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Circulating cell-free DNA (cfDNA) comprises extracellular DNA fragments
released into bodily fluids through cellular processes such as apoptosis, necrosis,
and active secretion. Alterations in cfDNA concentration, fragmentation
patterns, and molecular characteristics under physiological and pathological
conditions, including pregnancy-related disorders, have established its value
as a minimally invasive biomarker for early disease detection and clinical
monitoring. Due to the availability of non- or minimally-invasive and scalable
detection platforms with high sensitivity and specificity, cfDNA has emerged
as a powerful tool in maternal-fetal medicine. This review provides a
comprehensive overview of recent advances in cfDNA research, with an
emphasis on its applications in pregnancy-related disorders. We elucidate the
underlying biological mechanisms, current diagnostic and prognostic uses,
analytical technologies, and the key challenges and future directions for clinical
translation.
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1 Introduction

Advances in molecular biology have not only deepened our understanding of genomic
DNA, traditionally confined within the nucleus and mitochondria, but have also led to
the identification of a distinct form of DNA known as cell-free DNA (cfDNA). cfDNA
comprises extracellular DNA fragments that are released into circulation through various
physiological and pathological processes, including apoptosis, necrosis, and active secretion.
Unlike intracellular genomic DNA, cfDNA is freely detectable in body fluids such as blood,
urine, and saliva (Jahr et al., 2001; Rostami et al., 2020). Since its discovery, cfDNA has
emerged as a key biomarker in molecular medicine due to its ability to reflect dynamic
biological states in a minimally invasive manner.

The discovery of fetal-derived cfDNA in maternal plasma in 1997 (Lo et al.,
1997) marked a turning point in prenatal diagnostics. This breakthrough laid
the foundation for non-invasive prenatal testing (NIPT), which analyzes maternal
blood to detect fetal chromosomal abnormalities, such as trisomy 21 and
22q11.2 deletion syndrome (Dar et al., 2022; Zhang J. et al., 2024). Unlike
traditional invasive procedures (e.g., amniocentesis), cfDNA-based screening
significantly reduces procedural risks while enabling earlier and more accurate
detection. As a result, cfDNA analysis has become an essential tool in modern
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prenatal care, offering a safer and more informative approach to
pregnancy management.

Beyond aneuploidy screening, cfDNA analysis is now being
explored for its potential in predicting and monitoring pregnancy
complications such as preeclampsia, gestational diabetes mellitus,
fetal growth disorders, preterm birth, and fetal overgrowth
(macrosomia) (Guo et al., 2020; Guo Z. et al., 2025; De Borre et al.,
2023; Wang Y. et al., 2023; Khalil et al., 2024). These advances
are facilitated by cutting-edge molecular techniques, including
next-generation sequencing (NGS) and digital PCR (dPCR),
which enable high-resolution profiling of genetic and epigenetic
features in cfDNA. Furthermore, its ability to predict placental-
origin complications like preeclampsia and macrosomia early
in gestation enables tailored clinical interventions, improving
maternal-fetal outcomes.

With the continuous evolution of molecular techniques and
growing insight into cfDNAbiology, its role inmanaging pregnancy-
related conditions is poised to expand, offering new avenues for
early diagnosis, risk prediction, and individualized clinical care.
This review aims to provide a comprehensive overview of current
research on cfDNA in pregnancy-related diseases. Specifically,
we discuss the diagnostic applications of cfDNA, the biological
mechanisms underpinning its release and function, emerging
technologies such as NGS and dPCR, and the clinical implications
and challenges associated with its use in obstetric care.

2 Overview of cfDNA

Emerging research has demonstrated that cfDNA is not merely
a passive byproduct of cell turnover but may also play active roles
in disease progression (Ranucci, 2019; Zhang K. et al., 2024). For
instance, in vitro and murine in vivo studies have indicated that
cfDNA may be associated with enhanced viability, migration, and
invasive behavior of tumor cells, suggesting a potential functional
role in cancer progression (Filatova et al., 2024). Although these
findings highlight the possibility of cfDNA contributing to disease
mechanisms, further research, particularly in human models, is
necessary to substantiate its causal involvement. Nonetheless,
cfDNA remains a valuable biomarker for distinguishing between
physiological and pathological states.

The rapid evolution of molecular biology techniques,
particularly in sequencing, amplification, and dPCR, has
significantly advanced the ability to isolate and analyze cfDNA
with high sensitivity and specificity. Recent advancements include
the introduction of NGS technologies, which provide increased
throughput and accuracy for detecting low-abundance cfDNA
fragments in complex biological samples (Si et al., 2024). In addition,
dPCR platforms have further enhanced the quantification of cfDNA,
enabling the detection of rare genetic mutations or epigenetic
modifications with unparalleled precision (Hou et al., 2023; Nazir,

Abbreviations: cfDNA, Circulating cell-free DNA; NIPT, Non-invasive
Prenatal Testing; NGS, Next-Generation Sequencing; dPCR, digital PCR;
CNV, Copy Number Variation; NIPD, Noninvasive Prenatal Diagnosis;
FGR, Fetal Growth Restriction; PE, Preeclampsia; GDM, Gestational
Diabetes Mellitus.

2023). Importantly, cfDNA retains the genetic and epigenetic
signatures of its tissue of origin, making it an ideal substrate for
non-invasive diagnostics. This foundation has led to the emergence
of “liquid biopsy” approaches, wherein cfDNA analysis is employed
for a wide range of clinical applications. These include prenatal
genetic screening, cancer detection and monitoring, assessment of
therapeutic response, and prognostication (Nawroz et al., 1996;
Lo et al., 1997; Zheng et al., 2012; De Vlaminck et al., 2014;
Song et al., 2022). Liquid biopsy offers several advantages over
traditional tissue-based methods, including reduced invasiveness,
real-time disease monitoring, and the ability to capture tumor
heterogeneity or fetal genomic information with minimal risk to
the patient (Figure 1).

2.1 Release mechanisms of cfDNA

The release of cfDNA into extracellular fluids is a complex
process that can occur through both passive and activemechanisms,
driven primarily by cellular events such as apoptosis, necrosis, and
active secretion (Mulcahy et al., 1996; Jahr et al., 2001; Stroun et al.,
2001; Schwarzenbach et al., 2011). The characteristics of cfDNA,
including its fragment size and molecular content, are influenced by
the mechanisms through which it is released. In healthy individuals,
cfDNA predominantly originates from apoptotic cells. However,
minor contributions from other mechanisms, such as necrosis and
active secretion, cannot be ruled out. In pathological conditions,
such as cancer, cfDNA often includes contributions from both
apoptotic and necrotic tumor cells, reflecting increased cell turnover
and tissue damage. During apoptosis, chromatin is fragmented
into nucleosomal units (∼167 base pairs), a process driven by
the activation of caspase-3 and caspase-activated DNase (CAD)
(Zhang and Xu, 2000; Stroun et al., 2001; Heitzer et al., 2020).
The resulting nucleosomal-sized cfDNA is highly stable due to
the protection conferred by the nucleosome structure, shielding
it from further enzymatic degradation. In pregnancy, cfDNA is
primarily derived from fetal tissues, and the placenta plays a crucial
role in the release of fetal cfDNA into the maternal circulation.
Syncytiotrophoblasts, which form the outer layer of the placenta,
undergo a significant amount of apoptotic turnover throughout
gestation, releasing fragmentedDNA into thematernal bloodstream
(Flori et al., 2004). This process contributes to the detectable levels
of fetal cfDNA that have been widely utilized in NIPT for the
detection of fetal chromosomal abnormalities. The amount of fetal
cfDNA inmaternal plasma increases with advancing gestational age,
reflecting the increased turnover of trophoblastic cells (Ashoor et al.,
2013), and is further elevated in pregnancy complications such as
preeclampsia, fetal growth restriction, and placental insufficiency
(Guo et al., 2020; De Borre et al., 2023; Khalil et al., 2024). In these
conditions, the apoptotic release of cfDNA from the placenta is
thought to be exacerbated by placental stressors, including hypoxia,
inflammation, and oxidative damage.

Necrosis, another form of cell death, results in the release
of larger, more irregular cfDNA fragments. This process is
less regulated than apoptosis and occurs when cells undergo
uncontrolled rupture, spilling their intracellular contents into
the extracellular space (Jahr et al., 2001). In pregnancy-related
conditions such as preeclampsia and other placental disorders,
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FIGURE 1
Overview of Cell-Free DNA (cfDNA) (A) Release Mechanisms of cfDNA The left panel illustrates the mechanisms by which cfDNA is released into the
bloodstream. These include apoptosis, necrosis, NETosis, and active secretion. During pregnancy, both maternal and fetal cfDNA are present in the
maternal bloodstream. (B) Clinical applications of cfDNA. The right panel highlights the clinical applications of cfDNA, including: Non-Invasive Prenatal
Testing (NIPT): Analysis of fetal cfDNA; Liver Cancer and Kidney Transplantation: Monitoring disease and transplant status; Systemic Lupus
Erythematosus (SLE): Assessing disease activity. (C) Detection Techniques for cfDNA (This figure was created using templates from BioRender.com).

necrosis of placental tissues is common and contributes to the
release of cfDNA with aberrant fragment sizes (De Borre et al.,
2023). Additionally, necrotic cell death in the maternal system,
such as within the endothelium or maternal tissues, may
contribute to higher concentrations of cfDNA in the maternal
circulation, influencing the diagnostic value of cfDNA in pregnancy
complications.

NETosis, a form of programmed cell death specific to
neutrophils, is also a significant contributor to cfDNA release.
During NETosis, neutrophils release neutrophil extracellular
traps (NETs), which consist of nuclear and mitochondrial DNA
intertwined with histones and antimicrobial proteins. This process
is an important component of the immune response to infection
and inflammation and has been implicated in various pregnancy-
related complications, such as preeclampsia, where elevated levels
of cfDNA from NETs may exacerbate endothelial dysfunction and
vascular damage (Margraf et al., 2008; Thierry et al., 2016; Paunel-
Görgülü et al., 2017; Ronchetti et al., 2022; Cepeda et al., 2024).
Inflammatory states during pregnancy, whether due to infection or
autoimmune disease, may further increase cfDNA levels through
the activation of NETosis in maternal neutrophils. Active secretion
also contributes to cfDNA release. Extracellular vesicles (EVs), such
as exosomes and apoptotic bodies, serve as vehicles for the release of
DNA fragments. These vesicles, which encapsulate cfDNA, protect
the DNA from enzymatic degradation and facilitate intercellular
communication. EVs containing fetal cfDNA or other genetic
materials have been detected in maternal blood and are thought
to be involved in immune modulation These vesicles can carry not
only genomic DNA but also mitochondrial DNA (mtDNA), RNA,
and transposable elements, contributing to both maternal and fetal

cfDNA pools (Fernando et al., 2017; Yu et al., 2021). Studies have
shown that the analysis of these vesicles provides an additional layer
of diagnostic information, especially in pregnancy-related diseases.

2.2 Biological functions of cfDNA

Traditionally viewed as a passive byproduct of cellular turnover,
cfDNA is now recognized as a biologically active molecule
with multifaceted roles in intercellular communication, immune
surveillance, and gene regulation. Its presence in the extracellular
space reflects both physiological processes and pathological
perturbations, highlighting its importance in systemic regulation
and host defense. One of the primary biological roles of cfDNA
lies in intercellular communication. cfDNA fragments released
from apoptotic, necrotic, or actively secreting cells carry both
genetic and epigenetic information, including point mutations,
structural variants, andDNAmethylation patterns.Thesemolecular
signatures mirror the cellular source and can be internalized by
recipient cells through endocytosis or receptor-mediated uptake.
Once internalized, cfDNA may interact with intracellular pathways
to modulate gene expression, influence cell fate decisions, or initiate
stress responses. This horizontal transfer of molecular information
contributes to cellular crosstalk within tissues and across organ
systems, particularly under conditions of stress, injury, or disease
(Dawson and Kouzarides, 2012; Bartlett et al., 2016; Shen et al.,
2018; Nassiri et al., 2020). Beyond its informational content, cfDNA
functions as a damage-associatedmolecular pattern (DAMP).When
released from dying or stressed cells, cfDNA, especially that of
mitochondrial or microbial origin, can activate innate immune
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responses. It is recognized by pattern recognition receptors (PRRs)
such as Toll-like receptor 9 (TLR9) in endosomes, or cyclic GMP-
AMP synthase (cGAS) in the cytosol, leading to activation of the
STING pathway.These signaling cascades promote type I interferon
production, pro-inflammatory cytokine release, and immune cell
recruitment, implicating cfDNA in the pathogenesis of autoimmune
and inflammatory conditions such as systemic lupus erythematosus
(SLE) and rheumatoid arthritis (Cheng et al., 2023). cfDNA also
contributes to NETs formation, a process known as NETosis. During
infection or sterile inflammation, neutrophils release chromatin
structures composed of DNA and histones, forming NETs that
trap and neutralize pathogens. However, excessive or dysregulated
NETosis can lead to tissue damage and has been associated with
sepsis and thrombosis (Dawulieti et al., 2020). The cfDNA released
during NETosis further amplifies inflammatory signaling and
contributes to circulating DNA pools. Moreover, cfDNA plays
a role in immune regulation by modulating both innate and
adaptive immune responses. Its immunostimulatory properties
can lead to chronic inflammation if clearance mechanisms (e.g.,
DNase activity and macrophage uptake) are impaired. Elevated
cfDNA levels are often associated with disease activity and severity
in various clinical settings. Clinically, cfDNA has emerged as a
transformative biomarker. Tumor-derived cfDNA fragments reflect
oncogenic alterations and are used in liquid biopsies for early
cancer detection, monitoring of treatment response, and minimal
residual disease assessment (McEwen et al., 2020; Zhou et al.,
2021; Hallermayr et al., 2023). In maternal-fetal medicine, cfDNA
has revolutionized prenatal diagnostics. Fetal-derived cfDNA
circulating in maternal plasma enables NIPT for chromosomal
aneuploidies and other genetic conditions, thereby reducing the
need for invasive procedures and improving safety for both mother
and fetus (Hoskovec and Swigert, 2018; Kwon et al., 2023). In
summary, cfDNA is not merely a molecular remnant of cell death
but an active participant in immune signaling, inflammation, and
systemic regulation. Its diverse biological roles and clinical utility
highlight its importance in both physiological and pathological
processes, particularly in the field of precision medicine.

2.3 The role of cfDNA in early disease
diagnosis

cfDNA analysis has revolutionized prenatal screening by
enabling safe and accurate diagnosis of fetal and maternal
conditions from a simple maternal blood sample, particularly
through NIPT (Skrzypek and Hui, 2017). Fetal-derived cfDNA,
originating predominantly from placental trophoblasts, becomes
detectable in maternal plasma as early as 5–7 weeks of gestation
and increases throughout pregnancy. NIPT enables the detection
of common aneuploidies such as trisomy 21 (Down syndrome),
trisomy 18, and trisomy 13 with high sensitivity and specificity. In
addition to whole-chromosome aneuploidies, cfDNA can be used
to screen for subchromosomal microdeletions and duplications,
sex chromosome abnormalities, and in some cases, single-gene
disorders through targeted sequencing approaches. Beyond fetal
aneuploidy, cfDNA analysis holds promise for early detection of
pregnancy-related complications, such as preeclampsia, fetal growth
restriction (FGR), placental insufficiency, and preterm birth (Yu

and Lo, 2024; Arbuzova and Cuckle, 2025). Studies have shown
that women who go on to develop preeclampsia exhibit elevated
levels of total cfDNA and altered placental-specific methylation
patterns early in gestation. Similarly, aberrations in cfDNA fragment
size distributions, methylation signatures, and trophoblast-specific
cfDNA concentrations have been linked to FGR and spontaneous
preterm labor, providing a non-invasive window into placental
health and maternal-fetal interface dysfunction.

Advancements in molecular technologies have significantly
enhanced the resolution and utility of cfDNA-based diagnostics.
These include PCR-based approaches for precise mutation
detection and NGS platforms such as targeted panels, whole-
exome sequencing (WES), and whole-genome sequencing (WGS)
for comprehensive genomic profiling (Chen and Zhao, 2019;
Guo Y. et al., 2025). In prenatal diagnosis, methylation-sensitive
assays are particularly valuable for distinguishing fetal cfDNA from
maternal cfDNA, improving test accuracy for conditions with subtle
genomic differences (De Borre et al., 2023). Fragmentomics, which
analyzes cfDNA fragment size, endmotifs, anddegradation patterns,
offers additional specificity by providing information on tissue of
origin and disease state (Bai et al., 2024). Nucleosome positioning
and chromatin accessibility profiling further enrich the biological
signals derived from cfDNA, allowing inference of gene activity and
cell type contributions, especially when integrated with machine
learning models for predictive analytics (Ju et al., 2024).

Beyond prenatal diagnostics, cfDNA technologies are
increasingly integrated into broader clinical contexts, including
oncology, transplantation, and autoimmune disease management
(Oellerich et al., 2021; Yang et al., 2021; Wang J. et al., 2023;
Chung et al., 2024; Tong et al., 2024). However, within the scope
of this section, the primary focus remains on prenatal applications,
where cfDNA has revolutionized non-invasive screening for fetal
aneuploidies, microdeletions, and pregnancy complications such as
preeclampsia and FGR. Emerging techniques like fragmentomics
and methylation profiling further enhance the specificity of
prenatal cfDNA analysis, enabling early detection of placental
dysfunction and maternal-fetal interface abnormalities. By aligning
technological advancements with clinical needs across prenatal care
and other fields, cfDNA-based approaches continue to redefine non-
invasive diagnostics, offering safer andmore accurate alternatives to
traditional procedures.

3 Research on cfDNA in
pregnancy-related diseases

In maternal-fetal medicine, the early identification and
prediction of pregnancy complications, such as preeclampsia, fetal
growth restriction, and spontaneous preterm birth, are essential
for mitigating adverse maternal and neonatal outcomes. Advances
in high-throughput sequencing technologies and molecular
diagnostics have substantially broadened the clinical applications
of cfDNA in pregnancy. Bridging the gap between technological
innovation and clinical need, this section critically examines the
current landscape of cfDNA research in pregnancy, with a focus
on its utility for non-invasive diagnosis, risk stratification, and
longitudinal monitoring.
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3.1 Current clinical applications of cfDNA

NIPT is a revolutionary approach that utilizes high-throughput
sequencing to analyze fetal cfDNA circulating in maternal plasma.
This method integrates sequencing data with bioinformatic
algorithms to extract fetal genetic information with high sensitivity
and specificity (Lo et al., 1997; Kaiser, 2005; Lun et al., 2008). The
source of fetal cfDNA is primarily apoptotic trophoblastic cells from
the outer layer of the placenta. By the second trimester, fetal cfDNA
constitutes approximately 10% of total cfDNA in maternal plasma
(Flori et al., 2004; Ashoor et al., 2013). The biological kinetics of
fetal cfDNA are distinct: it exhibits a short half-life (∼16 min) and is
rapidly cleared frommaternal circulation within hours postpartum,
becoming undetectable after 48 h. This transient nature assures
that NIPT results are not confounded by previous pregnancies or
maternal genomic background (Lo et al., 1999b). The proportion
of fetal cfDNA to total cfDNA, known as the fetal fraction (FF),
averages between 10% and 15%during gestational weeks 10–20 (Hui
and Bianchi, 2020). Fetal cfDNA fragments are characteristically
shorter (∼143 base pairs) than maternal cfDNA (∼166 base
pairs). Fetal-derived fragments show a sharp peak at 143 bp with
periodicity of ∼10 bp, likely reflecting nucleosome phasing, whereas
maternal fragments exhibit a broader distribution with less-defined
periodicity (Pan et al., 2020). Traditional prenatal diagnostic
techniques, such as amniocentesis and chorionic villus sampling,
though accurate, are invasive and carry procedural risks including
miscarriage and infection. The development of NIPT, particularly
since the pivotal 2010 study by Lo et al. (2010), which used paired-
end massively parallel sequencing to demonstrate that fetal cfDNA
closely mirrors the fetal genome at single-nucleotide resolution,
has shifted the diagnostic paradigm toward safer, non-invasive
alternatives. Due to its safety, non-invasiveness, and high accuracy,
NIPT is now endorsed by numerous international clinical guidelines
as a first-tier screening method for fetal aneuploidies. Initially
applied for detecting fetal sex, RhD status, and common trisomies
(e.g., Trisomy 21, 18, and 13), NIPT has evolved with technological
advancements to encompass detection of subchromosomal copy
number variations (CNVs) and even pathogenic single-gene
mutations (Xu et al., 2022; Zhang J. et al., 2024).

Detection of fetal cfDNA in the plasma of Rh(D)-negative
mothers facilitates the determination of the fetal Rh(D) genotype.
Optimal testing is typically performed after 11 weeks of gestation,
when sufficient fetal cfDNA is present, significantly improving
the accuracy of fetal Rh(D) testing (Chitty et al., 2014). Meta-
analyses have demonstrated that this approach exhibits a sensitivity
of 99.3% and a specificity of 98.4% for Rh(D) determination
(Mackie et al., 2017). Several countries, including Denmark, the
Netherlands, Sweden, and the United Kingdom, have integrated
fetal Rh(D) testing into routine prenatal care for Rh(D)-negative
pregnant women. This strategy effectively reduces the need for
unnecessary administration of anti-D immunoglobulin, preventing
unnecessary interventions (Wikman et al., 2012; Clausen et al.,
2014). In contrast to ultrasound methods, which can typically
identify fetal sex only after 12 weeks, cfDNA analysis enables
the determination of fetal sex as early as the seventh week of
gestation. This is accomplished by detecting Y chromosome-
specific genes, such as SRY or DYS14, located on the TSPY1
region, in maternal plasma (Devaney et al., 2011). Research has

shown that cfDNA-based fetal sex determination is more accurate
than ultrasound. For families with a history of X-linked genetic
disorders, routine NIPT for fetal sex identification can significantly
reduce the rate of invasive procedures, as testing is limited to male
fetuses (Hill et al., 2011; 2012; Pan et al., 2014). Additionally,
non-invasive determination of fetal sex is particularly important
in the management of congenital adrenal hyperplasia (CAH), a
disorder primarily caused by a deficiency in fetal 21-hydroxylase,
leading tomasculinization of female fetuses’ external genitalia. Early
identification of affected pregnancies allows for the administration
of dexamethasone to suppress adrenocorticotropic hormone
(ACTH) production and prevent fetal genital masculinization
(Merke and Bornstein, 2005). In cases of ambiguous genitalia where
ultrasound evaluation is challenging, cfDNA testing provides critical
diagnostic insights. Recent studies have demonstrated that NIPT for
common chromosomal abnormalities, such as trisomy 21, trisomy
18, and trisomy 13, exhibits exceptional sensitivity, with rates of
99%, 96.8%, and 92.1%, respectively (Gil et al., 2014). Although
NIPT offers high sensitivity for common aneuploidies, its positive
predictive value (PPV) declines for low-prevalence conditions
such as rare autosomal trisomies (RATs) and subchromosomal
CNVs, increasing the risk of false positives. In 2022, the American
College of Medical Genetics and Genomics (ACMG) recommended
the use of NIPT for the detection of common chromosomal
aneuploidies, trisomy 21, trisomy 18, and trisomy 13, in both
singleton and twin pregnancies, as well as for sex chromosome
aneuploidies in singleton gestations. However, the ACMG currently
does not support the routine use of NIPT for rare autosomal
trisomies or for CNVs screening, with the exception of the 22q11.2
microdeletion syndrome (Dungan et al., 2023).

In summary, NIPT has emerged as a transformative tool
in prenatal care, offering high sensitivity and specificity for
common fetal aneuploidies through a non-invasive approach.
Although current limitations exist for rare autosomal trisomies
and subchromosomal CNVs, advances in sequencing resolution,
algorithmic accuracy, and clinical validation are steadily enhancing
their diagnostic scope. As these technologies mature, NIPT is
expected to play an increasingly central role in comprehensive
prenatal genomic screening and risk stratification.

3.2 Technological advancements in cfDNA
analysis

Modern cfDNA testing is empowered by sophisticated
molecular technologies. NGS enables the comprehensive analysis
of fetal DNA fragments within maternal plasma, providing
whole-genome or targeted assessments of genetic anomalies. The
implementation of paired-end massively parallel sequencing, as
demonstrated by Lo et al. (2010), was a pivotal step that established
the fetal genome could be reconstructed from maternal blood with
remarkable precision.

dPCR complements NGS by enabling highly sensitive
quantification of specific cfDNA sequences, facilitating accurate
detection of low-frequency variants or paternal mutations
(Saito et al., 2000; Scotchman et al., 2020). These tools,
when combined with bioinformatics algorithms, allow for the
discrimination of fetal DNA based on size (∼143 bp vs ∼166 bp
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for maternal cfDNA) and methylation signatures (Hui and Bianchi,
2020; Pan et al., 2020). In cases of autosomal recessive diseases,
where maternal and fetal alleles may overlap, advanced cfDNA
capture platforms have been developed to resolve genotypes with
higher confidence (Mu et al., 2024).

Bisulfite sequencing, which involves the conversion of
unmethylated cytosine residues to uracil, is used to assess DNA
methylation patterns in cfDNA, providing insights into fetal
epigenetic modifications (Huang and Wang, 2019). In addition,
cfDNA quantification is achieved through various methods such
as dPCR, which can detect and quantify low-frequency mutations
with high precision (Okada et al., 2020). Furthermore, advanced
bioinformatics algorithms are used to process cfDNA sequencing
data, incorporating input parameters such as fragment size, GC
content, and methylation profiles, thereby enhancing the sensitivity
and specificity of fetal DNA detection (Nguyen Phuong et al., 2025).

3.3 cfDNA and placenta-origin pregnancy
complications

Emerging evidence indicates that levels of cfDNA in maternal
bodily fluids, along with specific genomic features, such as
distinct promotermethylation profiles, are associated with placenta-
derived pregnancy complications, especially preeclampsia and
macrosomia (Guo et al., 2020).

3.3.1 cfDNA and preeclampsia (PE)
PE is a pregnancy-specific hypertensive disorder that affects

approximately 2%–4% of pregnancies worldwide and is responsible
for an estimated 46,000 maternal deaths and over 500,000 fetal
and neonatal deaths annually (Magee et al., 2022). Clinically, PE
is classified based on the gestational age at onset: early-onset PE
occurs before 34 weeks, whereas late-onset PE occurs at or after
34 weeks of gestation. Although the precise etiology of PE remains
incompletely elucidated, placental dysfunction is recognized as a key
driver, particularly in early-onset forms.

Conventional diagnostic approaches, such as chorionic villus
sampling, allow for direct phenotypic analysis of the placenta but
are invasive and carry a non-negligible risk of miscarriage, limiting
their utility in routine screening. Between gestational weeks 10 and
12, approximately 10% of cfDNA in maternal plasma originates
from placental trophoblasts. This cfDNA not only reflects the fetal
genome but also retains epigenetic signatures such as nucleosome
positioning and DNA methylation patterns.

A seminal study by Lo et al. (1999a) reported that cfDNA
concentrations inwomenwith PEwere, on average, five times higher
than those in normotensive pregnant women, with elevated levels
detectable before the appearance of clinical symptoms. Subsequent
research by a Belgian group demonstrated that methylation
patterns of cfDNA in maternal plasma at the time of delivery
could differentiate PE patients from controls (De Borre et al.,
2023). The same group developed a predictive model utilizing
cfDNA methylation signatures measured around 12 weeks of
gestation, suggesting the feasibility of using early pregnancy cfDNA
profiles to stratify PE risk. Given that NIPT is now widely
implemented and typically performed between 12 and 22 weeks
of gestation in countries such as China, there is potential to

incorporate PE risk prediction into existing cfDNA-based screening
platforms. This is especially relevant for early-onset PE, where
methylation alterations in placental-derived cfDNA appear to be
prominent. Further supporting this approach, placental cfDNA
is thought to originate, in part, from trophoblast subpopulations
that express markers such as alpha-fetoprotein (AFP) and albumin
(ALB), indicating a heterogeneous cellular contribution to the
cfDNA pool (De Borre et al., 2023). Alpha-fetoprotein, primarily
produced by the fetal liver and yolk sac, is also expressed by
certain placental trophoblasts. Its concentration in maternal plasma
decreases between the third and sixthmonths of gestation. Emerging
evidence suggests that changes in AFP expression and release may
influence the composition of cfDNA, and reduced AFP levels have
been associated with a lower risk of preeclampsia and preterm birth.
Thus, profiling AFP-related cfDNA markers in early pregnancy
may offer a non-invasive means of assessing placental function and
predicting adverse outcomes.

A recent study incorporated artificial intelligence to develop
a predictive model for PE by integrating cfDNA metrics with
clinical features collected during the first prenatal visit. Conducted
as part of the SMART prospective multicenter study (n = 17,520
singleton pregnancies), the findings demonstrated an association
between PE and both increased total cfDNA levels and decreased
fetal fraction (Khalil et al., 2024). Moreover, a large retrospective
cohort study analyzedNIPT data from pregnant women (gestational
age 12–22+6 weeks) across four hospitals in China (2019–2021) to
explore the diagnostic utility of cfDNA coverage in predicting early-
versus late-onset PE (Yu et al., 2024). Gene enrichment analysis of
cfDNA has identified distinct molecular signatures associated with
early- and late-onset PE. Specifically, early-onset PE-related genes
are enriched in Hedgehog and Hippo signaling pathways, while
late-onset PE-related genes are involved in the HIF-1 and PI3K-
Akt pathways. These findings suggest that cfDNA can serve as a
biomarker for differentiating PE subtypes based on their underlying
molecular mechanisms, highlighting its potential as a non-invasive
diagnostic tool for early identification and risk stratification of PE.

3.3.2 cfDNA and gestational diabetes mellitus
(GDM)

GDM is characterized by glucose intolerance with onset or
first recognition during pregnancy. It increases maternal risks
such as preeclampsia, placental abruption, and cesarean delivery,
and is associated with fetal complications including congenital
anomalies, macrosomia, neonatal hypoglycemia, and respiratory
distress syndrome (American Diabetes Association Professional
Practice Committee, 2022). Despite advances in screening
and glycemic control, the pathophysiology of GDM remains
incompletely understood, limiting early predictive capabilities.
Traditionally, GDM is diagnosed through second-trimester oral
glucose tolerance testing (OGTT), which does not account for early
molecular alterations or placental dysfunction.

Recent progress in cfDNA analysis has opened new avenues
for early, non-invasive risk assessment in GDM. In addition to
its diagnostic role in preeclampsia, cfDNA has shown promise in
detecting GDM-related pathophysiology. GDM is associated with
both pancreatic β-cell dysfunction and placental abnormalities,
including increased placental size, inflammation, and impaired
vascularization. These changes induce trophoblast apoptosis and
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necrosis, resulting in elevated levels of placenta-derived cfDNA
in maternal plasma. Studies have reported significantly higher
total cfDNA concentrations and fetal fraction in women with
GDM, particularly in the second and third trimesters (Yuan et al.,
2019; Tang et al., 2024). Hyperglycemia-induced oxidative stress
and hypoxia further exacerbate cfDNA release from the placenta.
Moreover, cfDNA methylation profiling has identified differential
methylation in GDM pregnancies (Kenna et al., 2016). These
findings suggest that cfDNA not only reflects placental dysfunction
but may also serve as a molecular window into maternal-fetal
metabolic health.

Complementing these mechanistic insights, a study by
Wang Y. et al. (2023) employed a convolutional neural network
with a non-overlapping sliding window algorithm to detect high-
risk individuals as early as 12 weeks of gestation based on cfDNA
signatures. Another investigation used transcription start site
(TSS) profiling of 50 signature genes to differentiate GDM cases,
with PRSS1, an acinar cell marker, emerging as a potential early
biomarker (Tang et al., 2024). Furthermore, a neural network-based
predictive model utilizing cfDNA characteristics demonstrated high
predictive accuracy across validation cohorts. Altogether, these
findings highlight the potential of cfDNA as a powerful, non-
invasive tool for early diagnosis, mechanistic understanding, and
risk stratification in GDM.

3.4 Clinical impact and future directions

The integration of cfDNA into prenatal care has transformed
clinical practice by enabling non-invasive access to fetal genetic
information. Beyond common aneuploidies, cfDNA is now used
to detect pathogenic variants in single-gene disorders, especially de
novo or paternally inherited mutations, such as those implicated
in achondroplasia or thanatophoric dysplasia (Saito et al., 2000;
Scotchman et al., 2020). The United Kingdom has been at the
forefront of clinical adoption of NIPD for such conditions.
Despite these advancements, challenges remain in detecting
autosomal recessive and maternally inherited conditions, due to
the confounding presence of maternal DNA. Research continues
to develop more precise methods that enhance fetal genotyping
accuracy, broaden mutation coverage, and reduce test turnaround
time. Looking ahead, cfDNA is poised to play a greater role in
early detection of a wider range of conditions, including epigenetic
disorders, pregnancy complications such as preeclampsia, and even
prenatal cancer detection. Emerging technologies such as long-read
sequencing and machine learning-based cfDNA interpretation are
expected to further refine diagnostic capabilities. When integrated
with other omics data and traditional biomarkers, cfDNA analysis
has the potential to revolutionize personalized prenatal care
(Xu et al., 2022; Dungan et al., 2023; Mu et al., 2024).

4 Challenges and future prospects

Despite substantial advancements in cfDNA-based technologies,
several technical and clinical limitations continue to restrict their
routine application in pregnancy-related disorders. A primary
challenge is the inherently low concentration of fetal cfDNA

in maternal plasma, especially during early gestation, which
compromises detection sensitivity and increases vulnerability to
analyticalnoiseandcontamination.Compoundingthis issuearemajor
technical confounders, such as the overwhelming predominance of
maternal cfDNA, accounting for over 90% of total cfDNA, and
hemolysis-induced release ofmaternal leukocyte DNAduring sample
collection or processing. These factors obscure fetal-derived signals
and undermine assay specificity and reproducibility. Recent efforts
to address these limitations include the implementation of refined
pre-analytical procedures, such as the use of cfDNA-stabilizing blood
collection tubes and expedited plasma isolation, aimed at minimizing
maternal DNA contamination. In parallel, advanced computational
strategies, encompassing fragment size profiling, methylation-based
discrimination, and tissue-of-origin analysis, have been developed
to enhance the resolution of fetal-specific cfDNA signatures.
Nevertheless, standardization across cfDNA testing remains a critical
unmet need. The lack of universally accepted protocols and clinical
guidelines contributes to significant inter-laboratory variability in
sample processing, data interpretation, and result reporting. This
heterogeneity hampers cross-study comparability and poses a barrier
to clinical integration. Therefore, the establishment of consensus
standards, including quality control metrics, fetal fraction thresholds,
and standardized reporting frameworks, is essential. Concurrently,
efforts to define gestational age-specific reference ranges and
diagnostic thresholds are gaining momentum and will be crucial
for improving the clinical interpretability and utility of cfDNA-
based assays. Looking ahead, integrating cfDNA analysis with
emerging technologies such as machine learning and multi-omics
approaches (e.g., transcriptomics, proteomics, and metabolomics)
holdssignificantpromise.Theseintegrativeframeworkscouldenhance
predictive accuracy, enable more comprehensive biological insights,
and support precision medicine applications in maternal-fetal health.
Moreover, large-scale, multicenter validation studies will be vital
to confirm the robustness and generalizability of these approaches
for early prediction, diagnosis, and longitudinal monitoring of
pregnancy complications.

5 Conclusion

In conclusion, cfDNA represents a transformative biomarker
in the field of prenatal diagnostics, offering a non-invasive and
highly informative tool for the early detection of fetal chromosomal
abnormalities and maternal pregnancy-related complications. The
clinical adoption of cfDNA analysis has marked a pivotal milestone
in modern genomic medicine, with expanding applications
in the screening, diagnosis, and monitoring of pregnancy
disorders such as preeclampsia, gestational diabetes mellitus, and
fetal aneuploidies. Ongoing innovations in molecular biology,
sequencing technologies, and computational analysis are further
enhancing the sensitivity, specificity, and clinical applicability of
cfDNA assays. As these technologies mature, cfDNA testing is
poised to become an integral component of precision obstetrics,
supporting individualized risk assessment and early intervention
strategies. Nevertheless, the realization of its full clinical potential
will require continued efforts to address existing challenges,
standardize methodologies, and validate findings across diverse
populations and clinical settings.
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