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Southern Medical University, Shenzhen, China

Background: The development of medical artificial intelligence (AI) models is
primarily driven by the need to address healthcare resource scarcity, particularly
in underserved regions. Proposing an affordable, accessible, interpretable, and
automated AI system for non-clinical settings is crucial to expanding access to
quality healthcare.

Methods: This cross-sectional study developed the Multimodal Ocular Surface
Assessment and Interpretation Copilot (MOSAIC) using three multimodal large
language models: gpt-4-turbo, claude-3-opus, and gemini-1.5-pro-latest, for
detecting three ocular surface diseases (OSDs) and grading keratitis and
pterygium. A total of 375 smartphone-captured ocular surface images collected
from 290 eyes were utilized to validate MOSAIC. The performance of MOSAIC
was evaluated in both zero-shot and few-shot settings, with tasks including
image quality control, OSD detection, analysis of the severity of keratitis, and
pterygium grading. The interpretability of the system was also evaluated.

Results:MOSAIC achieved 95.00% accuracy in image quality control, 86.96% in
OSD detection, 88.33% in distinguishing mild from severe keratitis, and 66.67%
in determining pterygium grades with five-shot settings. The performance
significantly improved with the increasing learning shots (p < 0.01). The system
attained high ROUGE-L F1 scores of 0.70–0.78, depicting its interpretable image
comprehension capability.

Conclusion: MOSAIC exhibited exceptional few-shot learning capabilities,
achieving high accuracy in OSD management with minimal training examples.
This system has significant potential for smartphone integration to enhance
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the accessibility and effectiveness of OSD detection and grading in resource-
limited settings.

KEYWORDS

ocular surface disease, large language model, multimodal model, keratitis,
conjunctivitis, pterygium

Introduction

Ocular surface diseases (OSDs) significantly contribute to
global eye health challenges (Burton et al., 2021). Several OSDs
can lead to serious adverse consequences if not addressed timely.
For instance, keratitis is a leading cause of corneal blindness and
visual impairment worldwide (Stapleton, 2023). Conjunctivitis,
a prevalent condition, imposes substantial economic and social
burdens (Azari and Barney, 2013). Additionally, pterygium,
one of the most common eye disorders, is associated with
aesthetic concerns, irregular astigmatism, and decreased vision
(Rezvan et al., 2018). Early detection and appropriate treatment
of OSDs are crucial for preventing vision loss and preserving
ocular health (Saaddine et al., 2003).

Unfortunately, access to specialized ophthalmic care is often
limited, particularly in underserved regions, impeding timely
diagnosis of OSDs (Resnikoff et al., 2012; Gupta et al., 2013).
While portable devices have been employed in some studies
to capture images in non-clinical settings, prompt responses
from experienced experts remain indispensable (Caffery et al.,
2019). Recent studies have leveraged artificial intelligence (AI) to
develop efficient solutions for automated disease detection and
management, aiming to mitigate the shortage of expert resources
(Tan et al., 2023; Li et al., 2024)

Despite the significant advancements in AI, its integration
into clinical practice faces several challenges. Firstly, although
numerous studies have developed AI systems, patients are often
unable to access them due to the lack of public availability and
the persistent gap between research and product implementation
(Closing the translation gap, 2025). Furthermore, most studies
applying AI to analyze OSDs relied on anterior segment images
captured by specialized devices such as the slit lamp, limiting
the models’ applicability in remote and underserved regions
(Zhang et al., 2023; Zhongwen et al., 2025). These significant
obstacles contribute to the absence of an efficient and practical
tool for detecting and managing OSDs.

To make medical AI services more accessible, we developed
Multimodal Ocular Surface Assessment Intelligent Copilot
(MOSAIC), a large languagemodel-based AI systemwith extensible
components, which included modularized agents for image quality

Abbreviations: OSD, Ocular surface disease; AI, artificial intelligence;
MOSAIC, Multimodal Ocular Surface Assessment Intelligent Copilot; MLLM,
multimodal large language model; UCSI, Union Centers Smartphone Image;
IAP, Image Analysis Pipeline; STM, short-term memory; IQC, Image Quality
Controller; DSD, Disease Detector; SVA, Severity Analyzer; JD, Jiangdong;
GPT4V, gpt-4-turbo; CLD3O, claude-3-opus; GM15P, gemini-1.5-pro-latest;
API, application program interface; ROUGE-L, Recall-Oriented Understudy
for Gisting Evaluation; ACC, accuracy; NB, Ningbo Eye Hospital; WZ, Eye
Hospital of Wenzhou Medical University.

control, OSD recognition, analysis of the severity of keratitis, and
pterygium grading. MOSAIC is constructed by integrating publicly
accessible multimodal large language models (MLLMs) with the
strategies of prompt engineering and few-shot prompt learning.
Prompt engineering and few-shot prompt learning have shown
potential as effective methods in optimizing and adjusting large
language models (Wang et al., 2024; Šuster et al., 2024). Based
on MOSAIC, we established an automated pipeline for analyzing
OSDs from smartphone images. To be specific, we first validated
MOSAIC’s ability to monitor image quality, which is used to
filter out poor-quality images and identify the reasons for their
inadequacy. In addition, we assessed MOSAIC’s ability to detect
keratitis, conjunctivitis, and pterygium using the Union Centers
Smartphone Image (UCSI) dataset. Furthermore, we investigated
MOSAIC’s ability to aid disease management by identifying mild-
stage keratitis for early intervention and assessing pterygium severity
to determine the optimal timing for surgery. Finally, we explored
MOSAIC’s interpretability by assessing its image comprehension
capability. This study demonstrated that MOSAIC offers great
potential for detecting and grading OSDs in general populations
within non-clinical settings.

Methods

Design of MOSAIC

MOSAIC was designed as an automated and extensible system
processing input images and generating output reports (Figure 1).
MOSAIC comprises two primary modules: the Agent Allocator and
the Image Analysis Pipeline (IAP). The Agent Allocator functions
as a router, assigning agents for various sub-tasks within the
IAP. These agents are driven by prompt engineering techniques
and short-term memory (STM) mechanisms. Prompt engineering
has emerged as a crucial method for adapting large language
models (LLMs) to specific downstream tasks (Liu et al., 2023).
Drawing inspiration from previous studies, we composed a set of
instruction prompts (SupplementalNote S1) to “anthropomorphize”
MLLMs into distinct agents, enhancing and calibrating them for
multiple tasks (Kang and Kim, 2024). The STM was implemented
using few-shot prompt learning, a technique that enhanced
model performance by providing a small number of examples to
the model (Brown et al., 2020).

The IAP of MOSAIC comprises a sequential combination of
three agents. First, the “Image Quality Controller” (IQC) assesses
the quality of the input image, determining its eligibility for
subsequent tasks. If the IQC deems the image “eligible”, it is
then forwarded to the “Disease Detector” (DSD) for disease
identification. Otherwise, an error message is generated, explaining
the reason for ineligibility and providing instructions for capturing
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FIGURE 1
Design and architecture of MOSAIC. MOSAIC was constructed with several components to keep its extendibility. The agent allocator acts as a router to
create specific agents for sub-tasks in IAP. IAP is the automatic sequential workflow for analyzing keratitis, conjunctivitis, and pterygium with
smartphone images. IAP Image Analysis Pipeline, IQC Image Quality Controller, DSD Disease Detector, SVA Severity Analyzer.

an eligible image. Following disease detection, the image is
transmitted to the “Severity Analyzer” (SVA) to evaluate the
severity of the identified disease. Based on the results from
each agent in the IAP, a comprehensive final report is yielded
to the user.

Prompt engineering and STM

Agents in IAP were “anthropomorphized” by a set of identities
and memories. These identities were constructed using “instruction
prompts” that were engineered in five dimensions: 1) Assigning
a name to the agent that the model would perform; 2) Defining
the intent and motivation that describe the problem the agent
should solve; 3) Specifying the knowledge the agent should possess;
4) Customizing the output format for generation; 5) Establishing
guardrails to prevent inappropriate responses (White et al., 2023).

To fully harness the potential of models, we employed
STM for agents in IAP using a few-shot prompt
learning paradigm (Supplementary Figure S1). We conducted

three levels of few-shot prompt learning in this study: zero-
shot, one-shot, and five-shot, to observe changes in system
performance and determine the optimal level for our system.
The images utilized for memory construction were obtained
from an independent Jiangdong (JD) clinical center to avoid
feature leakage.

UCSI dataset

MOSAIC was evaluated on the UCSI dataset, which involved
ocular surface images captured by various smartphone brands from
independent clinical centers. The imaging settings, including zoom
scale, exposure, and camera mode, were maintained as the default.
For subset A, labels were established through a consensus among
three experts, following criteria proposed in our previous study
(Li et al., 2021a). In cases of disagreement, a panel ofOSD specialists,
including a senior specialist with 20 years of clinical experience,
convened to deliberate until reaching a unanimous decision. For
subsets B, C, and D, image labels were determined by reviewing
patients’ medical records and associated media. The definition of
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mild-stage keratitis adhered to guidelines from previous studies
(Stapleton et al., 2012; Keay et al., 2008; Li et al., 2021b). Pterygium
grading criteria primarily focused on surgical timing, as indicated
by the location of the pterygium head relative to the corneal limbus
and pupil (Liu et al., 2024; Maheshwari, 2007).

Comparison of leading MLLMs

As MLLMs form the backbone of MOSAIC, we conducted
comparative analyses of three MLLMs to identify the most suitable
model for our system: gpt-4-turbo (GPT4V, OpenAI), claude-
3-opus (CLD3O, Anthropic), and gemini-1.5-pro-latest (GM15P,
Google). Models were requested through the Python library’s
official application program interface (API) to prevent additional
data processing between the model and user, which could
occur in chatbot web interfaces. Given the inherent stochasticity
of transformer-based generative models, we carefully controlled
hyperparameters to ensure the reproducibility of results. The
detailed settings are provided in Supplementary Table S1. Generated
responses were recorded and analyzed to evaluate the system’s
performance.

Image quality control

The MOSAIC system was designed for non-professionals who
may lack medical imaging experience, enabling them to capture
high-quality images using consumer-grade devices in non-clinical
settings. To ensure the reliability of subsequent disease-related tasks,
we implemented the IQC as the guardian of the IAP. The primary
function of the IQC is to classify input images into four categories:
eligible, defocused, poor-field, and poor-location. Additionally, the
IQC provides a detailed rationale for each classification decision
(examples are shown in Figure 2). Only images classified as “eligible”
by the IQC will be passed to the DSD. If the IQC deems an image
“ineligible”, subsequent tasks will not be performed. Additionally,
the system will return a message to the user explaining the reason
for ineligibility and recommending effective approaches to capture
another image of eligible quality.

Disease detection

In this study, we evaluated MOSAIC, focusing on three
common OSDs: keratitis, conjunctivitis, and pterygium. After
passing through the IQC, the input image will be conveyed
to the DSD for disease detection. If the DSD yields “No
keratitis, conjunctivitis, or pterygium detected”, consequent severity
analysis will not be performed, and MOSAIC will generate
a report with negative results for the user. Otherwise, DSD
provides a diagnosis based on the image. The OSDs’ definitions
and clinical characteristics were incorporated into the DSD
identity prompts and STM to promote the alignment of visual
and natural language information. Examples of this phase are
presented in Figure 3.

Severity analysis

Early detection of keratitis, particularly in its mild form when
clinical features are subtle, is crucial for optimizing visual outcomes.
To address this, we designed a function to detect mild-stage keratitis
for the SVA. The definition of mild keratitis aligned with the
established criteria for grading keratitis severity, which categorized
cases asmild if the lesionwas located outside the central 4 mmof the
cornea and had a diameter less than 2 mm. For pterygium, surgical
intervention is the primary treatment when it encroaches upon the
cornea and compromises visual acuity, as the restoration of corneal
topography is significantly related to pterygium development. To
monitor the pterygium progression and facilitate timely surgical
intervention, we incorporated a function for the SVA to grade
pterygium severity, following the criteria that mainly considered
pterygium size and its relationship to the cornea. Examples of this
phase are presented in Figure 4.

Interpretability of MOSAIC

In contrast to conventional deep learning models for
classification tasks that only output labels, MLLMs can provide
not only predicted labels but also natural language explanations
for their decision-making. To evaluate the interpretative potential
of MOSAIC, we calculated and visualized the ROUGE-L (Recall-
Oriented Understudy for Gisting Evaluation) F1 score metric
between the image description generated by the model and the
reference explanations used in prompt engineering. This analysis
quantified MOSAIC’s image understanding ability and provided
insights into its interpretability.

Statistical analysis

Statistical analyses were conducted using Python 3.10.14. The
differences in accuracy (ACC) were analyzed using the McNemar
test. All statistical tests were two-sided with a significance level of
0.05. The interpretability assessment was conducted with the rouge
package (pypi.org/project/rouge) and visualizedwith R 4.4.1 ggplot2
package (ggplot2.tidyverse.org).

Ethics statement

The study was approved by the Institution Review Board of
NEH (identifier, 2020-qtky-017) and adhered to the principles of
the Declaration of Helsinki. Informed consent was exempted, due
to the retrospective nature of the data acquisition and the use of
deidentified images.

Results

Dataset characteristics

The UCSI dataset comprised a total of 375 images from
290 eyes in four distinct subsets for various sub-tasks. Subset
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FIGURE 2
Task examples of the IQC. Based on our previous study on ocular surface image quality, we employed the following definitions for image quality
categories. An image is classified as ineligible if it meets any of the following criteria: 1) Defocused images refer to blurry images in which the focus is
not on the cornea. 2) Poor-field images refer to images in which one-fifth of the cornea was covered by eyelids. 3) Poor-location images refer to
images in which one-fifth of the cornea was blurred because the cornea was not straight ahead. 4) An image quality is deemed eligible if it does not
meet any of the aforementioned criteria. IQC Image Quality Controller.

A comprised 60 images categorized into four image qualification
groups: eligible, defocused, poor-field, and poor-location. Subset B
consisted of 140 images classified into four diagnostic categories:
keratitis, conjunctivitis, pterygium, and normal. Subset C included
70 images divided into two keratitis stage categories: mild stage
and non-mild stage. Subset D encompassed 105 images categorized
into three pterygium stages: observation (grade one), surgical
consideration (grade two), and immediate surgery (grade three).
Images collected from Ningbo Eye Hospital (NB) and Eye Hospital
of Wenzhou Medical University (WZ) were utilized to evaluate the
performance of MOSAIC, while images from JD were employed
to construct STMs. Detailed information regarding the datasets is
presented in Table 1.

Performance of the IAP components

The performance of the IAP components varied depending on
the specific models employed and the extent of few-shot prompt

learning implemented. Generally, we observed that as the number
of learning examples increased, the ACCs of the IAP components
demonstrated improving trends (Figure 5; Table 2).

The IQC achieved an ACC of 95.00% in assessing the quality
of input images utilizing the GPT4V model in the five-shot setting.
In the zero-shot setting, the ACC did not exceed 50.00% for
any of the tested models. However, with only one-shot prompt
learning, the ACC improved to 65.00%–75.00%, indicating the
significance of few-shot prompt learning. Additionally, the GM15P
model achieved 85.00% ACC with the five-shot setting, while the
CLD3O model demonstrated unsatisfactory performance in IQC,
with ACC ranging from 47.50% to 65.00%.

Based on images that met quality criteria as screened by
IQC, DSD achieved an ACC of 87.50% in detecting keratitis,
conjunctivitis, pterygium, and normal utilizing the GM15P model
in the five-shot setting, demonstrating superior performance
compared to the GPT4V model. The CLD3O model proved
unsuitable as the backbone of DSD, with ACC ranging from
33.33% to 40.83%.
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FIGURE 3
Task examples of the DSD. The diagnostic definitions are as follows. 1) Keratitis: Keratitis is the inflammation of the cornea. 2) Pterygium: Pterygium is a
roughly triangular tissue growth extending from the conjunctiva onto the cornea. 3) Conjunctivitis: Conjunctivitis refers to inflammation of the
outermost layer of the white part of the eye or the inner surface of the eyelid. 4) Normal: No signs of the aforementioned conditions. DSD
Disease Detector.

With the diagnosis decisionmade byDSD, SVA further analyzed
the severity of the detected disease. For recognizing mild-stage
keratitis, SVA achieved an ACC of 88.33% with the GPT4V model
in the five-shot setting. It is worth mentioning that all three models
only attained the ACC of 50% in the zero-shot setting, classifying
all test images as “non-mild stage of keratitis”. The GPT4V model
not only demonstrated the best performance among the three in
the five-shot setting but also attained an ACC exceeding 80.00%
(83.33%) with only one learning example, exhibiting outstanding
few-shot prompt learning capability. Remarkably, few-shot prompt
learning seemed ineffective for the CLD3O model in this sub-task,
considering all images as “non-mild stage keratitis” even when the
level of learning increased to five. For grading pterygium, SVA
achieved an ACC of 66.67% with the Google model in the five-shot
setting. The CLD3O model still demonstrated limited performance

of 33.33%–37.78%, and OpenAI attained unsatisfactory results of
50.00%–57.78%.

Based on these results, we employed the optimal model for
each sub-task agent with five learning shots, enabling MOSAIC to
function as a flexible framework that leverages each model’s unique
strengths.

Interpretability assessment

ROUGE-L F1 scores were employed in this study to
quantify MOSAIC’s image understanding capability. The IAP
components attained the average ROUGE-L F1 score of 0.78,
0.70, 0.72, and 0.76 for IQC, DSD, SVA (detecting mild stage
keratitis), and SVA (grading pterygium), respectively. Figures 6a–d
illustrates the distribution of the ROUGE-L F1 scores for the
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FIGURE 4
Task examples of the SVA. The definition of keratitis in the mild stage refers to the lesion located outside the central cornea with a diameter of less than
2 mm. The criteria of pterygium grading mainly focus on the surgical timing indicated by the location of the pterygium head, corneal limbus, and
pupillary, which categorizes cases as grade one if the length of the limbal invasion is between 0 and 2 mm; as grade two if the invasion is between 2
and 4 mm and as grade three if the invasion was exceeding 4 mm. SVA Severity Analyzer.

TABLE 1 Composition of the UCSI dataset.

Subset Evaluation task Test data Memory construction data (∗N-shot)

NB WZ JD

A Image quality control 20 20 4

B OSDs detection 81 39 4

C Keratitis stage analyzing 30 30 2

D Pterygium stage analyzing 60 30 3

The UCSI, dataset comprises four subsets (A-D) designed for distinct tasks. The memory construction data was sourced exclusively from the JD, center to prevent feature leakage. The N-shot
prompt learning provides models with N pairs of examples for each category during the prediction. UCSI, union centers smartphone image; NB, ningbo eye hospital; WZ, eye hospital of
wenzhou medical university; JD, Jiangdong Eye Hospital. N number, OSD, ocular surface disease.
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FIGURE 5
Comparing the performance of MLLMs and few-shot levels for agents in the MOSAIC. (a–d). Confusion matrices describing the prediction results of
three MLLMs and three few-shot levels for agents IQC, DSD, SVA (keratitis stage), and SVA (pterygium grade) in order. (e–h). The accuracies of three
MLLMs and three few-shot levels for agents in the same order. IQC Image Quality Controller, DSD Diseases Detector, SVA Severity Analyzer. MLLMs
multimodal large language model. EL eligible, DF defocused, PF poor-field, PL poor-location. KT keratitis, CJ conjunctivitis, PT pterygium, NM normal,
MK keratitis (non-mild stage), NK keratitis (mild stage), G1 (pterygium grade one), G2 (pterygium grade two), G3 (pterygium grade three).

TABLE 2 Differences of ACC between few-shot levels.

Sub-tasks Few-shot level GPT4V CLD3O GM15P

IQC

0 vs 1 <0.01 <0.01 <0.01

0 vs 5 <0.01 <0.01 <0.01

1 vs 5 <0.01 <0.01 <0.01

DSD

0 vs 1 <0.01 <0.01 <0.01

0 vs 5 <0.01 <0.01 <0.01

1 vs 5 <0.01 <0.01 <0.01

SVA

Keratitis
Stage

0 vs 1 <0.01 0.77 <0.01

0 vs 5 <0.01 0.84 <0.01

1 vs 5 <0.01 0.17 <0.01

Pterygium
Grade

0 vs 1 <0.01 <0.01 <0.01

0 vs 5 <0.01 <0.01 <0.01

1 vs 5 <0.01 0.51 <0.01

Overall, the performance of each IAP, component improved as the few-shot level increased. Exceptionally, the performance of the CLD3O model did not improve even in the five-shot setting.
ACC, accuracy; IAP image analysis pipeline; IQC, image quality controller; DSD, diseases detector; SVA, severity analyzer, GPT4V gpt-4-turbo, CLD3O claude-3-opus, GM15P
gemini-1.5-pro-latest.

system’s comprehension processes. Correctly classified test images
demonstrated high scores, indicating that accurate classification
decisions were based on proper interpretations of the input images.

Conversely, misclassified test images exhibited lower scores in the
system’s comprehension processes, suggesting that inadequate image
understanding led to classification errors.
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FIGURE 6
The distribution of ROUGE-L F1 scores for MOSAIC’s interpretation of images. (a–d). The ROUGE-L F1 scores of each test image for IQC, DSD, SVA
(keratitis stage), and SVA (pterygium grade). Higher scores are aligned with correct classification results, and lower scores are aligned with wrong
classification results, suggesting that the decisions made by MOSAIC agree with the reasonings. IQC Image Quality Controller, DSD Diseases Detector,
SVA Severity Analyzer. (K) Keratitis stages, (P) pterygium grades. ROUGE-L Recall-Oriented Understudy for Gisting Evaluation.

Discussion

In this study, we developed MOSAIC, an MLLM-based AI agent
system for detecting three commonOSDs from smartphone images.
We evaluated the systemusing images from two independent clinical
centers within the UCSI dataset. Three MLLMs were assessed
leveraging various levels of few-shot prompt learning. Additionally,
we quantified the image understanding capability of the MLLMs to
interpret the reasoning underlying their decision-making processes.
With only five-shot learning examples, MOSAIC achieved an ACC
of 95.00% in controlling input image quality (with GPT4V model),
87.50% in detecting three OSDs (with GM15P model), 88.33%
in recognizing mild-stage keratitis (with GPT4V model), and
66.67% in determining the progression stage of pterygium (with
GM15P model).

OSDs can lead to severe consequences if not addressed
promptly, especially in less developed communities where
specialized equipment and experts are scarce. Patients typically
seek treatment only after their visual acuity has been significantly
compromised (Burton, 2009). MOSAIC can enable patients to
utilize AI models as personal healthcare copilots. Users can simply

capture an ocular surface image with a smartphone, upload it to
the system, and receive a comprehensive report. Through this
approach,MOSAIC demonstrates promise in empowering high-risk
populations to proactively manage their eye health from home, for
example, detecting keratitis at an early stage before clinical features
become apparent or monitoring the progression of pterygium to
determine optimal surgical timing to reduce the risk of vision
impairment.

To identify the optimal model for each agent in MOSAIC,
we evaluated three MLLMs–GPT4V, CLD3O, and GM15P—across
subtasks within the IAP module. We found that: 1) The GPT4V
model surpassed the other models in determining the input
image quality and detecting mild stage keratitis. 2) The GM15P
overcame the other models in detecting three OSDs from the
normal and grading pterygium progression (Table 3). The varying
performance of differentmodels across subtasksmay be attributed to
differences in their training data andmodel architectures.Notably, in
identifying keratitis severity, all threemodels demonstrated 100.00%
sensitivity for “non-mild stage keratitis” in the zero-shot setting,
suggesting the models’ conservative approaches when faced with
potentially high-stakes tasks without prior examples. In this context,
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TABLE 3 Differences of ACC between models.

Sub-tasks MLLM Zero-shot One-shot Five-shot

IQC

GPT4V vs CLD3O <0.01 0.44 <0.01

GPT4V vs GM15P <0.01 <0.01 <0.01

CLD3O vs GM15P 0.41 <0.01 <0.01

DSD

GPT4V vs CLD3O <0.01 <0.01 <0.01

GPT4V vs GM15P <0.01 <0.01 <0.01

CLD3O vs GM15P <0.01 <0.01 <0.01

SVA

Keratitis
Stage

GPT4V vs CLD3O 0.12 <0.01 <0.01

GPT4V vs GM15P 0.47 <0.01 <0.01

CLD3O vs GM15P 0.90 <0.01 <0.01

Pterygium
Grade

GPT4V vs CLD3O <0.01 <0.01 <0.01

GPT4V vs GM15P <0.01 <0.01 <0.01

CLD3O vs GM15P <0.01 <0.01 <0.01

In the zero-shot setting, three MLLMs, performed comparably in detecting the keratitis stage. As the few-shot level increased, the differences in the models’ learning capabilities emerged. ACC,
accuracy; IQC, image quality controller; DSD, diseases detector; SVA, severity analyzer, GPT4V gpt-4-turbo, CLD3O claude-3-opus, GM15P gemini-1.5-pro-latest, MLLM, multimodal large
language model.

the GPT4V model significantly improved its ACC to 83.33% with
just one-shot learning, demonstrating outstanding few-shot prompt
learning capabilities. In contrast, the CLD3O model consistently
underperformed in this study, contradicting reported claims of its
excellency (Kaczmarczyk et al., 2024; Toufiq et al., 2023; Shojaee-
Mend et al., 2024). This discrepancy underscores the importance of
evaluating models comprehensively across multiple modalities and
dimensions.

To enhance model performance and reduce training
data costs, fine-tuning pre-trained foundation models for
specific medical downstream tasks has become a common
development paradigm (Tajbakhsh et al., 2016). However, while
fine-tunedmodels demonstrate improved performance in particular
domains, their generalization capability in other domains inevitably
declines. Moreover, fine-tuning requires high-powered devices,
experienced engineers, and domain-specific data, which are often
inaccessible in less developed areas. In this study, we alignedMLLMs
with diverse downstream tasks by constructing and injecting
task-specific memories into the model’s “thinking” process. This
approach, termed few-shot prompt learning, eliminates the need
for extensive computational resources or large datasets. Instead, it
requires only a small set of images and text instructions to construct
the necessary memory, enabling the model to achieve impressive
performance across various medical tasks.

Despite their remarkable performance capabilities,
large language models remain susceptible to spontaneous
hallucinations, which significantly compromises their reliability
and trustworthiness. To enhance the MOSAIC’s credibility, we
instructed the models to generate both a predicted label (e.g.,

“image with eligible quality”, “keratitis”, “pterygium grade two”, etc.)
and an explanation for the decision-making process, including the
interpretation of the test image. Through this approach, MOSAIC
can provide suggestions for a patient’s ocular surface health
conditions using eye images, effectively serving as a personal health
copilot. To quantify the system’s interpretability, we calculated the
ROUGE-L F1 scores of the generated explanations. The distribution
plot of these scores revealed that correctly classified images exhibited
higher scores, while misclassified images demonstrated lower
scores. This feature provides users with an additional safeguard
to model hallucination, as the higher the score, the more reliable the
information the system offers.

Recently, several studies exploring the border of MLLMs in
clinical scenarios have been published. Kaczmarczyk et al. evaluated
the accuracy and responsiveness of MLLMs in answering the
NEJM Image Challenge dataset and found that the best model
demonstrated an accuracy of 58.8%–59.8% among various models
(Kaczmarczyk et al., 2024). They also found that a model may
refuse to answer some questions, which also happened in our
preliminary experiments and was solved by the strict engineering
of prompts (Table 4). Zhu et al. evaluated the performance ofMLLM
in interpreting radiological images and formulating treatment plans,
finding that it achieved 77.01% accuracy on the United States
Medical Licensing Examination questions (Lingxuan et al., 2024).
Compared to prior studies, our research had several significant
features. Firstly, we designed an AI agent system with extensible
components to deal with queries about OSDs in non-clinical
environments automatically. Models do not just act as a “black
box” to handle inputs and yield outputs in our study. Instead, it
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TABLE 4 Responsiveness in preliminary experiments without prompt engineering.

Agent Image label Responsiveness in the zero-shot setting Responsiveness in the five-shot setting

IQC - 100.00% 100.00%

DSD

Keratitis 85.71% 96.77%

Conjunctivitis 83.33% 100.00%

Pterygium 68.18% 93.75%

Normal 63.83% 71.43%

SVA - 100.00% 100.00%

In our preliminary experiments, we observed that models occasionally refuse to respond in some cases. After careful refinement of instruction prompts, the responsiveness increased to
100.00%, demonstrating the critical role of prompt engineering in optimizing interactions with MLLMs. IQC, image quality controller; DSD, diseases detector; SVA, severity analyzer; MLLM,
multimodal large language model.

was utilized as a backbone “engine” for each step in the whole
system. The architecture of MOSAIC could be transferred to
other similar research, and the agents allocated by the Agent
Allocator can be extended according to the study purposes.
Secondly, given the inevitable randomness of the transformer-based
model, we controlled the hyper-parameters of involved models,
including “temperature”, “max-token”, etc., to make our results
reproducible. Last, the images in this study were not disclosed
before, eliminating the possibility of dataset contamination, wherein
the test images might have been inadvertently included in the
models’ training datasets.

This study has several limitations. First, we evaluated MOSAIC,
which primarily focused on OSDs and did not extend to other
diseases. This narrow focus, while allowing for a detailed analysis
of OSDs, limits the applicability of our findings to a broader range
of eye conditions. We intend to expand our evaluation to other
diseases in future studies. Second, the study was conducted on a
relatively limited dataset. While test data contained images from
two individual centers, it might not fully represent the diversity
of real-world scenarios. In future work, we plan to curate more
extensive and diverse datasets to validate further and potentially
enhance the robustness of our system.Third, our study concentrated
on the three leading proprietary models, excluding open-source
alternatives from the assessment. However, our intention was to
enhance AI accessibility globally, particularly in underdeveloped
regions, while deploying open-source MLLMs requires substantial
computational resources. Moreover, proprietary models currently
offer greater accessibility and user-friendliness through their APIs.

Conclusion

In conclusion, we developed MOSAIC, an MLLM-based AI
agent system for detecting and grading common OSDs using
smartphone images. Leveraging MLLMs, prompt engineering, and
few-shot prompt learning, MOSAIC demonstrated remarkable
performance in image quality control, disease detection, and severity
analysis. This system shows potential for improving early detection
and management of OSDs in non-clinical settings, particularly in
resource-limited areas.
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