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Hepatocellular carcinoma (HCC) is one of the most lethal cancers for humans.
HCC is highly heterogeneous. In this study, we performed ultra-depth (∼1
million reads per spot) sequencing of 6,320 spatial transcriptomes on a case of
HCC. Sixteen distinct spatial expression clusters were identified. Each of these
clusters was spatially contiguous and had distinct gene expression patterns. In
contrast, benign liver tissues showed minimal heterogeneity in terms of gene
expression. Numerous immune cell-enriched spots were identified in both HCC
and benign liver regions. Cells adjacent to these immune cell-enriched spots
showed significant alterations in their gene expression patterns. Interestingly,
the responses of HCC cells to the nearby immune cells were significantly
more intense and broader, while the responses of benign liver cells to immune
cells were somewhat narrow and muted, suggesting an innate difference in
immune cell activities towards HCC cells in comparison with benign liver cells.
However, cell-cell interaction analyses showed significant immune evasion by
HCC cancer cells. When standard-depth sequencing was performed, significant
numbers of genes and pathways that were associated with these changes
disappeared. Qualitative differences in some pathways were also found. These
results suggest that deep spatial sequencing may help to uncover previously
unidentified mechanisms of liver cancer development.

KEYWORDS

ultra-depth spatial sequencing, HCC, cancer microenvironment, cell-cell interaction,
immune responses

Introduction

Liver cancer is one of the most lethal malignancies for humans and causes over
700,000 deaths worldwide annually (Jemal et al., 2012; Jemal et al., 2012; McGuire, 2016).
Hepatocellular carcinoma (HCC) is the most common type of liver cancer and accounts
for 90% of all liver cancers (Siegel et al., 2022; Giaquinto et al., 2022). Large numbers of
genomic and gene expression abnormalities have been discovered in HCC (Khemlina et al.,
2017; Yu et al., 2024; Liu et al., 2024a; Kader et al., 2024a; Kader et al., 2024b; Zuo et al., 2022;
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Liu et al., 2022; Luo et al., 2021; Yu et al., 2019; He et al., 2017;
Chen et al., 2017a; Chen et al., 2017b; Nalesnik et al., 2012;
Luo et al., 2006; Yu et al., 2013).HCChas high levels of heterogeneity.
These heterogeneities may result from the underlying variation of
genomic alterations. However, the location-based heterogeneity of
HCC has rarely been analyzed at the genetic level.

In recent years, spatial genetic analysis has been rapidly
developed. Cancer microenvironment has been shown to
have significant variations in different cancer locations
(Li et al., 2022). Studies utilizing spatial genetic analysis
revealed spatial relationships of cell-cell interaction and the
impact of genetic alterations of a cell on its adjacent tissue
microenvironment (Arora et al., 2023). Due to the significant genetic
heterogeneity in anHCC sample, the tumormicroenvironmentmay
differ from region to region. In this report, we performed a 10x
Genomics Visium Spatial transcriptome analysis on a case of HCC
samples. Significant variation of gene expression patterns was found
in different regions of the cancer samples.

Materials and methods

Tissue samples and CytAssist workflow

A case of HCC sample with moderate differentiation and
a history of alcohol abuse and Hepatitis B infection was
obtained from archived tissue slide storage. The case was fully
anonymized. The tissue procurement protocols were approved
by the Institutional Review Board of University of Pittsburgh.
All procedure and protocols were carried out in accordance with
the guidelines by the Institutional Review Board of University of
Pittsburgh. The cancer and benign liver regions were identified
by a board-certified pathologist. The slides were deparaffinized,
Hematoxylin/Eosin stained, and underwent Visium cassette
assembly, probe hybridization/ligation, tissue transfer to Visium
slide, DNA isolation, clean-up, and ligation probe amplification
based on the manufacturer’s manual. Standard sequencing was
performed on Illumina NextSeq 550 Dx platform, while ultra-
depth sequencing was performed on the Element Biosciences AVITI
platform. The sequencing procedures followed the manufacturers’
recommendations (Liu et al., 2022; Luo et al., 2021; Yu et al., 2013;
Liu et al., 2024b; Yu et al., 2014; Liu et al., 2024c; Luo et al., 2015).

Statistical analysis for spatial
transcriptomics data

Spatial transcriptomics was measured by the Visium CytAssist
platform.The H&E staining file was imported to the Loupe Browser
(10x Genomics) for spatial alignment. Then, the alignment file and
the raw sequencing FASTQ files were processed by Space Ranger
(10x Genomics) to align to the human reference genome hg38. After
pre-processing, the feature by cell countmatrix and the imaging files
were analyzed by the R Seurat package (Hao et al., 2024). To integrate
two slides, top 3,000 high-variable genes to integrate the two libraries
using SCT transformation. Principal component analysis followed
by the Uniform Manifold Approximation and Projection (UMAP)
was applied for dimension reduction and visualization. Spatial

spots were clustered based on the gene expression profiles. Spatial
transcriptomics data were visualized with UMAP and spatial feature
plot provided by the Seurat package.

To check the immune cells and their tissue microenvironments,
spots with high immune expression were identified and further
analyzed. Kupffer cells were identified by CD68, CD163, LYZ,
C1QA, AIF1; T cells were identified by CD3D, CD2, IL7R, TRBC2,
CD69; B cells and Plasma cells were defined by IGKC, JCHAIN,
CD79A, CD27, CD74; NK and other immune cells were defined
by CD4, CD8A, ITGAM, NKG7, KLRD1, PRF1, CD7, TRDC. The
immune cell-enriched spots were defined by the average expression
of the above immune markers higher than 0.9.The spots adjacent to
immune cells were defined as the spots in contact with the immune
cells. All the other spots were labeled as non-immune spots. In
addition, HCC and benign liver spots were identified based on
morphology in the H&E staining. Differential expression analyses
were performed comparing (Jemal et al., 2012) HCC adjacent to
versus away from immune cell-enriched spots (Jemal et al., 2012);
Benign liver cells adjacent to versus away from immune cell-
enriched spots (McGuire, 2016); HCC cells adjacent to immune
spots versus benign liver cells adjacent to immune spots. Further,
top genes were screened by integrating these differentially expressed
genes with the top 3,000 high-variable genes. These genes were then
used for Ingenuity Pathway Analysis (https://digitalinsights.qiagen.
com/products-overview/discovery-insights-portfolio/analysis-and-
visualization/qiagen-ipa/). The software performs enrichment
tests between the selected gene markers and the pathway gene
sets. It also calculates a z-score indicating the directionality of
the pathways, with positive z-score for activated pathways, and
negative z-scores for inhibited pathways. Per spatial spot, gene set
variation analysis (GSVA) (Hanzelmann et al., 2013)was performed
to calculate the enrichment score of the selected pathways, where a
positive score indicates the activation of the pathway and a negative
score implies the inhibition.

The spatial transcriptomics data were further integrated with the
public single-cell RNA-seq data (Ma et al., 2022), which contains
samples from the HCC tumor cores, tumor borders, and adjacent
non-tumor tissues. Using this well-annotated scRNA-seq dataset as
the reference, spatial deconvolution was performed and visualized
by tool CARD (Ma andZhou, 2022) to spatially infer the proportions
of different immune cell types per immune spot. Deconvolution
analysis was further applied on the immune spots to reveal the
composition of six macrophage subtypes (Li et al., 2024). To
investigate whether sequencing depth influences the overall myeloid
composition, we applied the permutational multivariate ANOVA
test on the center-log-ratio transformed myeloid composition data
using R package vegan. In addition, cellular interaction analysis was
performed using CellChat (Jin et al., 2021) to reveal the ligand-
receptor interactions among various categories of immune cells
located in the tumor and benign tissue regions. Common and
unique interaction signaling pathways were compared between the
deep and standard sequencing data.

Data availability

The spatial transcriptomics data were submitted to the
Gene Expression Omnibus (GEO) database with accession ID
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GSE283406. Scripts to analyze the spatial transcriptomics data were
uploaded to GitHub: https://github.com/SilviaLiu12345/Spatial_
transcriptomics_deep_vs_standard.

Results

To analyze the spatial transcriptomes and gene expression
alteration patterns in a space-related fashion, we selected a case of
moderately differentiated HCC containing multiple cancer nodules.
As shown in Figure 1A, two slides were analyzed for the spatial
gene expression. One of the slides contained some benign liver
tissues adjacent to the cancer, while the other slide contained
only liver cancer tissues. Deep sequencing was performed to reach
697,228 to 1,327,551 mean reads per spot, detecting 1,465 to 3,223
median genes per spot. Spots from the two slides were integrated
and normalized together. Then clustering on these spots using
Seurat single-cel clustering were performed to detect the tumor
heterogeneity. Two slides account for 6,320 spots of tissues. A Seurat
package was employed to identify marker genes that clustered
the spots. Sixteen distinct clusters of spots were identified based
on the top 3,000 highly variable gene expressions (Figures 1B–D;
Supplementary Table S1).The distributions of these spot clusters on
the slides did not appear random but rather aggregated in a distinct,
patchymanner. Sincemost of the spots were cancer cells dominated.
These clusters may reflect gene expression variations among the
cancer cells. Pathway analyses (Supplementary Tables S2–S17)
showed that the areas of benign liver tissues were dominated by gene
expression of biosynthesis of cholesterol (Supplementary Table S11).
They were mostly aggregated as a cluster (cluster 9,
Figures 1B,D). On the other hand, high heterogeneity for
the areas of HCC was identified: Fifteen distinctive clusters
were found (Figures 1C,D). Some have characteristics of
fibrotic gene expression patterns (clusters 0, 6, 14, and 15,
Supplementary Tables S2, S8, S16, S17), while the others were also
dominated by matrix/cell-cell contact activation pathways (clusters
3, 5, 8, 14, and 15, Supplementary Tables S5, S7, S10, S16, S17).
Pro-growth pathways were found to overexpress in clusters
1, 3, 8, and 11 (Supplementary Tables S3, S5, S10, S13). Genes
responsible for coagulation activation, one of the key features
of HCC, were found overexpressed in clusters 2, 10, and
11 (Supplementary Tables S4, S12, S13). Many of the clusters
overexpressed genes essential for oxidative metabolism (clusters 4,
5, 6, 7, 10, 12, and 13, Supplementary Tables S6–S9, S12, S14, S15).
Their spatial distribution in the slideswas aggregated in a contiguous
patchy fashion, suggesting that they may arise as clonal expansions
from single cells.

Identification of immune cell-enriched
spots

The cancer microenvironment plays a critical role in shaping
cancer development. Significant lymphocytes and macrophages
were identified in both benign liver cancer and HCC areas. To
investigate the impact of these immune cells on liver cancer,
selected gene markers for cells of immune lineages including
Kuffler cells (Cd68, Cd163, Lyz, C1qa, Aif1), T cells (Cd3d, Cd2,

Il7r, Trbc2, Cd69, Cd4, Cd8, Cd11), B cells (Igkc, Jchain, Cd79a,
Cd27, Cd74) and NK (Nkg7, Klrd1, Prf1, Cd7, Trdc) cells were
analyzed for each spot. Spots with average expression of these
markers above 0.9 were deemed immune cell-enriched spots.
Two hundred eighty-nine spots were identified as immune cell-
enriched. As shown in Figure 2A, many immune cell-enriched spots
were located in the benign liver tissues adjacent to HCC, while
the distribution of immune cell-enriched spots in the HCC area
varied from region to region. Interestingly, all types of immune
cells were more abundant in the immune cell-enriched spots in
the benign liver (Supplementary Figure S2). Most immune cell-
enriched spots co-localized with clusters 3 and 9 (Figure 2B). Next,
we categorized the immune microenvironment into cells that were
adjacent to immune cell-enriched spots (adjacent to immune cells)
versus those that were away from the immune cells (away from
immune cells) (Figures 2A,B). Six hundred seventy spots were
deemed impacted by location adjacent to immune cells, including
84 spots from benign liver and 586 from HCC. Spots away from
immune cell-enriched spots were 5,361.

Impact of immune microenvironment on
HCC cells

To investigate the impact of immune cells on their surrounding
microenvironment, differential expression analyses were performed
to identify the variable genes between the spots adjacent to immune
cells and the spots away from immune cells. Seven hundred and
six genes were found to have differential expressions between the
two groups (Figure 2C). When analyzing HCC cells’ responses
to immune cell-enriched spots, 616 genes were found to be
differentially expressed (Figure 2D). While the HCC cells adjacent
to immune cell-enriched spots were down on lipid metabolism,
post-translational protein phosphorylation pathways, acute phase
response, integrin cell surface interaction, and extracellular
matrix organization pathways were up (Supplementary Table S18).
For benign liver cells adjacent to immune cell-enriched spots,
only 182 genes were differentially expressed versus benign liver
cells away from the immune cell-enriched spots (Figure 2E).
Benign liver cells adjacent to immune cell-enriched spots
have downregulation of genes in acute phase response, lipid
metabolism, and post-translational protein phosphorylation
pathways, while upregulated in IL12 signaling and neutrophil
extracellular trap signaling pathways (Supplementary Table S19),
reflecting responses to cytokine release from the immune cells.
Interestingly, the differences in response to immune cells between
HCC and benign liver lie in the dramatic upregulation of
integrin interaction and acute phase response in the HCC cells
(Supplementary Table S20; Supplementary Figure S1). Hepatic
fibrotic/stellate activation pathways showed a dominant presence
in the benign liver but a somewhat heterogeneous distribution in
the HCC regions. In addition, downregulation of gene expressions
in the molecular mechanism of cancer and Rho GTPase pathways
in the HCC cells were some of the prominent features of the
pathway changes (Supplementary Table S20).These findings suggest
that the primary role of immune cells is to shut down the cancer
signaling pathways in liver cancer but to spare such impact in the
benign liver.
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FIGURE 1
Spatial distribution of HCC clones with ultra-depth sequencing. (A) Hematoxylin and Eosin staining of HCC and its adjacent benign tissues. The areas of
benign liver tissues and HCC are indicated. The demarcation between the benign liver and HCC is indicated by arrows. (B) The UMAP distribution of
benign liver and HCC cells. The HCC and benign liver cell clusters are indicated. (C) Spatial visualization of cell clusters in slides. Each cluster
distribution is indicated by its unique color. (D) UMAP spot distributions of 16 spatial clusters (left) and UMAP spot distributions of slides 1 and 2 (right).

FIGURE 2
Impact of Immune cells on HCC and benign liver cells with ultra-depth sequencing. (A) Spatial visualization of immune cell-enriched, non-immune
HCC, and benign liver cell spots. Immune cell-enriched spots are indicated in pink, while cells immediately adjacent to immune spots are labeled in
blue. All cells away from immune spots are labeled in green. (B) The distributions of immune cell-enriched spots and cells adjacent to immune spots in
UMAP clusters. (C) UMAP distributions of HCC and benign liver cells based on 706 differential expressed genes between cells adjacent to and away
from immune spots (left) or UMAP distributions of immune spots, spots away from immune cells, and spots adjacent to immune cells (right). (D) UMAP
distributions of HCC and benign liver cells based on 616 differential expressed genes between HCC cells adjacent to and away from immune spots
(left) or UMAP distributions of immune spots, spots away from immune cells, and spots adjacent to immune cells (right). (E) UMAP distributions of HCC
and benign liver cells based on 182 differential expressed genes between benign cells adjacent to and away from immune spots (left) or UMAP
distributions of immune spots, spots away from immune cells, and spots adjacent to immune cells (right).
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FIGURE 3
Spatial cell-cell interaction based on immune impact. (A) Spatial visualization of immune cell composition in slides. HCC and benign liver areas are
indicated. Each cell type is indicated by the colorization of a miniature pie chart. Top panel: Ultra-depth sequencing; Bottom: Standard-depth
sequencing. (B) Cell-cell communications of subpopulations of cells away or adjacent to immune-enriched spots. Top: ultra-depth sequencing;
bottom: standard-depth sequencing. (C) Venn diagram active cell-cell interaction signaling pathways in ultra-depth or standard-depth sequencing.

The lack of immune related signaling
activity in HCC regions

B cells and myeloid cells were the predominant cell types
in the immune cell-enriched spots in both HCC and benign
liver areas (Figure 3A; Supplementary Figure S2). Cell-cell
interaction analyses suggested that 169 ligand-receptor pathway
activations were impacted by immune cells (Figures 3B,C;
Supplementary Tables S21–S22). In general, there was significantly
less communication between cancer cells in comparison with
the benign liver cells. EGF pathway has been well established to
play a crucial role in HCC development. Our analysis showed
that HCC cells either away or adjacent to immune cells were
activated by EGF produced from benign hepatocyte, albeit on a
significantly smaller scale in comparison with the benign liver
cells (Supplementary Figure S3A). On the other hand, HCC cells
were the initiators for the IGF pathway. Interestingly, HCC cells
either away from or adjacent to immune enrichment spots showed
little activation of immune regulatory signaling such as CD23,
CD39, CD86, CD96, IL2, IL17 and MHC-I, in contrast to robust
communications of immune signaling between the benign liver cells
(Supplementary Figures S3B, S3C). The lack of immune pathway
activity in the cancer cells indicated an immunological evasion of
HCC cells. In contrast to the immune response, fibrotic reactions
were present universally in both benign and cancer regions of
the samples (Supplementary Figure S4), suggesting a cirrhotic
background and etiology.

Analysis of standard-depth sequencing

Standard-depth sequencing was performed as a control to
analyze the impact of ultra-depth sequencing. The mean reads
in our standard-depth sequencing were 17,914–39,237 per spot.
The median numbers of genes identified per spot were 1,322 to
2,769. Using the same algorithm as described for the ultra-deep
sequencing (top 3,000 variable genes, Supplementary Table S23),
15 distinct clusters were identified (Supplementary Figure S5;
Supplementary Tables S24–S38). Most of these clusters were
similar in terms of pathway distributions to those identified by
ultra-depth sequencing. Benign liver cells were only limited to
cluster 9. When immune markers were analyzed (Figures 4A,B),
the standard-depth produced fewer immune cell-enriched spots
than the ultra-depth (271 vs. 289). Only 633 genes were found
differentially expressed between cells adjacent to and away
from the immune cell-enriched spots (versus 706 genes for
ultra-depth, Figure 4C). When HCC adjacent to immune cell-
enriched spots were analyzed in comparison to HCC cells
away from the immune cell-enriched spots, standard-depth
sequencing showed fewer genes (582 vs. 616, Figure 4D) and
pathway affected (Supplementary Table S39, 420 versus 462). In
addition, standard-depth sequencing also showed fewer genes (96
versus 182, Figure 4E) and pathways (Supplementary Table S40,
84 versus 137) impacted by the immune cells in the benign
liver tissues. Some of the pathways showed opposite directions
between standard-depth and ultra-depth sequencing. These results
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FIGURE 4
Impact of Immune cells on HCC and benign liver cells with standard-depth sequencing. (A) Spatial visualization of immune cell-enriched, non-immune
HCC, and benign liver cell spots. Immune cell-enriched spots are indicated in pink, while cells immediately adjacent to immune spots are labeled in
blue. All cells away from immune spots are labeled in green. (B) The distributions of immune cell-enriched spots and cells adjacent to immune spots in
UMAP clusters. (C) UMAP distributions of HCC and benign liver cells based on 633 differential expressed genes between cells adjacent to and away
from immune spots (left) or UMAP distributions of immune spots, spots away from immune cells, and spots adjacent to immune cells (right). (D) UMAP
distributions of HCC and benign liver cells based on 582 differential expressed genes between HCC cells adjacent to and away from immune spots
(left) or UMAP distributions of immune spots, spots away from immune cells, and spots adjacent to immune cells (right). (E) UMAP distributions of HCC
and benign liver cells based on 96 differential expressed genes between benign cells adjacent to and away from immune spots (left) or UMAP
distributions of immune spots, spots away from immune cells, and spots adjacent to
immune cells (right).

suggest that ultra-depth sequencing may significantly improve
the analysis.

To investigate what differential genes were identified between
these two approaches, the genes from standard-depth sequencing
were matched with those from ultra-depth sequencing. Through
Kolmogorov-Smirnov test, 14,069 of 18,085 (78%) genes were
found to have an increased % spot detection by ultra-depth
sequencing (Supplementary Table S41). One of the top genes
detected more often in ultra-depth sequencing is ISG15, a
ubiquitin-like protein involved in chemotactic and cancer-
promoting signaling (Meng et al., 2024; Kang et al., 2022). Ultra-
depth sequencing detected numerous spots with increased read
counts for ISG15 expression missed by standard sequencing
(Supplementary Figure S6). When immune-impacted spots were
analyzed, 25% (157/616) genes of ultra-depth sequencing fromHCC
regions impacted by immune cell-enriched spots were not identified
by standard-depth (Figure 5; Supplementary Tables S42–S45).
Surprisingly, 123 genes identified through standard-depth were
not found in ultra-depth. For benign liver regions, 66% (121/182)
of genes of ultra-depth were not found in the standard-depth
sequencing. When the differences between HCC and benign
liver immune-impacted genes were analyzed, only 43% of
ultra-depth genes were found in the standard-depth. These
results indicate that ultra-depth sequencing uncovered large
numbers of biologically significant genes and pathways that

standard-depth sequencing did not find. Indeed, some of the
immune evasion signaling in HCC cells, such as PD-L1, CD45,
CD80, etc. were only uncovered by ultra-depth sequencing
(Supplementary Figure S3C). On the other hand, some of the most
impacted genes by immune cells detected in both ultra-depth and
standard sequencings are carrier proteins such as retinol binding
protein 4 and albumin (Supplementary Figures S7–S9). Both carrier
proteins showed significant downregulation in cells (both HCC and
benign liver) adjacent to immune cells.

Discussion

HCC is highly heterogeneous. The genotype of HCC may vary
from region to region. Our study confirmed that large variations
in gene expressions occurred in different regions of the cancer.
Such variations were quite distinct from each other, suggesting that
subclones of cancer cells had significant evolution from their origin.
Underlying these gene expression variations were probably new
genome mutations or chromosomal rearrangements. Indeed, recent
long-read single-cell sequencing suggests that extensive mutation
evolution occurred in a small region of HCC (Liu et al., 2024a).
The mutation evolution may drive the gene expression alterations
that produce the cancer phenotype (Liu et al., 2021). The exact
mechanisms that induce the genetic mutations remain elucidated.
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FIGURE 5
Impact of ultra-depth sequencing on differentially expressed gene discovery. (A) Venn diagram (top) and Volcano plot (bottom) of the differentially
expressed genes between HCC cells adjacent to versus away from immune cells with ultra-depth or standard-depth sequencing. (B) Venn diagram
(top) and Volcano plot (bottom) of the differentially expressed genes between benign liver cells adjacent to versus away from immune cells with
ultra-depth or standard-depth sequencing (C) Venn diagram of the differences of differentially expressed genes between HCC and benign liver cells
adjacent to vs. away from immune cells.

However, it is likely that the DNA repair mechanism in HCC
is defective. Such a defect may lead to a cascade of mutation
accumulation and changes in gene expression patterns.

The tumor microenvironment has long been known to impact
cancer development. Our study showed significant immune cells
infiltrating both the cancer and benign liver areas. An interesting
finding of myeloid cell-enriched spots is the dominance of type 5
macrophage spots based on macrophage subtype marker analysis
(Li et al., 2024) (Supplementary Figure S10). The significance of the
homogeneity of macrophages is not immediately clear, but the lack
of diversitymay imply a pathological process in cancer development.
To further examine how sequencing depth associates with the
myeloid composition deconvolution, we applied the permutational
multivariate ANOVA test on the center-log-ratio transformed
composition of Macrophage type 1 to type 6. The results indicated
that both sequencing depth (deep vs. standard) and immune spots
region (HCC vs. benign) have significant effects on the myeloid
profiles (p = 0.016 and p = 0.001, respectively). However, the
interaction of these two factors has no significant correlation (p =
0.932). In the regions near the immune cell-enriched spots, many
genes showed distinct responses to the presence of these immune
cells. There were significant differences in response to immune cells
between benign liver and HCC. There were 3-fold more genes and
pathways altered in HCC in comparison with benign liver cells in
response to immune cells, even though the immune cells were less
abundant in the immune cell-enriched spots of the HCC area. One
of the qualitative differences between the HCC and benign liver

responses to immune cells is the genes of the acute response phase
pathway: Genes such as SOD2 or ORM1 were upregulated in HCC
but downregulated in benign liver. These differential responses to
immune cells may suggest an innate difference in the mechanism
of cytokine signaling between cancer and benign liver cells. These
differences may result from the differences in the immune/somatic
cell interaction or the differences in cellular sensitivity to cytokines
secreted by the lymphocytes. The lack of vigorous responses from
the benign liver tissues can be interpreted as normal immune
adaptation.

Ultra-depth sequencing appears to offer significant advantages
in identifying differentially expressed genes and pathways,
particularly if the gene expression levels are not very high. One
interesting finding is that ultra-depth sequencing did not cover
all the differentially expressed genes discovered by 10-fold lower-
depth sequencing. This suggests that even ultra-depth sequencing
does not escape significant sampling errors. However, the sampling
error rate could be higher in standard-depth sequencing. Neither
ultra-depth nor standard-depth sequencing eliminates false negative
discoveries. One potential risk for ultra-depth sequencing is that it
may over disperse and induce overinterpretation of the data. Thus,
new analytical tools may be needed to address these potential risks.
Even though the current study was limited to one case of HCC study,
ultra-depth sequencing did produce significantly more differentially
expressed genes and thus uncovered more mechanisms that are
important to understand the spatial relationship and interaction
between immune and cancer cells, or between cancerous and benign
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cells. As we reach the era of ultra-affordable sequencing, ultra-
depth spatial sequencing may present an important opportunity to
decipher the mechanisms of cancer development.
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SUPPLEMENTARY FIGURE S1
Heatmaps of top differential pathways between HCC and benign liver cells
adjacent to immune cell enriched spots. (A) Ultra-depth sequencing.
(B) Standard-depth sequencing.

SUPPLEMENTARY FIGURE S2
Immune cell composition is immune cell-enriched spots of HCC and benign liver.
Average fractions of each type of immune cells of the immune cell-enriched
spots were shown. Left: Ultra-depth sequencing; Right: Standard-depth
sequencing.

SUPPLEMENTARY FIGURE S3
Cell-cell interaction and communication among subpopulations of benign liver
and HCC cells impacted by immune cells. (A) EGF and IGF pathway
communications among different groups of liver cells discovered by both
ultra-depth and standard-depth sequencings. (B) Immune-related pathway
communications among different groups of liver cells discovered by both
ultra-depth and standard-depth sequencings. (C) Immune-related pathway
communications among different groups of liver cells discovered by ultra-depth
sequencing only.

SUPPLEMENTARY FIGURE S4
Spatial cell-cell interaction based on immune and fibroblast impact. (A) Spatial
visualization of immune cell composition in slides. HCC and benign liver areas are
indicated. Each cell type is indicated by the colorization of a miniature pie chart.
Top panel: Ultra-depth sequencing; Bottom: Standard-depth sequencing.

SUPPLEMENTARY FIGURE S5
Spatial distribution of HCC and benign liver clusters with standard-depth
sequencing. (A) Spatial visualization of cell clusters in slides. Each cluster
distribution is indicated by its unique color. (B) UMAP spot distributions of 15
spatial clusters (top) and UMAP spot distributions of slide 1 and slide 2 (bottom).

SUPPLEMENTARY FIGURE S6
Spatial distribution of differences in read detection by ultra-depth sequencing
over standard-depth sequencing. The heat maps were based on Log2 (read
counts from ultra-depth+1)/(read counts from standard-depth+1). The numerical
value is reflected by the variation of the color bar. Top representative genes were
chosen based on their adjusted p-value from Supplementary Table S41.
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SUPPLEMENTARY FIGURE S7
Spatial expression of top differential expression genes impacted by immune cell
enriched spots. (A) Heat map of top 5 differentially expressed genes in HCC
impacted by immune cells through ultra-depth sequencing. (B) Heat map of top
5 differentially expressed genes in HCC impacted by immune cells through
standard-depth sequencing. (C) Heat map of top 5 differentially expressed genes
in benign liver cells impacted by immune cells through ultra-depth sequencing.
(D) Heat map of top 5 differentially expressed genes in benign liver cells impacted
by immune cells through standard-depth sequencing.

SUPPLEMENTARY FIGURE S8
UMAP distribution of top differential expression genes impacted by immune cell
enriched spots. (A) Expression distribution of top 5 differential expression genes in
HCC impacted by immune cell enriched spots in UMAP through ultra-depth
sequencing. (B) Expression distribution of top 5 differential expression genes in
HCC impacted by immune cell enriched spots in UMAP through standard-depth
sequencing. (C) Expression distribution of top 5 differential expression genes in

benign liver impacted by immune cell enriched spots in UMAP through
ultra-depth sequencing. (D) Expression distribution of top 5 differential expression
genes in benign liver impacted by immune cell enriched spots in UMAP through
standard-depth sequencing.

SUPPLEMENTARY FIGURE S9
Distribution of differential expressed genes in HCC and benign liver samples.
UpSet plot was utilized to display the differential expressed pathways in HCC and
benign liver cells impacted by immune cells.

SUPPLEMENTARY FIGURE S10
Distribution of subtypes of macrophages in myeloid cell-enriched spots. All
myeloid cell-enriched spots were deconvoluted based on gene expression
markers of M1 through M6macrophages. The proportions of these macrophages
were plotted for each myeloid cell-enriched spot. The color of each type of
macrophage was indicated.
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