
TYPE Original Research
PUBLISHED 19 June 2025
DOI 10.3389/fcell.2025.1600546

OPEN ACCESS

EDITED BY

Qinong Ye,
Beijing Institute of Biotechnology, China

REVIEWED BY

Mrinmoy Sarkar,
Texas A&M University College Station,
United States
Han Tian,
Sun Yat-sen University, China

*CORRESPONDENCE

Xun Li,
lxdr21@126.com

RECEIVED 26 March 2025
ACCEPTED 11 June 2025
PUBLISHED 19 June 2025

CITATION

Wang M, Cheng L, Qi K, Wang H and Li X
(2025) Identification of prognostic biomarkers
related to epithelial-mesenchymal transition
and anoikis in hepatocellular carcinoma using
transcriptomics and single-cell sequencing.
Front. Cell Dev. Biol. 13:1600546.
doi: 10.3389/fcell.2025.1600546

COPYRIGHT

© 2025 Wang, Cheng, Qi, Wang and Li. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Identification of prognostic
biomarkers related to
epithelial-mesenchymal
transition and anoikis in
hepatocellular carcinoma using
transcriptomics and single-cell
sequencing

Maobing Wang1, Lu Cheng2,3,4,5, Kuo Qi2,3,4,5, Haiping Wang2,3,4,5

and Xun Li2,3,4,5*
1The First School of Clinical Medicine, Lanzhou University, Lanzhou, China, 2Department of General
Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China, 3Gansu Provincial Key
Laboratory of Biotherapy and Regenerative Medicine, Lanzhou, Gansu, China, 4Gansu Institute of
Hepatobiliary and Pancreatic Surgery, Lanzhou, Gansu, China, 5Gansu Province General Surgery
Clinical Medical Research Center, Lanzhou, Gansu, China

Background: Epithelial-mesenchymal transition (EMT) and anoikis are critically
associated with hepatocellular carcinoma (HCC). However, the precise
mechanisms underlying their roles in HCC remain unclear. This study aims to
explore the involvement of EMT-related genes (EMTRGs) and anoikis-related
genes (ARGs) in HCC.

Methods:Data from TCGA-HCC, ICGC-LIPI - JP, GSE149614, EMTRGs and ARGs
were utilised in this study. It utilised single-cell RNA sequencing for cell sorting.
Biomarkers were identified through analyses such as differential expression
analysis and weighted gene co-expression network analysis (WGCNA). The risk
model and nomogram were constructed based on biomarkers. Subsequently,
the potential functions of biomarkers were explored through methods such
as enrichment analysis and immune microenvironment analysis. Finally, to
confirm the expression of these biomarkers in different prognostic groups, gene
expression levels were quantified using real-time quantitative polymerase chain
reaction (RT-qPCR).

Results: LAMA4, C7, KPNA2, STMN1, and SF3B4 were identified as biomarkers.
The risk score emerged as an independent prognostic factor for patients
with HCC. The nomogram showed that these five biomarkers had good
predictive ability for the 1-, 3-, and 5-year survival rates of HCC patients. Drug
sensitivity analysis revealed significant associations between the IC50 values
of 23 drugs and risk scores. In the GSE149614 dataset, most biomarkers were
predominantly expressed in stromal cells (endothelial cells and fibroblasts).
In TCGA-HCC, all genes, except C7, were upregulated in the HCC samples.
RT-qPCR analysis revealed statistically significant upregulation of STMN1 and
SF3B4 transcripts in the HCC group, consistent with TCGA-HCC dataset.
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Conclusion: This study identified five EMTRGs and ARGs (LAMA4, C7, KPNA2,
STMN1, and SF3B4) as biomarkers of HCC, offering new insights for further
research in HCC pathogenesis.

KEYWORDS

hepatocellular carcinoma, epithelial mesenchymal transition, anoikis, single-cell RNA
sequencing, biomarkers

1 Introduction

Hepatocellular carcinoma (HCC) is the most prevalent form
of primary liver cancer and poses a major global health threat
(Hamaya et al., 2023), with high incidence rates (Liu H. et al.,
2024) and accounting for 7.8% of cancer-related deaths annually
(Bray et al., 2024). HCC is associated with a poor prognosis, as the 5-
year survival rate for patients in advanced stages is a mere 10%–20%
(Laube et al., 2020). Surgical resection remains the gold standard
treating early-stage HCC, significantly improving long-term
survival and offering potential for a cure. In contrast, treatment for
advancedHCC typically involves conversion therapy, including local
treatments such as transarterial chemoembolization(TACE) and
hepatic arterial infusion chemotherapy (HAIC), as well as systemic
approaches like targeted therapies combined with immunotherapy
and combinations of local and systemic therapies (Zhou and
Song, 2021). However, approximately two-thirds of patients with
HCC are diagnosed at stages III or IV, where treatment efficacy is
limited (ECTRX, 2017). A key challenge in managing HCC is the
identification and validation of biomarkers that can enable early
intervention and improve therapeutic outcomes (Sangro et al.,
2021). This study aims to identify novel molecular biomarkers
for early diagnosis, thereby enhancing the therapeutic
efficacy of HCC.

Epithelial-mesenchymal transition (EMT) is a developmental
and pathological process in which epithelial cells undergo a
phenotypic conversion to mesenchymal cells, acquiring migratory
and invasive properties (Grigore et al., 2016). EMT plays a
pivotal role in cancer metastasis (Jehanno et al., 2022), promoting
tumor cell proliferation, reducing apoptosis and senescence, and
enhancing immune evasion (Chanvorachote et al., 2022). EMT-
relatedmolecularmarkers have been associated with poor prognosis
in patients with HCC (Li et al., 2024). For instance, Zhang
et al. demonstrated that AHSA1 facilitates proliferation and EMT
through the ERK/CALD1 signaling pathway, leading to disease
progression and adverse outcomes (Zhang J. et al., 2022). Alterations
in ZEB-1 and E-cadherin expression are likely drives of HCC
progression through EMT (Hashiguchi et al., 2013). Anoikis is a
distinct form of cell death that occurs when cells lose attachment
to the extracellular matrix (ECM) and neighboring cells, triggering
a signaling cascade that leads to cell apoptosis (Taddei et al.,
2012). Tumor cells can develop resistance to anoikis when detached
from the ECM, reducing their susceptibility to cell death, thereby
facilitating tissue invasion and metastasis (Chen et al., 2023). Zhu
et al. found that lncRNA signatures associated with anoikis could
serve as prognostic biomarkers for HCC, with implications for
immune infiltration (Zhu et al., 2024). EMT and anoikis are closely
linked, playing critical roles in the invasive phase of primary

tumor growth (Cao et al., 2016). Abnormal expression of miR-
424-5p promotes anoikis resistance and EMT, advancing HCC
metastasis by enhancing tumor cell survival and invasion, while its
downregulation accelerates HCC progression (Zhang et al., 2014).
Additionally, increased miR-450a expression inhibits EMT and
promotes anoikis in ovarian cancer cells, reducing invasiveness and
migration (Muys et al., 2019). Beyond cancer, EMT and anoikis are
implicated in other diseases. In Crohn’s disease, defective matrix
remodeling may trigger perianal fistulas via mechanical activation
of EMT (Rizzo et al., 2023), and molecules regulating anoikis may
serve as therapeutic targets for colorectal cancer (Liu et al., 2023).
However, the relationship between EMT, anoikis and HCC remains
underexplored.

In this study, a predictive model for HCC prognosis was
constructed using EMT-related genes (EMTRGs) and anoikis-
related genes (ARGs) through bioinformatics. Additionally,
variations in immune infiltration and chemosensitivity were
analyzed. This work provides a theoretical foundation and
new insights into the molecular mechanisms of HCC, with
implications for predicting outcomes, and developing targeted and
immunotherapeutic strategies.

2 Materials and methods

2.1 Data source

The Cancer Genome Atlas (TCGA)-HCC dataset, was
retrieved from the TCGA database (http://cancergenome.nih.
gov), comprising transcriptomic, clinical, survival, and mutation
data from 363 HCC samples and 49 normal samples. A total of
360 HCC samples with survival data were used as the training
set. The HCC-related ICGC-LIPI-JP dataset was sourced from
the International Cancer Genome Consortium (ICGC) database
(https://dcc.icgc.org/releases/current/Projects/LIRI-JP), containing
232HCC samples for verification.TheGSE149614 single-cell dataset
(platform GPL24676) was obtained from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/), which
includes 10 HCC samples and 8 normal samples. The 200
EMTRGs and 35 ARGs were obtained from the published literature
(Zhou et al., 2023; Cai and Zhou, 2022).

2.2 Single-cell RNA-seq analysis and
difference analysis

To elucidate the cellular mechanisms underlying HCC, analyses
were performedon theGSE149614dataset using the ‘Seurat’ package
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(v 4.0.5). Cells with fewer than three cells or 10 features were
excluded, as were data with RNA counts below 4,000, RNA feature
counts between 100 and 8,000, andmitochondrial content exceeding
3% (Satija et al., 2015). Data were normalized using NormalizeData,
and the FindVariableFeatures function was used to identify genes
exhibiting high intercellular variability (vst = 2000). Canonical
correlation analysis (CCA) was employed to correct for batch
effects, followed by conducted principal component analysis (PCA).
Unsupervised clustering was carried out with the FindNeighbors
and FindClusters functions in Seurat, and clusters were visualized
using t-SNE. Positive marker genes were identified using the
FindAllMarkers function with parameters min. pct = 0.6, only. pos
= TRUE, and threshold = 0.5. These markers were integrated with
the CellMarker database to determine cell subpopulations, which
were further validated using the SingleR algorithm (Aran et al.,
2019). The differentially expressed genes 1 (DEGs1) in different cell
types in HCC samples and control samples were screened through
the FindMarker function (p-value <0.05, |log2 fold change (FC)| ≥
0.5). Cell-cell communication within the GSE149614 dataset was
assessed using the ‘CellChat’ package (Jin et al., 2021) (v 1.6.1), with
a focus on ligand-receptor signaling differences between HCC and
normal subpopulations. DEGs2 in the TCGA-HCC dataset were
identified using DESeq2 (v 1.36.1) comparing HCC samples with
normal tissues (|log2FC| > 0.5, p adj <0.05) (Love et al., 2014).

2.3 Weighted gene co-expression network
analysis (WGCNA)

To calculate EMT and anoikis scores, the GSVA package (v
1.46.0) was used in the TCGA-HCC dataset, providing trait data
for WGCNA (Hänzelmann et al., 2013). The WGCNA package
(v 1.70–3) was employed to construct the co-expression network
(Langfelder and Horvath, 2008). Specifically, hierarchical clustering
was first performed using euclidean distances of expression to check
for outliers in the samples, and outlier samples were removed.Then,
the optimal soft threshold was set based on the scale-free fit index
(signed R2) and average connectivity (close to 0). A clustering tree
was built based on similarity and adjacency calculations. And the
dynamic tree cutting algorithm was used to segment the network
into modules, with a minimum of 100 genes per module. Modules
most significantly associated with EMT and anoikis scores were
defined as key modules. Genes were selected as key module genes
if they satisfied the criteria of |gene significance (GS)| > 0.4 and
|module membership (MM)| > 0.634 (Chen et al., 2019).

2.4 Functional analysis and construction of
protein-protein interaction network (PPI)

Candidate genes were identified by filtering those that
overlapped with key module genes, DEGs1, and DEGs2 based
on the results of the previous analyses. To explore the cellular
functions and associated pathways of these candidate genes. Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analyses were performed using the
clusterProfiler package (v 4.4.4) and the human gene annotation
package org. Hs.e.g.,.db (v 3.15.0) (p.adj <0.05) (Yu et al., 2012).The

PPI network for these candidate genes was constructed using the
STRING database (http://string.embl.de/) with a confidence level
set at 0.4.

2.5 Creation of the risk model

The expression data of the candidate genes were extracted and
combined with overall survival (OS) information from patients with
HCC. In the training set, to identify biomarkers associated with
HCC prognosis, univariate Cox regression analysis was performed
using the survival package (v-3.3–1) (Ramsay et al., 2018) (p-
value <0.05, hazard ratio (HR) ≠ 1), followed by least absolute
shrinkage and selection operator (LASSO) regression from the
glmnet package (v 4.1–1) (Li et al., 2022). In the LASSO analysis,
the parameter “family” was set as Cox, and ten-fold cross-validation
was performed. Biomarkers were screened according to the lambda
min value. Using the gene expression data of the TCGA-HCC
training set and the coefficients of biomarkers obtained fromLASSO
analysis, a prognostic risk model was developed. The risk score
formula was as follows: riskscore = ∑ni=1coef(genei) ∗ expr(genei),
where coef represents the coefficient of each gene derived from
LASSO analysis, derived from stepwise regression, reflecting the
impact of individual gene expression levels on the overall risk score,
and expr denotes the expression level of the ith gene.

Based on the optimal cutoff value of the risk scores, patients
in the training set were categorized into two risk groups (High-
risk group and low-risk group). Survival differences between
these groups were assessed using Kaplan-Meier (K-M) curves
generated with the survminer package (v 0.4.9) (p-value <0.05).The
performance of the prognostic model was evaluated using receiver
operating characteristic (ROC) curves from the survivalROC
package (v 1.0.3) (Area Under Curve (AUC) > 0.6) (Heagerty et al.,
2000).Themodel was further validated in an independent validation
set by same method.

2.6 Creation of the nomogram

In the TCGA-HCC dataset, univariate Cox regression analysis
(p-value <0.05, HR ≠ 1) and Proportional Hazards (PH) assumption
tests (p-value >0.05) were performed on clinicopathological factors
such as risk score, grade, TNM stage, and stage. Following univariate
Cox analysis andPH test,multivariate Cox analysis (withHR≠1 and
P < 0.05) was performed to determine the independent prognostic
factors among the variables that met the criteria. A nomogram
incorporating the identified biomarkers was developed using the
‘rms’ package (v 6.2–0) (Sachs, 2017). In this nomogram, each factor
was assigned a specific number of ‘Points,’ and the cumulative sumof
these points, termed ‘Total Points,’ was used to predict the 1-, 3-, and
5-year survival probabilities for patients with HCC. A higher ‘Total
Points’ score indicated a worse survival prognosis. The predictive
accuracy of the nomogram, was assessed using a calibration curve,
which visually compared the predicted and observed survival rates
for patients with HCC. Additionally, ROC curves were concurrently
for the 1-, 3-, and 5-year survival predictions to evaluate the
nomogram’s discriminative ability. To assess its clinical utility,
decision curve analysis (DCA) was performed.
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2.7 Enrichment analysis

Further analyses were conducted to examine the characteristics
of the biomarkers. The correlation of these biomarkers with other
genes in the TCGA-HCC dataset was analyzed, followed by sorting
the genes’ coefficients by magnitude. Gene Set Enrichment Analysis
(GSEA) was performed using the HALLMARK dataset through
the “clusterProfiler” package (v 4.4.4) and “org.Hs.e.g.,.db” package
(v 3.15.0) (Wu et al., 2021).

2.8 Immune characteristic analysis

To explore the variations in the microenvironment between
risk groups, the immune, matrix, and ESTIMATE scores were
calculated for all HCC samples in the TCGA-HCC dataset using
the ESTIMATE algorithm. The abundance of 24 immune cell types
and 9 immune-related pathways was determined in all TCGA-
HCC samples using the single-sample GESA (ssGSEA) algorithm.
TIDE score and immune treatment responses for each HCC sample
were retrieved from the TIDE database (hhttp://tide.dfci.harvard.
edu/). Differences in the aforementioned scores, immune cell
types, and immune-related pathways between the risk groups were
compared. Spearman correlation analyses were performed to assess
the relationships between biomarkers and differentially infiltrating
immune cells, as well as between biomarkers and immune-related
pathways (|co)| > 0.3, p-value <0.05).

2.9 Gene mutation analysis

Tumor mutation burden (TMB) was calculated for each
HCC sample using mutation data from the TCGA database.
To examine genetic differences between the risk groups, TCGA-
HCC individuals were stratified into high-TMB (H-TMB) and
low TMB (L-TMB) groups based on the optimal threshold
determined by survminer for survival difference analysis. Mutation
analysis was conducted using the maftools package (v 2.6.05), and
somatic interactions were assessed to identify correlations between
mutated genes (Mayakonda et al., 2018).

2.10 Drug sensitivity analysis and
molecular docking

To explore the potential application of common chemotherapy
drugs for patients with different risk profiles, 138 chemotherapy
drugs were obtained from the GDSC database (http://cancerrxgene.
org). IC50 values were computed for each drug in every HCC
sample using the pRRophetic package (v 0.5) (Jiang et al., 2022).
Additionally, the correlation analysis was conducted between the
risk score and the IC50 of 138 drugs (|cor| ≥ 0.5, p-value <0.05).
The drug exhibiting the strongest correlation with the biomarkers
was selected for further correlation analysis. Subsequently, the most
correlated drug-biomarker pair was chosen for molecular docking
studies. The 3D conformer structure of the drug was downloaded
from the PubChem database (https://pubchem.ncbi.nlm.nih.gov/),
and the crystal structures of biomarkers were retrieved from

the Protein Data Bank (PDB) (https://www1.rcsb.org/) database.
Molecular docking simulations were carried out with AutoDock
Vina, and the results were visualized using PyMol software.

2.11 Expression analysis

Further analysis examined the expression of biomarkers across
different cell subpopulations. The Wilcoxon rank-sum test was
performed to compare the expression levels of biomarkers between
HCC samples and normal samples in the TCGA-HCC and
GSE76427 datasets. The Additionally, 10 frozen tissue samples were
obtained from 5 patients with HCC and 5 normal individuals at
the First Hospital of Lanzhou University (ethics approval number:
LDYYLL-2024–716). RNA was extracted from 50 mg of each tissue
sample using TRIzol (Ambion, Austin, United States). The purity
and concentration of 1 µL of RNAweremeasured using aNanoDrop
spectrophotometer. Following the instructions of the SureScript-
First-strand cDNA-Synthesis-Kit, mRNA was reverse-transcribed
into cDNA.The CFX96 real-time quantitative PCR system was used
for 40 cycles of amplification, and the amplification and dissolution
curves were prepared. Relative gene expression was calculated using
the 2–△△Ct method, with statistical significance determined by
GraphPad Prism 5.

2.12 Statistical analysis

Data analysis was performed using the R statistical software (v
4.2.2). Group differences were evaluated using the Wilcoxon rank-
sum test, with a significance threshold of p-value <0.05. The overall
analysis process of this study was shown in Figure 1.

3 Results

3.1 There were 2,804 DEGs1 in GSE149614
and 4,202 DEGs2 in TCGA-HCC

The scRNA-seq analysis of the GSE149614 dataset was
performed to investigate the cellular mechanisms underlying HCC.
Following quality control, the dataset was deemed suitable for
further analysis (Supplementary Figure S1). After cell screening
and standardization, 2,000 highly variable genes were identified
(Figure 2A). The first 30 principal components (PCs) at the
inflection point were selected for subsequent analysis (Figure 2B).
Unsupervised clustering of the cells resulted in the identification of
25 distinct clusters (Figure 2C).These clusters were further classified
into six cell subpopulations based on marker gene expression: NK_
T cell, Hepatocyte, Myeloid, B cell, Endothelial, and Fibroblast
(Figures 2D, E). Significant differences in the proportions of these
cell subpopulations between HCC and normal samples were
observed (Figure 2F). A total of 2,804 differentially expressed genes
(DEGs1) were identified in GSE149614 between HCC and normal
groups (Supplementary Table S1). In cell-cell communication
analysis, endothelial cells, hepatocytes, fibroblasts, myeloid cells,
and B cells exhibited increased interaction numbers and strength
in the HCC group (Figures 2G, H). Moreover, the ligand-receptor
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FIGURE 1
The analysis flowchart of this study.

signaling differences between HCC and normal samples showed
that pathways such as SPP1, LAMININ and VTN were more
prevalent in the HCC microenvironment, suggesting enhanced
tumor growth, invasion, and immune evasion. In contrast, immune-
related signaling pathways like MHC-I, CXCL and CCL were
more prominent in the normal samples (Figure 2I). Additionally,
4,202 DEGs2 (3,039 upregulated and 1,163 downregulated) were
identified in thr TCGA-HCC dataset (Figures 2J, K).

3.2 The 3,157 key module genes were
obtained by WGCNA

No outliers were detected among the HCC samples in the
TCGA-HCC dataset (Figure 3A). When β was set to 20 and R2

= 0.85, the mean connectivity converged to 0 (Figure 3B). Six
co-expression modules were identified, with the MEblack module
showing the strongest correlation with EMT score (cor = 0.87, p <
0.05) and the MEgreenyellow module correlating strongly with the
anoikis score (cor = 0.53, p < 0.05) (Figures 3C, D). Based on criteria
|GS| > 0.4 and |MM| > 0.6, a total of 3.157 key module genes were
identified (Figure 3E).

3.3 The 82 candidate genes enriched in
many pathways

Next 82 candidate genes were obtained by intersecting DEGs1,
DEGs2 and the key module genes (Figure 4A). GO analysis
revealed that these candidate genes were significantly enriched in
functions related to platelet-derived growth factor binding, ECM

organization and basement membrane assembly, among others
(Figures 4B–D). Furthermore, 22 KEGG pathways were found to
be enriched, with the candidate genes predominantly involved
in the ECM-receptor interaction, PI3K-Akt signaling, and focal
adhesion pathways (Figure 4E). Within the PPI network, MMP14
was observed to interact with KPNA2, MAP1B, COL4A2, and
other proteins (Figure 4F).

3.4 Robust predictive ability of the risk
model

Based on the candidate genes, five biomarkers (LAMA4, C7,
KPNA2, STMN1 and SF3B4) were identified through univariate
Cox regression and LASSO analyses to construct a risk model
(Figures 5A–C; Supplementary Table S2). Patients in the training set
were stratified into high-risk and low-risk groups according to this
model (Figure 5D). Survival rates were significantly lower in the
high-risk group compared to the low-risk group (Figure 5E). The
model demonstrated robust prognostic performance, with the area
under the curve (AUC) values for 1, 3, and 5 years being 0.804, 0.723
and 0.673, respectively (Figure 5F). These results were validated
using the independent validation set (Figures 5G–I).

3.5 The nomogram model had the
capability for accurate prediction

Risk scores, identified as independent prognostic factors, were
calculated (Figures 6A,B; Supplementary Table S3). A nomogram
integrating the five biomarkers was constructed (Figure 6C) The
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FIGURE 2
Acquisition of differentially expressed genes and processing of single cell sequencing data. (A) Expression of highly variable genes across cells. (B)
Examination and visualization of PCA results using ElbowPlot. (C) Cell clustering can be visualized by t-SNE. (D) t-SNE clustering distribution of cell
subsets. (E) Marker gene expression plot for each cluster. (F) Histogram of cell proportions. (G-H): Differences in the number and intensity of
interactions between different cell populations in the communication networks across groups. (I) Signal pathway differences between groups. (J)
Volcano plot of differentially expressed genes between HCC and normal samples. (K) Expression heatmap of the top 10 downregulated differentially
expressed genes in HCC versus normal samples.
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FIGURE 3
Identification of associated with EMT and anoikis scores. (A) Sample clustering and phenotypic heatmap. (B) Soft threshold filtering. (C) Module
clustering tree. (D) Correlation heatmap of modules with EMT and anoikis scores. (E) Scatter plot showing the correlation between
MEblack/MEgreenyellow module genes and EMT score and anoikis score traits.

calibration curve indicated a close alignment with a slope of
1, suggesting good predictive accuracy (Figure 6D). The model
exhibited AUC values greater than 0.6 for 1, 3, and 5-year survival
predictions. Moreover, the model demonstrated superior efficiency
compared to any single gene (Figures 6E, F).

3.6 Risk scores and survival differences
among different clinical subgroups

Further analysis revealed significant differences between the
two risk groups in terms of vital status, OS time, grade,
pathologic T stage, and pathologic stage (Supplementary Table S4).

The risk scores differed substantially across subgroups based
on grade, pathologic stage, pathologic T stage, and vital status
(Figure 7A). Survival differences were also observed within
subgroups defined by pathologic-stage, pathologic T stage, and
pathologic M stage (Figure 7B).

3.7 Exploration of the potential
mechanisms of the 5 biomarkers

C7 was significantly enriched in pathways related to EMT,
inflammatory response, and upregulation of KRAS signaling
(Figure 8A). KPNA2, LAMA4, SF3B4, and STMN1 were enriched
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FIGURE 4
Acquisition and enrichment analysis results of 82 candidate genes. (A) Venn diagram showing intersection of genes. (B) GO-BP enrichment network for
candidate genes. (C) GO-MF enrichment network for candidate genes. (D) GO-CC enrichment network for candidate genes. (E) KEGG pathway
enrichment diagram for candidate genes. (F) PPI network of candidate genes.

in processes such as the G2M checkpoint and mitotic spindle
formation (Figures 8B–E).

3.8 Dissection of the immunological
landscapes across risk groups

Matrix scores significantly differentiated between the two
risk groups andwere negatively correlated with the risk score

(Figure 9A). Immune cell infiltration was evident across all HCC
samples (Figure 9B). Cytotoxic cells, TFH, NK CD56dim cells,
Tgd and Th1 cells showed clear differences between the two risk
groups (Figure 9C). A negative correlation was found between
Tgd cell abundance and STMN1expression, while a significant
positive correlation was observed between Th1 cell abundance and
KPNA2 expression (Figure 9D). Immune-related pathway scores
for all 9 immune pathways showed significant differences between
the two risk groups, including pathways like antimicrobials, BCR
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FIGURE 5
Establishment and validation of the risk model (A) Identification of 35 survival-related genes via univariate Cox regression analysis. (B,C): Selection of
five model genes using LASSO regression analysis. (D) Risk curve, scatter plot, and heatmap of model gene expression for high risk and low risk groups
in the training set. (E) Survival curve for high-risk and low-risk groups in the training set. (F) ROC curve for the training set at 1, 3, and 5 years. (G) Risk
curve, scatter plot and model gene expression heatmap for high risk and low risk groups in the ICGC-LIPI-JP dataset. (H) Survival curve for high risk
and low risk groups oin the ICGC-LIPI-JP dataset.(I): ROC curve for 1, 3, and 5 years survival in the ICGC-LIPI-JP dataset.
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FIGURE 6
Establishment of the nomogram model and its evaluation. (A) Cox-independent prognostic analysis forest plot for TCGA-HCC. (B) Multifactor
Cox-independent prognostic analysis forest plot for TCGA-HCC. (C) Nomogram predicting 1-, 3-, and 5-year survival. (D) Column chart and calibration
curve predicting 1-, 3-, and 5-year survival. (E) ROC curve for the nomogram. (F) Decision curve analysis (DCA) for TCGA-HCC.
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FIGURE 7
Correlation between prognostic model and clinical factors. (A) Box plots of risk scores across different clinical subtypes. (B) Survival analysis of different
clinical subtypes.
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FIGURE 8
GSEA results for the five biomarkers. (A) C7-HALLMARK enrichment ridge plot. (B) KPNA2-HALLMARK enrichment ridge plot. (C) LAMA4-HALLMARK
enrichment ridge plot. (D) SF3B4-HALLMARK enrichment ridge plot. (E) STMN1-HALLMARK enrichment ridge plot.

signaling, and chemokines (Figure 10A). Additionally, KPNA2,
LAMA4, and STMN1were positively correlatedwith these immune-
related pathways (Figure 10B). However, the TIDE score did
not show significant differences between the two groups nor

any correlation with the risk score (Figures 10C, D). Notable
differences were also observed in immune dysfunction, immune
rejection scores, CD274, and CD8 expression between the two risk
groups (Figures 10E,F).
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FIGURE 9
Immunoanalysis of high and low risk groups. (A) ESTIMATE differences between high and low risk groups and their correlation with risk scores. (B)
Histogram of immune cell proportion (score). (C) Box plot of differential immune cell proportions (scores) in high and low-risk groups (D) Heat map of
correlation between model genes and differential immune cells.

3.9 Unraveling the mutational patterns in
two risk groups

TMB did not show a significant difference between the two risk
groups, however, it exhibited a strong correlation with the risk score
(p = 0.033) (Figure 11A). TCGA-HCC individuals were divided
into H-TMB and L-TMB groups based on the optimal threshold.
These patients were further subdivided into four subgroups: H-
TMB with High Risk, H-TMB with Low Risk, L-TMB with High
Risk, and L-TMB with Low Risk. Significant survival differences
were observed among these four groups (p < 0.001) (Figure 11B).
Additionally, Figure 11C, D shows the top 20 mutated genes in the
two risk groups, and the interrelationships among them. Notably,
the mutation types of the five biomarkers predominantly consisted
of missense mutations (Figure 11E).

3.10 The IC50 values of 23 drugs differed
significantly between the two groups

A total of 14 drugs exhibited a significant negative correlation
with the risk score (cor < −0.5, p < 0.05), while 9 drugs showed

a strong positive correlation with the risk score (cor >0.5, p
< 0.05) (Figure 12A). The IC50 of 23 drugs varied significantly
between the two risk groups, as shown in Figure 12B. Among these,
the IC50 values of the top 3 drugs with the strongest positive
and negative correlations (AZD.0530, Bicalutamide, Lapatinib,
JNk.intervener.VIII, MS.275 and S. Treyl.l.costeine) were analyzed.
KPNA2, STMN1, and Bicalutamide exhibited a notably strong
positive correlation, while MS-275 showed a significant negative
correlation (Figure 12C). The drug-protein pairs with the strongest
positive (STMN1 and Bicalutamide) and negative (STMN1 and
MS.275) correlations were selected for molecular docking. The
3D conformer structure of Bicalutamide and the crystal structure
of PDB ID AF_AFP16949F1 corresponding to STMN1 were
downloaded, and molecular docking was performed (binding
energy = −5.0 kcal/mol). Hydrogen bonding interactions were
observed between Bicalutamide molecules and LYS-43, GLU-
49 of STMN1 (Figures 12D, E). For the negative correlation
pair, the 3D conformer structure of MS.275 and the crystal
structure of STMN1 (PDB ID AF_AFP16949F1) were used, with a
binding energy of −5.8 kcal/mol, Hydrogen bonding was detected
between MS.275 molecules and ASN-91, GLU-98, and GLU-
88 of STMN1 (Figures 12F, G).
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FIGURE 10
Analysis of immune-related pathways in high and low-risk groups. (A) Box plot of differential immune pathway scores in high and low-risk groups. (B)
Heatmap of correlation between model genes and immune pathway scores. (C,D): TIDEscores and their correlation with risk scores in high and
low-risk group. (E,F): Differences in immune dysfunction, immune rejection scores, CD274, and CD8 expression between high-risk groups.

3.11 Specific expression patterns of
biomarkers

The expression levels of biomarkers in each cell subpopulation
were visualized (Figure 13A). LAMA4 showed higher expression
in Endothelial cells and Fibroblasts, C7 was higher in Fibroblasts,
KPNA2 exhibited higher expression in T_NK and B cells, and
STMN1 and SF3B4 were more highly expressed in Hepatocytes

(Figure 13B). In the TCGA-HCC and GSE76427 datasets, except
for C7, the other biomarkers were upregulated in HCC samples
(Figure 13C; Supplementary Figure S2). To validate these findings,
RT-qPCR was performed. SF3B4 and STMN1 were significantly
upregulated in the HCC group (p = 0.0408, p = 0.0395, respectively),
whichwas consistent with the TCGA-HCCdataset results. However,
no significant differences were found in the expression of KPNA2
and C7 between the two groups (all p > 0.05), and LAMA4
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FIGURE 11
Mutation analysis in high and low-risk groups. (A) TMB box plot and scatter plot showing correlation with risk scores for high and low-risk groups. (B)
TMB box plot and scatter plot showing correlation with risk scores for high and low-risk groups. (C) Top 20 mutated genes in high and low-risk groups.
(D,E): Correlation of mutated genes.

expression was higher in the control group (p < 0.001), possibly due
to sample heterogeneity (Figure 13D).

4 Discussion

HCC ranks among the top five causes of cancer-related
mortality, with steadily rising incidence (Hartke et al., 2017).
The prognosis for HCC is poor, and the recurrence rate remains

high. Even after hepatectomy, patients are highly susceptible
to relapse within 6 months (Yasuda et al., 2024). Therefore,
early diagnosis and intervention are critical. Growing evidence
emphasizes the role of EMT as a key driver of cancer metastasis
(Wang et al., 2022). Additionally, anoikis, a specific form of
programmed cell death, has been identified as a key factor
in cancer progression (Lu et al., 2015). The interplay between
EMT and anoikis has emerged as a focal point of research in
recent years.
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FIGURE 12
Risk score and drug sensitivity analysis. (A) Histogram of drug sensitivity related to risk scores. (B) Box plot of IC50 values for drugs in the high and
low-risk groups. (C) Heatmap of correlation between model genes and differential drugs. (D) Schematic diagram of the 3D conformerr structure of
Bicalutamide. (E) PDB ID AF_AFP16949F1 figure showing docking results with Bicalutamide. (F) Schematic diagram of the 3D conformerr structure of
MS.275. (G) PDB ID AF_AFP16949F1 connection results with MS.275.

Frontiers in Cell and Developmental Biology 16 frontiersin.org

https://doi.org/10.3389/fcell.2025.1600546
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Wang et al. 10.3389/fcell.2025.1600546

FIGURE 13
Expression of risk model genes in each cell subpopulation. (A) t-SNE clustering of prognostic model genes. (B) Violin plot of prognostic model gene
expression. (C) Box plot of gene expression in the TCGA-HCC prognostic model. (D) RT-qPCR results.
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This study involved a comprehensive screening of genes
associated with both EMT and anoikis, leading to the identification
of five biomarkers, namely, LAMA4, C7, KPNA2, STMN1 and
SF3B4. LAMA4 induces CD8+ T cell senescence in HCC via
the ITGA6 receptor-mediated DNA damage signaling pathway.
Targeting LAMA4 suppresses malignant progression and enhances
the efficacy of anti-PD-1 therapy (Zhang et al., 2025). LAMA4
interacts with integrin receptors, activating focal adhesion kinase
(FAK) and Src family kinases (SFKs), which regulat cellular
adhesion and migration, thereby contributing to the EMT process
(Speisky et al., 2012). LAMA4, through its binding to integrins,
phosphorylates FAK and activates AKT, inhibiting pro-apoptotic
proteins, This mechanism enables tumor cells to resist anoikis and
metastasize. Targeting. LAMA4 may enhance anoikis sensitivity
and inhibit metastasis (Liu G. et al., 2024). C7 induces cell
membrane perforation and apoptosis by forming the membrane
attack complex (MAC) in collaboration with other complement
components. It targets tumor cells with low expression of surface
complement regulatory proteins. Reduced C7 mRNA levels are
associated with advanced cancer stages and higher tumor grades
in patients with HCC (Qian et al., 2022). C7-mediated MAC
formation directly induces tumor cell lysis and suppresses the EMT
process (Xu et al., 2022). Additionally, C7-mediatedMAC formation
enhances membrane damage in cells detached from the ECM,
synergizing with anoikis to eliminate tumor cells (Wong et al., 2021).
KPNA2 is overexpressed in various cancers and correlates with poor
prognosis, particularly in HCC where it is linked to immunological
infiltration and may play a role in cell cycle regulation (Pan et al.,
2023). Xia et al. demonstrated that KPNA2 has oncogenic functions,
and may modulate tumor progression through EMT. Furthermore,
riboflavin α2 may influence the malignant phenotype of cells by
binding to the KPNA2 promoter, thereby regulating EMT (Xia and
Ma, 2022). STMN1, amicrotubule-associated phosphoprotein, plays
a pivotal role in HCC progression bymodulating DNAmethylation,
regulating m6A RNA modification, and influencing disease-related
immune responses, STMN1 serves as a key biomarker for HCC
diagnosis and prognosis (Zhang E. D. et al., 2022). Liu et al.
demonstrated that miR-221 promotes TGFβ1-induced EMT in
human bladder cancer cells by targeting STMN1, positioning
it as a promising therapeutic target for metastasis (Liu et al.,
2015). Additionally, Huang et al. found that SF3B4 regulates
HCC proliferation and apoptosis through alternative splicing and
interactions with TRIM28 and SETD5, underscoring its potential
as a therapeutic target for HCC (Huang et al., 2025). Furthermore,
SF3B4 promotes cell migration and invasion through Twist1-
mediated mechanisms. As Twist1 is a key transcription factor
driving EMT, SF3B4 is believed to be closely associated with
EMT regulation (Yang et al., 2023). All five biomarkers identified
in our study have been implicated in HCC, EMT, and anoikis
resistance, with their roles in regulating HCC progression aligning
with previous findings.

Compared to existing prognostic tools for HCC, such as the
TNM staging system, Child-Pugh classification, and the China Liver
Cancer (CNLC) staging system, the proposed prognostic model and
nomogram offer superior predictive potential. The model allows
for identification of high-risk patients, even those in early stages
according to theTNMstaging, facilitating proactive surveillance and
intervention before disease progression. Furthermore, it provides

more personalized insights for clinical decision-making, extending
beyond tumor anatomical characteristics. The model’s clinical
applicability is also significant. It can be implemented in clinical
practice to stratify patients with HCC into risk categories, helping
clinicians identify high-risk individuals. This supports the adoption
of more aggressive treatment strategies, such asenhanced follow-
up and earlier adjuvant therapies. For high-risk patients, surgical
resection combined with postoperative adjuvant therapy may
be more appropriate, while low-risk patients may benefit from
conservative approaches like local ablation. Adjusting follow-up
frequency and diagnostic protocols based on the predicted risk levels
would optimize healthcare resource allocation. However, the model
has several limitations, The sample size may be limited and the
samples may primarily originate from a single institution or specific
regions, which could affect the model’s generalizability.

Gene expressionanalysis across different cell types indicated that
LAMA4 and STMN1 were highly expressed in endothelial cells and
fibroblasts, while C7 was predominantly expressed in fibroblasts.
Endothelial cells are primarily involved in tumor angiogenesis, and
fibroblasts play a pivotal role in promoting fibrosis or tumor growth,
indicating that these three biomarkers significantly contribute to
tumor progression. KPNA2 showed high expression in B cells and
T cells, indicating its potential relevance to immune regulation.
Moreover, SF3B4 was highly expressed in hepatocytes, implying a
potential role in hepatocyte transformation (Xie and Wang, 2025).

Furthermore, GSEA enrichment analysis revealed that C7
was enriched in EMT, while the other four biomarkers were
eassociatedwith theG2/Mcheckpoint andmitotic spindle pathways.
Research indicates that the MAC formed by C7 can directly induce
tumor cell lysis and inhibit EMT (Xu et al., 2022), thus reducing
metastasis and progression of HCC, which supports our findings.
DNA damage can trigger G2/M arrest while inhibiting integrin-
FAK signaling, thereby reducing cellular adhesion capacity and
increasing sensitivity to anoikis (Vaz et al., 2021). Dysregulation
of core regulatory proteins at the G2/M checkpoint can drive
premature mitosis without completing DNA repair, often leading
to genomic instability and promoting HCC progression. Notably,
Coptisine-mediated downregulation of E2F7 disrupts G2/M-phase
protein functions, providing a potential therapeutic strategy for
HCC (Wang et al., 2024). EMT has been shown to enhance
tumormitosis within mechanical microenvironments by facilitating
spatial accommodation for mitotic spindle formation, thereby
promoting cancer cell proliferation (Hosseini et al., 2020). Zhang
et al. constructed a risk assessment model based on mitotic
spindle assembly-related genes, which not only accurately predicts
HCC prognosis but also identifies novel therapeutic targets for
treatment (Zhang et al., 2024). Moreover, Spearman correlation
analysis of immune pathway scores and prognostic model genes
revealed significant positive correlations between KPNA2, LAMA4,
and STMN1 with nine immune-related pathways. These findings
suggest that these genes may influence HCC development through
these pathway.

Numerous studies highlight the significant role of immune
cells in influencing the progression of HCC (Hao et al., 2021). In
the present study, immunoanalyses of the high-risk and low-risk
groups revealed notable differences in immune cell populations and
immune-related pathways. NK cells, essential components of the
innate immune system’s cytotoxic lymphocytes, play a critical role
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in eliminating viral infections and cancer cells. Dysfunction in NK
cells is strongly associated with HCC progression (Sajid et al., 2022).
Zhang et al. demonstrated through genetic analysis of patients with
HCC, that those with poor survival outcomes had a higher number
of NK and Th1 cells (Chang et al., 2023), which aligns with our
results showing increased Th1 cell presence in the high-risk group.
Chemokines and their receptors also significantly contribute toHCC
progression, and remain a focal point of research. High expression
of chemokine has been linked to both HCC and colorectal liver
metastasis (Rubie et al., 2006), and our findings of elevated
chemokine expression in the high-risk group support this notion.
Additionally, while TIDE scores showed no significant differences
between the two risk groups, there were notable discrepancies in
immune dysfunction and immune exclusion scores. This suggests
that the high-risk group exhibits a greater proportion of immune
cells with compromised functionality, reducing their ability to
effectively target and eliminate cancer cells evenwhenpresentwithin
the tumor. Furthermore, it indicates that a larger proportion of
immune cells in the high-risk group are excluded from the tumor
microenvironment, preventing them from infiltrating the tumor
core and launching an immune attack. These findings can offer
insight into patient responses to immunotherapy, which is consistent
with findings reported by Wang et al. (Zhang E. D. et al., 2022). Xie
et al. also utilized relevant indicators to identify lncRNA features
associated with m6A modification and ferroptosis to predict the
immune efficacy in HCC (Xie et al., 2022).

Drug susceptibility analysis highlighted a significant inverse
correlation between the IC50 values of 14 drugs and the risk score,
while a strong positive relationship was found between the IC50
values of nine drugs and the risk score. The most significantly
correlated drugs included AZD.0530, bicalutamide, Lapatinib,
JNk.intervener.VIII, MS.275, and S. Treyl.L.osteine with the first
three showing a positive correlation and the latter three a negative
correlation. Bicalutamide is used to treat prostate cancer (Jia and
Spratt, 2022), and Lapatinib is widely employed in the treatment
of breast cancer (Bilancia et al., 2007). Chidamide, a structural
analog of MS-275, may inhibit HCC cell growth by upregulating
p21, inducing cell cycle arrest (Wang et al., 2012). Our findings
suggest that drugs negatively correlated with the risk score may
be more effective in treating patients in the high-risk group,
providing valuable insights for developing personalized therapeutic
strategies. Furthermore, a binding energy of −5.8 kcal/mol
between the 3D conformer structure of MS.275 and the crystal
structure of STMN1 (PDB ID AF_AFP16949F1) indicates a
stronger affinity, suggesting that MS-275 may be a promising
therapeutic agent.

PCR analysis revealed inconsistencies in the expression levels
of the five biomarkers, with only SF3B4 and STMN1 showing
positive results. This variation is likely due to sample heterogeneity.
Differences in sample sources and clinical characteristics, such as
age, gender, and tumor stage, can contribute to discrepancies in
gene expression. Additionally, the expression of biomarkersmay
vary across different patients with HCC at different stages.
Discrepancies in RNA extraction efficiency, reverse transcription,
and amplification conditions may also contribute to these
inconsistencies.

In recent years, research on biomarker-based models for HCC
has surged. Notably, Mu et al. developed a non-invasive nomogram

based on interleukin-41 (IL-41) to predict poor prognosis in HCC,
achieving promising results in forecasting recurrence and mortality
(Mu et al., 2025). Saeed et al. identified RACGAP1 and MKI67
as potential prognostic biomarkers for HBV/HCV-associated
HCC mediated by lactylation, thus pioneering new avenues for
immune-targeted therapies (Saeed et al., 2025). Among the many
multi-omics-based prognostic models, Bai et al. established a
biological model closely associated with tumor prognosis in HCC
through pan-cancer multi-omics analysis of monocyte-macrophage
differentiation (MMD) (Bai et al., 2025). Additionally, research
focusing on therapeutic interventions targeting EMT and anoikis
has been expanding. For example, emodin reverses sorafenib
resistance in HCC by suppressing EMT through inhibition of
the Akt signaling pathway (Wang and Zhang, 2025). Mesoporous
cerium oxide nanozymes also effectively inhibit HCC metastasis
by inducing anoikis resistance (Wang et al., 2025). Furthermore,
in the adjuvant treatment of HCC, monotherapy with immune
checkpoint inhibitors (ICIs) demonstrates the best safety profile,
outperforming dual ICIs and combinations of targeted therapy and
immunotherapy, providing valuable insights for future therapeutic
strategies (Wu et al., 2025). These innovations in model and
treatment strategies for HCC are driven by extensive research, Iand
pave the way for more refined and comprehensive diagnostic and
therapeutic approaches.

However, this study also has certain limitations. Firstly,
the sample size for the bioinformatic analysis was limited,
which may affect the generalizability of the results. Additionally,
the specific mechanisms of action of the biomarkers in HCC
have not been experimentally validated. Therefore, we plan
to integrate more public databases and clinical samples in
the future to strengthen the statistical power and validate the
reliability of our findings. Concurrently, we will conduct in
vitro (e.g., knockdown/overexpression in cell lines) and in vivo
(e.g., mouse models) experiments, utilizing techniques such as
immunohistochemistry (IHC) and Western blotting (WB), to
investigate the specific functions and regulatory pathways of the
biomarkers in HCC.

5 Conclusion

This study integrated the screening of EMTRGs and ARGs,
identified identify five biomarkers and developed a risk model.
The model was designed to explore the potential prognostic
implications of these biomarkers in HCC and investigate their
associations with immune resistance and relevant pathways. The
findings open new avenues for understanding the molecular
mechanisms and prognostic predictions of HCC. However, a
deeper understanding of the functional mechanisms and clinical
relevance of these genes is still required and warrants further
research. Future studies will aim to elucidate their roles with
greater precision.
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