanism, is adept at capturing long-
range dependencies within the sequence, which helps maintain
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FIGURE 1
The panoramic corneal view processed using OpenCV within Python. (A) show the original panoramic views of the corneal captured from the VisuMax
storage system (Carl Zeiss, Germany). (B) show the intraoperative OBL image processed by PS. While (C,D) display the processed panoramic views of
the corneal and the intraoperative OBL image processed by PS after Python-based processing).

global consistency and structural integrity during the image
generation process.

In this study, a deep UNet network was constructed as the
generator, using Pix2Pix as the foundational framework. The
model integrates a residual structure with depthwise separable
convolution and incorporates several transformer blocks. To
improve the model’s feature extraction abilities and enhance
image generation performance, the UNet network was modified
by integrating a custom-designed residual structure into the
conventional convolutional blocks in both the encoder and
decoder of the UNet-128 model. This modification increased the
model’s depth by adding two layers and expanded the maximum
channel capacity from 512 to 1,024. Moreover, to mitigate the
impact of the increased number of layers on computational
efficiency, depthwise separable convolutionwas incorporated within
the residual structure, replacing traditional convolution. This
adjustment reduced the model’s parameter count to one-third of the
original while also lowering computational complexity. To further
enhance the model’s ability to comprehend corneal images at a
holistic level, transformer modules were introduced after the fifth
and sixth layers of the generator’s encoder. Symmetrical transformer
modules were added at corresponding positions within the decoder.

The residual structure and the complete generator network are
illustrated in Figures 2, 3.

The discriminator in this study utilizes the PatchGAN model,
which operates by first concatenating the generated predicted image
with the real image along the channel dimension. After passing
through a convolution layer, the combined data undergoes further
convolution processing. The PatchGAN output is then mapped to a
single-channel two-dimensional matrix, maintaining the resolution
of the original input. Each matrix element represents a similarity
score for the corresponding patch, indicating the probability that
the local area at that location is authentic or fabricated. Unlike
PixelGAN, PatchGAN does not classify individual pixels but
evaluates multiple local areas (patches), enabling it to capture rich
texture and contextual information. This enhances the model’s
ability to assess the similarity between the generated intraoperative
image and the real image. The comprehensive network structure of
both the generator and discriminator is illustrated in Figure 4.

Several optimization strategies were employed during model
training. Binary Cross-Entropy Loss (BCELoss) served as the
adversarial loss function, quantifying the discrepancy between the
generated and real images within the discriminator.Thismechanism
improves the visual quality of the generated images, making them
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FIGURE 2
The user-defined residual structure diagram. (DS Conv: depthwise
separable convolution; BatchNorm: batch normalization).

more similar to the real images (Ho et al., 2022). Additionally,
L1Loss was applied to assess the pixel-level difference between the
generated and real images, guiding the model to accurately match
the content composition of the real images while enhancing clarity.
The Adam optimizer was deployed for both the generator and
discriminator to optimize the respective loss functions and expedite
model convergence (Qu et al., 2023; Zadeh and Schmid, 2021).

Evaluation indicators
To thoroughly evaluate the performance of the generated

images, multiple evaluation metrics were used. The Structural
Similarity Index (SSIM) was employed to assess the structural
similarity between the generated and real images. SSIM captures
critical visual elements such as brightness, contrast, and structural
integrity, ensuring that the generated image closely mirrors the real
one. The SSIM index is calculated using the following formula:

SSIM(x,y) =
(2μxμy +C1)(2σxy +C2)

(μ2
x + μ

2
y +C1)(σ2

x + σ2
y +C2)

(1)

In formula 1, x and y are represent the generated image data
and the real image data respectively. The values μx and μy are the
mean values of x and y, while σx and σy denote their respective
standard deviations. The covariance between x and y is represented
by σxy. The constants C1 = (k1MAX)2 and C2 = (k2MAX)2 are
introduced to avoid division by zero, with k1 and k2 default
values of 0.01 and 0.03, respectively. MAX refers to the maximum
value of x and y.

The secondmetric, Peak Signal-to-Noise Ratio (PSNR), is widely
employed to assess reconstruction quality in image processing. It
quantifies the pixel-level difference between the predicted and real

images. The PSNR is calculated using the following formula:

PSNR = 20 · log10(
MAX
√MSE
) (2)

In formula 2, MAX represents the maximum value of the
generated image data, while MSE refers to the mean squared error
between the generated and actual image data.

Experimental environment
The experimental environment was set up using Python 3.8,

PyTorch 2.2.2, and CUDA 12.2. The server configuration included
an AMD R9 7950X processor, 64 GB of RAM, and an NVIDIA
GeForce RTX 3090 Ti graphics card with 24 GB of video memory.

Statistical methods

IBM SPSS Statistics 26.0 (IBM Corp., Armonk, NY, USA)
was utilized for statistical processing and data analysis. All
measurements are presented as mean ± standard deviation (x± s).
Count data are presented as n (%).

SSIM evaluates the structural similarity between two images,
with a value closer to one indicating greater similarity. In contrast,
PSNR assesses image reconstruction quality by comparing the peak
signal power to the noise power, with a higher PSNR indicating
better reconstruction quality.

Results

The study included 2,265 patients, corresponding to 4,442 eyes,
all ofwhich successfully underwent lenticule separation and removal
during surgery. The average patient age was 21.88 ± 5.32 years. The
mean preoperative spherical equivalent (SE) was −4.28 ± 1.83 D,
and the average area affected by OBL was 3.26% ± 0.64%. Detailed
surgical parameters are presented in Table 2.

In this study, the proposed model was assessed using a test set to
highlight theadvantagesof thenetworkarchitecture,withcomparative
experiments conducted for validation. Widely referenced models in
the field, including CycleGAN, DCGAN, Pix2PixHD were employed
in parallel to evaluate their performance. The efficacy of these models
was rigorously compared. Additionally, an ablation experiment was
performed on key structural components of the model, specifically
assessing the performance of Pix2Pix, Res-Pix2Pix andTrans-Pix2Pix,
to evaluate the impact of different architecturalmodules on the quality
of the generated images. , with the average value from five random
experiments taken as the experimental result. The results of these
evaluations are summarized in Table 3 below.

As presented in the table, the CycleGAN and DCGAN
models primarily utilize unsupervised learning through adversarial
training, which lacks explicit structural information and conditional
constraints. This limitation makes it prone to mode collapse during
training (Yoo et al., 2020; Chaurasia et al., 2024). Additionally,
given the subtle and often difficult-to-discern nature of corneal
features, the model struggles to capture these details effectively.
Consequently, the two establish only a relatively simplistic mapping
relationship, producing generated images that tend to lack diversity
and exhibit significant discrepancies in detail and perceptual quality

Frontiers in Cell and Developmental Biology 05 frontiersin.org

https://doi.org/10.3389/fcell.2025.1598475
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Zhu et al. 10.3389/fcell.2025.1598475

FIGURE 3
The complete generator network.

FIGURE 4
The TransRes-Pix2Pix integrated network structure.

compared to the real images. Consequently, the model’s overall
performance is suboptimal, suggesting that the unpaired nature of
CycleGAN and DCGAN may not be well-suited for tasks requiring
precise feature mapping.

In contrast, Pix2Pix benefits from paired data, where the
input and output exhibit a direct, strong correlation. The content

of the input image directly influences the output, allowing the
generation of images that align more closely with the real scenario
(Abdelmotaal et al., 2021). Unlike CycleGAN’s reliance on unpaired
data, Pix2Pix shows considerable improvement in performance.
Pix2PixHD, as one of the extension models of Pix2Pix, is designed
to improve the task of image conversion with high resolution, and
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TABLE 2 Preoperative general data of patients (x± s, n%).

Parameters Values

Age/y 21.88 ± 5.32

Gender/(n, M%) 3026 (68.12)

Eyes/(n, R%) 2259 (50.84)

CDVA/(logMAR) 0.00 ± 0.08

SE/D −4.28 ± 1.83

Spherical/D −3.96 ± 1.63

Cylinder/D −0.63 ± 0.57

IOP/mmHg 15.81 ± 3.51

CCT/μm 545.97 ± 27.57

Corneal curvature
K1/D 42.36 ± 1.37

K2/D 43.52 ± 1.45

Corneal diameter/mm 11.61 ± 0.44

Lenticule thickness/μm 91.42 ± 30.61

RST/μm 334.61 ± 37.66

Relative vertical position of posterior surface/% 0.39 ± 0.06

Data are presented as mean ± SD, or No. (%).
CDVA: corrected distance visual acuity, D: diopters, IOP: intraocular pressure. CCT: central
corneal thickness, RST: residual stromal thickness.

TABLE 3 The performance of image generation by different generative
adversarial network (GAN) models.

Model SSIM PSNR

CycleGAN 0.51 18.30

DCGAN 0.58 20.34

Pix2PixHD 0.63 23.46

Pix2Pix 0.64 22.97

Res-Pix2Pix 0.66 23.08

Trans-Pix2Pix 0.66 25.76

TransRes-Pix2Pix (The method in this paper) 0.67 26.02

SSIM:structural similarity index, PSNR: peak signal-to-noise ratio.

it is inclined towards multi-scale image generation (Baek et al.,
2024). Therefore, in this task, it failed to fully demonstrate
its advantages.

In particular, replacing the original structure with a residual
structure in Pix2Pix enhances the model’s ability to learn complex
nonlinear mappings, refining image details more accurately. This
modification addresses issues like vanishing gradients, stabilizes the

training process, and enables the model to capture more intricate
features (Zhao B. et al., 2023; Ghanbari and Sadremomtaz, 2024).
Moreover, incorporating the Transformer module within Pix2Pix
introduces a self-attention mechanism that enhances the model’s
understanding of the global structure of the input image. This
improvement helps capture long-range dependencies and global
context, leading to better image quality and improved retention of
global features (Zhao B. et al., 2023; Yan et al., 2022). When both
the residual structure and Transformer module are integrated into
the Pix2Pix framework, the model leverages their complementary
strengths in capturing both detailed and global features.This synergy
significantly optimizes the model’s overall performance in image
generation tasks (Zhao B. et al., 2023). Some of the generated image
results are shown in Figure 5.

Discussion

In this study, sevenGANmodels were systematically trained and
evaluated using SSIM and PSNR as metrics to access the fidelity
of generated OBL images. To determine the optimal model, an
internal validation set was created, and comprehensive ablation
studies were performed. Upon thorough evaluation, the model
integratedwithin the Pix2Pix framework—enhanced by the addition
of a transformer module and a residual structure—demonstrated
the strongest capability for capturing critical features. It achieved
an SSIM of 0.67 and a PSNR of 26.02, producing results with
the highest similarity to actual intraoperative OBL images. To
our knowledge, this is the first GAN model developed to predict
images of intraoperative complications in corneal refractive surgery,
offering potential future support for decision-making in SMILE
surgeries.

OBL is a prevalent complication in SMILE and other
femtosecond laser surgeries (Asif et al., 2020; He et al., 2022).
Previous research has identified several influencing factors for
OBL in SMILE, including central corneal thickness (CCT),
corneal tissue density, corneal curvature, corneal cap thickness,
lenticule thickness, residual stromal thickness (RST), laser
energy, and patient astigmatism (Yang S. et al., 2023; Son et al.,
2017; Brar et al., 2021; Liu et al., 2017). However, significant
challenges remain in this area of study. Analyses often suffer from
small sample sizes, limited inclusion criteria, and inconsistent
methodologies for quantifying the OBL area. Additionally,
conventional methods like linear regression fail to capture complex
nonlinear relationships, limiting the development of a robust
predictive model for OBL in SMILE based on preoperative
parameters (El Hechi et al., 2021; Kapoor et al., 2019).

The lenticule production phase in laser scanning is a critical
aspect of SMILE surgery, fully controlled by the femtosecond
laser system (Carl Zeiss, VisuMax, Germany) (Titiyal et al.,
2017). If complications arise during this phase, surgeons may
need to immediately halt the surgery and apply alternative
techniques to address the issue. This not only challenges the
surgeon’s technical skills but may also increase patient anxiety,
potentially affecting postoperative visual outcomes and recovery
(Wan et al., 2021; Yang S. et al., 2023). Given these risks, it is crucial
to accurately predict and identify potential complications before
initiating the laser scan.This is particularly vital during the “negative
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FIGURE 5
Prediction visualization results generated by various model. (A–C)
respectively show the predicted OBL morphology images by various
models from different original panoramic views of the corneal, and
they are compared with the superbright OBL images processed by PS).

pressure suction” step, which allows the surgeons to pause and
resume the procedure without affecting the laser scan, effectively
reducing surgical risks.

The occurrence of OBL typically does not result in severe
outcomes; however, an extensive area of OBL can lead to
significant intraoperative complications, such as difficulties in
lenticule separation, epithelial breakthrough, lenticule residue, and
other serious issues (Zhu et al., 2024; Sahay et al., 2021), which
compromise the safety and efficacy of SMILE surgery and delay
postoperative visual recovery (Aristeidou et al., 2015). Notably, these
complications are more likely to arise when scanning the posterior
interface of the lenticule (Son et al., 2017). A key contribution
of this study is the direct capture of panoramic corneal images
under negative pressure aspiration from SMILE surgery videos,
providing real-time insights into corneal status and serving as
input for GAN models. This method is particularly important
as preoperative parameters often fail to accurately reflect the
intraoperative conditions, with variables such as CCT, IOP, and
others fluctuating throughout the day. This research represents the
first use of a GAN model to synthesize intraoperative OBL images
from preoperative corneal panoramas. Quantitative evaluation
reveals that the synthesized OBL image closely matches the actual
intraoperative image, with a PSNR of 26, demonstrating excellent
performance, and forming a foundation for future autonomous
systems and data-driven improvements in surgical techniques.

Several limitations exist in this study. Notably, no prior
studies in the field of refraction have compared synthetic images
of intraoperative complications with actual images to access
their similarity. Consequently, quantitative metrics from other
AI research in ophthalmology have been used as benchmarks.
Moving forward, establishing a uniform standard for this type of
evaluation is essential. Furthermore, collaboration with additional
ophthalmologists for a more thorough analysis will be necessary to
improve the validity and applicability of the findings. Additionally,
this study focused exclusively on predicting OBL during SMILE
surgery, excluding other intraoperative complications such as dark
spots and aspiration. Future efforts should aim to develop a
comprehensive prediction platform that incorporates all potential
intraoperative complications and factors influencing postoperative
visual recovery. Moreover, the research relied on an internal test
set; future studies should include a broader dataset from multiple
eye centers to enhance generalizability. Additionally, the practical
impact of thismodel on SMILE surgical procedures remains unclear;
further research is needed concerning how the model integrates
into the Visumax system and whether the surgeon can reduce
the intraoperative OBL area with the aid of the model. There
is considerable potential for further exploration and refinement
in this area.

Conclusion

In conclusion, this study leverages a Pix2Pix generative
adversarial network enhanced with an embedded residual
module and a Transformer module, comparing various attention
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mechanisms to effectively genrate the morphology of OBL during
SMILE surgery. This approach provides valuable insights for
ophthalmologists in refining and customizing refractive surgery
plans, underscoring its clinical significance and potential to improve
surgical outcomes.
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