AUTHOR=Amin Salma , Taverna Elena TITLE=Vesicular trafficking and cell-cell communication in neurodevelopment and neurodegeneration JOURNAL=Frontiers in Cell and Developmental Biology VOLUME=Volume 13 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/cell-and-developmental-biology/articles/10.3389/fcell.2025.1600034 DOI=10.3389/fcell.2025.1600034 ISSN=2296-634X ABSTRACT=Regulation of vesicle biology and trafficking plays a critical role in cell viability. Vesicular trafficking is a process that entails vesicle biogenesis, transport, and sorting of materials such as proteins, enzymes, hormones, and neurotransmitters to different cellular compartments. This phenomenon is especially important in cells of the central nervous system, including neural progenitors, neurons, and glial cell populations, because of their highly polarized architecture. In line with that, disruption in vesicular trafficking during cortical development affects progenitor proliferation and differentiation and leads to brain malformations. On the other hand, neuronal cells require long-range vesicular trafficking to reach distant locations, such as the distal part of the axons, and synaptic vesicles are essential for cell-cell communication. Neurons have high energy demands. Therefore, any malfunction in vesicular trafficking is a trigger to spiraling into neurodegeneration. Here, we give a comprehensive review of the role of intracellular and extracellular vesicles in cortical development and neurodegeneration, and we discuss how trafficking between organelles in specific cell types contributes to brain pathologies. Finally, we highlight the emerging evidence linking disruption in vesicular trafficking to neurological disorders such as Alzheimer's disease, Parkinson's disease, and autism.