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High mobility group box-1 (HMGB1) is a protein released from stressed or
damaged cells that triggers immune activation and chronic inflammation. The
NOD-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) is a central
component of the inflammasome, which activates caspase-1 and releases pro-
inflammatory cytokines, including IL-1β and IL-18. The HMGB1/NLRP3 axis
plays a critical role in regulating inflammation and immune responses, driving
systemic inflammation and disease progression. Targeting this pathway offers
promising therapeutic strategies for conditions such as autoimmune disorders,
trauma, and chronic inflammatory diseases. In particular, inhibiting HMGB1
or NLRP3 can mitigate the exaggerated inflammatory response, reduce tissue
damage, and slow disease progression. This review explores the bidirectional
interactions between HMGB1 and NLRP3 and discusses current and emerging
therapeutic approaches targeting this axis to modulate inflammation and
improve clinical outcomes.
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1 Introduction

The high mobility group box-1 (HMGB1) protein, a non-histone nuclear protein
widely expressed in eukaryotic cells, plays a central role in DNA modulation and
transcriptional regulation. Over the past few decades, HMGB1 has gained increasing
recognition for its pivotal involvement in inflammation and the pathogenesis of systemic
diseases (Goodwin et al., 1973; Rauvala et al., 2007; Chi et al., 2015). Upon cellular stress or
injury, HMGB1 is released, either actively or passively, as a damage-associated molecular
pattern (DAMP). It interacts with receptors such as toll-like receptors (TLRs) and the
receptor for advanced glycation end products (RAGE), amplifying signaling pathways that
drive inflammatory and immune responses (Yang et al., 2015; Harris et al., 2012). The
NOD-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is
another key player in inflammatory diseases. Composed of the sensor protein NLRP3,
the adaptor protein ASC, and pro-caspase-1, it recognizes cellular damage and infections,
triggering the release of pro-inflammatory cytokines like IL-1β and IL-18, and inducing
pyroptosis (Bauernfeind et al., 2009; Yang et al., 2019). The relationship between HMGB1
and NLRP3 forms a critical feedback loop: HMGB1 activates NLRP3 through NF-κB
signaling and ROS/ATP pathways, while NLRP3 activation further promotes the release
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of HMGB1, exacerbating inflammation (Yang et al., 2020a).
This bidirectional interaction sustains chronic inflammation,
contributing to the progression of various systemic diseases.

The HMGB1/NLRP3 axis plays a critical role in mediating
the transition from localized inflammation to systemic responses,
acting as a molecular bridge in chronic inflammation and immune
dysregulation. Understanding the role of the HMGB1/NLRP3
signaling pathway is especially pertinent for systemic diseases
such as autoimmune disorders, cardiovascular conditions,
and neurodegenerative diseases. Inflammation driven by the
HMGB1/NLRP3 axis contributes to disease progression and tissue
damage in these contexts. This review provides a comprehensive
analysis of the mechanistic roles of HMGB1 and NLRP3 in systemic
inflammation and explores their potential as therapeutic targets for
systemic diseases.

2 Structure and function of HMGB1
and NLRP3

2.1 HMGB1

HMGB1 is a multifunctional protein that plays a central role
in regulating inflammation and immune responses. It consists of
215 amino acids and has a molecular weight of approximately
30 kDa. Its structure features two highly conserved DNA-binding
domains, known as the A box (amino acids 1–79) and B
box (amino acids 89–162), along with a C-terminal acidic tail
(amino acids 186–215) (Figure 1A). These domains are arranged
in an “L” shape, facilitating their interaction with DNA. The
A and B boxes are positively charged, enabling them to bind
to the minor groove of DNA, thereby inducing DNA bending
and subsequently altering nucleosome stability and chromatin
conformation (Figure 1B). The B box functions as the primary
inflammatory region, while the A box acts as its antagonistic
counterpart. The functions of these domains are influenced by
the redox state of three key cysteines (Cys23, Cys45, and Cys106)
(Kang et al., 2014; Frank et al., 2015a; Wang et al., 2019). The
C-terminal acidic tail of HMGB1, rich in glutamic and aspartic
acids, carries a negative charge and plays a role in its functions,
while a short N-terminal region of lysine residues contributes to its
interactions and biological activity (Chen et al., 2022; Bianchi et al.,
1992). HMGB1 contains two nuclear localization signals (NLS1
and NLS2) that mediate its nuclear translocation. Structurally,
the protein contains specific binding domains that facilitate
interactions with pattern recognition receptors (PRRs), particularly
TLR and RAGE, thereby promoting its diverse biological functions
through these receptor-mediated pathways (Taverna et al., 2022)
(Figure 1A).

Normally, HMGB1 is located in the nucleus, where it acts
as a non-histone chromatin protein. By binding to DNA, it
regulates chromatin structure and influences key processes
such as gene expression, DNA repair, and replication (Bianchi
and Agresti, 2005). However, under stress conditions such as
infection, injury, or inflammation, HMGB1 can be released into
the extracellular space, where it acts as DAMP. This release can
occur through intrinsic immune activation or passive release
following cellular damage, involving various cell types like immune

cells, fibroblasts, and epithelial cells (Chen et al., 2022; Pisetsky,
2014; Bonaldi et al., 2003). Once outside the cell, HMGB1
binds to various receptors, thereby activating immune cells,
amplifying inflammatory responses, and driving disease progression
(Rapoport et al., 2020). Post-translational modifications, such
as acetylation, phosphorylation, and oxidation, regulate its
shuttling between the nucleus and cytoplasm, influencing processes
like apoptosis, autophagy, and cell death, which ultimately
determine (Tang et al., 2007; Wu et al., 2013; Ge et al., 2014;
Cui et al., 2019; Kang et al., 2011).

The functional activity of HMGB1 is predominantly modulated
by its redox state. In its unoxidized (reduced) form, HMGB1
primarily functions as a chemokine, recruiting immune cells to
sites of injury or inflammation without triggering a significant
inflammatory response. However, when oxidized, HMGB1 exhibits
pro-inflammatory properties, activating signaling pathways such
as NF-κB and MAPK, which amplify the inflammatory response
(Park et al., 2003; Dumitriu et al., 2005). In addition, evidence
indicates that redox status alone does not fully explain HMGB1’s
pleiotropic functions. Its extracellular activity is also critically
shaped by the type, expression level, and activation state of
cell surface receptors within the local microenvironment. These
receptors mainly include classical PRRs such as TLR4 and RAGE,
as well as non-canonical receptors like TIM-3 (Tang and Lotze,
2012) and CXCR4 (Pirani et al., 2024), which are differentially
expressed across immune cell subsets and pathological states,
thereby contributing to distinct immunological outcomes in
processes such as inflammation, tumor progression, and tissue
repair. This dual regulation by redox state and receptor context adds
a layer of complexity to HMGB1’s immunomodulatory functions.
At lower concentrations, HMGB1 contributes to antimicrobial
activity and transient inflammation. However, during infection,
necrosis, or apoptosis, HMGB1 levels rise significantly, leading
to severe inflammation, epithelial barrier disruption, organ
dysfunction, and even death. Active HMGB1 also plays a role in
various pathological conditions, including fever, anorexia, acute-
phase reactions, and vascular leakage syndrome (Andersson and
Tracey, 2011).

2.2 NLRP3

As a key sensor of the intrinsic immune system, NLRP3
sensitively detects endogenous cellular damage and exogenous
pathogenic invasion. Structurally, NLRP3 contains three
main functional domains: the Pyrin domain (PYD) for
protein stabilization, the leucine-rich repeat (LRR) domain
for protein-protein interactions, and the NACHT domain,
responsible for nucleotide binding and ATP hydrolysis
(Sharif et al., 2019; Swanson et al., 2019). In addition, the
NACHT domain includes several subdomains: the Fish-
specific NACHT-associated domain (FISNA), Nucleotide-
binding domain (NBD), helical domains (HD1, HD2), and a
winged helical domain (WHD), essential for NLRP3’s function
(Fu and Wu, 2023; Zhang et al., 2015; Dekker et al., 2021)
(Figure 2A).

NLRP3 activation occurs in response to a wide range of
endogenous and exogenous stimuli, including ATP, microbial
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FIGURE 1
The structure of HMGB1 and its interaction with DNA. (A) Domain and functional sites of HMGB1. (B) Conformational transition of HMGB1 and its DNA
binding mode.

agonists, particulatematter, and pore-forming toxins.The activation
process is triggered by two signals. The initial signal is provided
by PAMPs or cytokines (e.g., TNF-α), which activate the NF-κB
pathway to induce NLRP3 and pro-IL-1β expression. The second
signal is triggered by microbial or danger signals, leading to
K+ efflux (Muñoz-Planillo et al., 2013), Ca2+ influx (Lee et al.,
2012), cathepsin B leakage from lysosomes (Hornung et al.,
2008), ROS production (Zhou et al., 2010), translocation to
mitochondria (Zhou et al., 2011), and mitochondrial dysfunction
(Iyer et al., 2013). When activated, NLRP3 forms a complex
with apoptosis-associated speck-like protein containing a caspase
recruitment domain (ASC) and caspase-1 (Agost et al., 2004).
This complex drives the maturation and release of inflammatory
cytokines such as IL-1β and IL-18, which promote further immune
activation and recruit additional immune cells to the site of
injury or infection (Schroder and Tschopp, 2010). Additionally,
NLRP3 activation can lead to a form of programmed cell death
called pyroptosis, which exacerbates inflammation and tissue
damage (Boucher et al., 2018) (Figure 2B). While essential for
pathogen defense, dysregulated NLRP3 activity is associated with
various inflammatory and autoimmune diseases, such as arthritis,
cardiovascular disease, and neurodegenerative disorders. Therefore,
understanding how NLRP3 is activated and regulated is crucial
for developing therapies aimed at modulating its activity in
disease contexts.

3 Inflammatory mechanisms of the
HMGB1/NLRP3 axis

The interaction between HMGB1 and the NLRP3
inflammasome has emerged as a critical regulator of inflammatory

responses across various pathological contexts. HMGB1, acting as
a DAMP, interacts with immune receptors to initiate and amplify
inflammation, particularly by engaging the NLRP3 pathway. The
HMGB1/NLRP3 axis orchestrates a series of pro-inflammatory
events that drive acute and chronic inflammatory states, making
it a central focus in understanding the mechanisms of immune
activation, tissue injury, and disease progression. HMGB1 can
be actively secreted by cells exposed to inflammatory mediators,
DAMPs, or PAMPs, or it can be transiently and passively released
from apoptotic cells or from monocytes activated by exposure
to apoptotic cells (Andersson and Tracey, 2011; Gauley and
Pisetsky, 2009; Qin et al., 2006). Extracellularly secreted HMGB1
functions as a pro-inflammatory mediator, eliciting rapid responses
from various cell types, including monocytes and macrophages
(Li et al., 2003), dendritic cells (Yang et al., 2007), neutrophils
(Fan et al., 2007), T-cells (Dumitriu et al., 2005), B-cells (Tian et al.,
2007), epithelial cells (Yang, 2006), and smooth muscle cells
(Porto et al., 2006) and so on. Extracellular HMGB1 binds to
PRRs, through signaling pathways such as NF-κB, and activates
NLRP3 inflammasomes, thereby delivering the “signal 1” required
for NLRP3 activation (Wang et al., 2018; Vogel et al., 2018;
Lamkanfi and Dixit, 2014). The relationship between HMGB1
and NLRP3 is not only that the former upregulates NLRP3
expression. In addition, HMGB1 may, under specific pathological
conditions, enhance intracellular stress responses, such as ROS
production, K+ efflux, and mitochondrial dysfunction, to facilitate
the delivery of signal 2 required for NLRP3 inflammasome
activation. Although these events are well-established canonical
activation pathways, HMGB1 can act in concert with other
stimuli to amplify and modulate the inflammasome activation
process (Jiao et al., 2021; Lu et al., 2012). Once the NLRP3
inflammasome is assembled, caspase-1 is activated to cleave
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FIGURE 2
Structural domains and activation mechanism of the NLRP3 inflammasome. (A) Domain of NLRP3 and assembly of the Inflammasome. (B) Two-Signal
model for NLRP3 inflammasome activation.

pro-IL-1β and pro-IL-18, generating their active forms, IL-1β
and IL-18. Activation of the HMGB1/NLRP3 axis enhances the
secretion of these proinflammatory cytokines, thereby amplifying
both local and systemic inflammatory responses (Wang et al.,
2020). Activated caspase-1 induces cellular pyroptosis, during
which HMGB1 is further released as a DAMP that diffuses into
surrounding tissues and activates the NLRP3 inflammasome in
neighboring cells (Figure 3). Pyroptosis is also accompanied by
the release of other DAMPs, amplifying the positive feedback loop
of the HMGB1/NLRP3 axis and perpetuating a vicious cycle of
inflammation (Wang et al., 2020). In summary, the HMGB1/NLRP3
axis plays a central role in amplifying both local and systemic
inflammatory responses by activating the inflammasome and
driving the secretion of pro-inflammatory cytokines. This pathway,
through its dual-signal mechanism involving ROS generation
and ionic flux alterations, mediates acute inflammation and
contributes to chronic inflammatory states observed in various
pathologies. Elucidating the intricacies of the HMGB1/NLRP3
axis underscores its potential as a therapeutic target for
controlling inflammation-related diseases and enhancing immune
regulation.

4 Role of HMGB1/NLRP3 axis in
systemic diseases

4.1 Nervous system

4.1.1 Neuroinflammation
Neuroinflammation is a critical mediator in the initiation and

progression of various brain disorders. Microglia, the resident
immune cells of the central nervous system, are essential for
sensing pathological insults and maintaining neural homeostasis.
However, dysregulated microglial activity can lead to sustained
inflammation, thereby accelerating neurodegenerative processes
(Kwon and Koh, 2020; Niraula et al., 2017). For instance, Liu et al.
demonstrated that exposure to PM2.5 particles in the atmosphere
activates mouse microglia and induces neuroinflammation through
the HMGB1/NLRP3 signaling pathway. Silencing HMGB1 in
this context downregulated the NLRP3 inflammasome and the
subsequent NF-κB/MAPK pathways, reduced pyroptotic cell death,
mitigated hippocampal neuron damage, and improved synaptic
function in neurons (Liu et al., 2022a). Similarly, Liao et al. found
that inhibition of the HMGB1/NLRP3 axis in a rat stroke model
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FIGURE 3
The inflammatory mechanisms of the HMGB1/NLRP3 axis.

reduced pro-inflammatory factors (IL-6, IL-1β, and TNF-α) in the
brain, promoted the release of anti-inflammatory factors (IL-10,
TGF-β, and brain-derived neurotrophic factors), and facilitated
the shift of microglia from the M1 to M2 phenotype. This
resulted in the preservation of blood-brain barrier integrity and
improved the prognosis of ischemic stroke-related brain injury
(Liao et al., 2024). Furthermore, Ye et al. (2019) emphasized the
pivotal role of theTLR4/NF-κBpathway inmediating the interaction
between HMGB1 and NLRP3 during microglial polarization, thus
further driving neuroinflammation. As previously discussed, the
redox state of HMGB1 significantly impacts its activity. This was
corroborated by Frank et al. (2015b), who demonstrated that the
disulfide form of HMGB1 exhibited pro-inflammatory effects both
in vivo and in vitro.This formofHMGB1directly inducedmicroglial
polarization toward an immune phenotype via TLR4 signaling, with
NLRP3 playing a pivotal role in the downstreamneuroinflammatory
responses. Prolonged exposure to such inflammatory stimuli may
further exacerbate the neuroinflammatory process.

4.1.2 Depression
Depression is a leading mental health disorder, with increasing

global prevalence (Monroe and Harkness, 2022). Inflammatory
pathways, including the HMGB1/NLRP3 axis, contribute to the
pathophysiology of depression. Studies suggest that targeting this

axis may offer therapeutic benefits. In depressed rats, overactivation
of the hypothalamic-pituitary axis and elevated levels of HMGB1,
RAGE, and NLRP3 were observed in the hippocampus. HMGB1
amplifies inflammation by activating RAGE and TLR4, activating
the NF-κB signaling pathway, leading to the synthesis and
release of pro-inflammatory cytokines. Additionally, caspase-1-
specific inhibitor ameliorated depressive behaviors by inhibiting
the pyroptosis of oligodendrocytes in the hippocampus during
depression (Yang et al., 2020b). Recent studies have demonstrated
that downregulation of HMGB1 and NLRP3 protein expression
has been linked to alleviating depressive symptoms, making the
HMGB1/NLRP3 axis a potential target for antidepressant therapies
(Xie et al., 2021; Hendawy et al., 2023). These studies provide
compelling evidence for the involvement ofHMGB1 and theNLRP3
inflammasome in depression-associated neuroinflammatory
pathways, where elevated activation levels correlate with both
acute and chronic depression. By amplifying inflammation, the
HMGB1/NLRP3 axis contributes to both the onset and persistence
of depression, positioning it as a potential therapeutic target for
inflammation-related depression subtypes.

4.1.3 Brain injury and cognitive dysfunction
Traumatic brain injury (TBI) is closely associated with cognitive

dysfunction and neuroinflammation, with activation of the
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HMGB1/NLRP3 pathway playing a key role in these processes.
Following TBI, increased Tau protein levels are observed in the
dentate gyrus and thalamus, which correspond with elevated
HMGB1 and NLRP3 activation, contributing to cognitive deficits.
Inhibition of this axis has been found to improve spatial short-term
memory, hippocampal spatial working memory, and restore nesting
activity in mice (Zhao et al., 2021a). Moreover, a study by Shan et al.
demonstrated that prenatal exposure to sevoflurane impairs learning
and memory in rat offspring through HMGB1-induced activation
of NLRP3/ASC inflammasome (Shan et al., 2023). Notably, the
HMGB1/NLRP3 axis is also implicated in cognitive dysfunction
associated with sepsis (Xiong et al., 2022; Ma et al., 2024),
diabetes (Liu et al., 2022b), and Alzheimer’s disease (Elariny et al.,
2024). Targeting this axis may attenuate these pathologies, though
further clinical validation is needed. Additionally, the neuronal
NLRP3 inflammasome serves as critical mediator of cortical
neuroinflammation and trigeminal vascular activation. Microglia
activation may further promote neuronal NLRP3 inflammasome-
mediated cortical neuroinflammation through theHMGB1–TLR2/4
pathway, thereby contributing tomigraine development (Chen et al.,
2023a). In a study of 48 COVID-19 patients with headache
symptoms, those with headaches exhibited a stronger inflammatory
response compared to those without headaches. Elevated levels
of HMGB1 and NLRP3 were implicated in the induction of the
trigeminal system, with NLRP3 levels showed a moderate positive
correlation with headache severity, length of hospitalization, and
headache duration, while HMGB1 levels were positively correlated
with headache severity (Bolay et al., 2021).

Ischemic brain injury, a critical factor affecting prognosis,
further underscores the role of the HMGB1/NLRP3 axis. In a study
by Zhang et al. (2024a), neutral polysaccharide from Gastrodia
elata was able to attenuate the expression levels of HMGB1 and
NLRP3 after cerebral ischemia/reperfusion injury. This alleviated
neuroinflammationmediated by ferroptosis through theNRF2/HO-
1 signaling pathway, although the precise relationship between anti-
ferroptosis and anti-inflammatory effects remains unclear. Both
Stress and cerebral ischemia synergistically increase HMGB1 levels
in the serum and hippocampus, with activated microglia being
the main source of its release. This activation further triggers the
NLRP3 inflammasome pathway, impairing autophagic function in
microglia and aggravating injury (Espinosa-Garcia et al., 2020).
Notably, HMGB1 is released from cells during cerebral hemorrhage
and binds to TLR4 on the surface of immune cells. Activation of
the NLRP3 inflammasome promotes pyroptosis following cerebral
hemorrhage (Lei et al., 2024). A case-control study investigating
the correlation between NLRP3 expression and HMGB1 levels in
the serum of children with febrile epilepsy revealed that serum
levels of HMGB1, NLRP3, caspase-1, IL-1β, IL-6, and TNF-α were
significantly higher in children with epilepsy compared to controls
(Ye et al., 2024). Although they did not further explore howHMGB1
and NLRP3 interact to influence epileptogenesis, it focused on
clinical cases and provided a valuable direction for future research.
Additionally, the HMGB1/NLRP3 axis plays a significant role in
both acute and chronic inflammation, contributing to neurological
tumorigenesis and progression. In gliomas,HMGB1has been shown
to promote M1-like polarization of macrophages activate the NF-
κB pathway by binding to RAGE, and enhance the release of the
NLRP3 inflammasome. Bioinformatics analysis further revealed

that HMGB1 levels were higher in glioma tissues than in non-tumor
tissues, and elevated intracellular HMGB1 expression correlated
with poor prognosis (Li et al., 2022).

4.1.4 Retinal damage and glaucoma
The HMGB1/NLRP3 axis is crucial in the progression of

ocular diseases, particularly in retinal damage and glaucoma. For
instance, infection with Staphylococcus pseudintermedius activates
the NLRP3/HMGB1/ROS/GSDMD signaling axis in corneal
epithelial cells, exacerbating apoptosis and leading to the formation
of characteristic focal holes, numerous extracellular bubbles, and
other localized phenomena (Wang et al., 2024a; Wang et al., 2024b).
The increased release of HMGB1 regulates NLRP3 activation
through an NF-κB-dependent mechanism, contributing to retinal
damage and potentially progressing to glaucoma. This poses a
serious threat to human vision and may result in irreversible
blindness. Interestingly, inhibition of the HMGB1/NLRP3 axis has
been shown to reduce inflammation and mitigate retinal injury,
offering a potential strategy to protect vision and prevent irreversible
blindness (Chi et al., 2015; Zhao et al., 2024a).

4.1.5 Other neurological disorders
Spinal cord injury (SCI) is a significant public health issue

that imposes a substantial burden on both patients and society.
Primary SCI causes cell death and vascular destruction, which
subsequently trigger secondary processes, including inflammation,
ischemia, and oxidative stress, that exacerbate the injury. The
activation of inflammasomes plays a critical role in driving the
tissue inflammatory process (Alizadeh et al., 2019). Recent research
have shown that activating autophagy can inhibit the HMGB1/NF-
κB/NLRP3 pathway, thereby improving motor function and
reducing tissue damage caused by inflammatory responses following
SCI (Gholaminejhad et al., 2022). Müller et al. demonstrated that
lipocalin 2 increased the expression of HMGB1 and NLRP3 in
SCI, and knocking down lipocalin 2 reduced gliosis and NLRP3
activation in astrocytes (Müller et al., 2023). Heatstroke, which
causes vascular endothelial injury and multi-organ damage, also
involves HMGB1 in the activation of NLRP3 inflammasomes.
Regulating the HMGB1/NLRP3 axis could mitigate heatstroke-
induced damage, suggesting a potential therapeutic strategy
for these conditions (Zhang et al., 2024b; Pei et al., 2023).
Additionally, Yin et al. (2022) delved into the thrombocytopenia that
occurs after heatstroke from another direction, and they found that
after heatstroke, HMGB1 induces high levels of ROS production via
TLR4 and RAGE, which further activates NLRP3 inflammasomes
involved in platelet activation and reduction in vivo.

4.2 Respiratory system

4.2.1 Acute lung injury (ALI)
Acute lung injury (ALI) involves damage to lung tissue,

leading to dysfunction of alveoli, capillaries, and bronchioles.
This inflammatory syndrome, which can progress to acute
respiratory distress syndrome, is marked by the involvement of
various inflammatory factors (Burkard et al., 2023; Matthay and
Zemans, 2011). The HMGB1/NLRP3 axis plays a central role
in this process. Activation of NLRP3 in ALI models induces
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expression of triggering receptor expressed on myeloid cells-1,
which activates ROS–NF-κB signaling via HMGB1 and IL-18
secretion, creating a positive feedback loop that amplifies the
inflammatory response (Zhong et al., 2020). Furthermore, inhibition
of the HMGB1/NLRP3/Caspase-1 or HMGB1/RAGE/NF-κB
signaling pathways in the lung attenuates inflammatory infiltration
and cellular pyroptosis, thereby reducing lung injury (Ding et al.,
2023; Chen et al., 2021;Wu et al., 2024). Targeting the expression and
activation of these pathways may represent a novel strategy for ALI.

4.2.2 Pulmonary fibrosis (PF)
If left untreated, ALI can progress to pulmonary fibrosis

(PF). Huang’s team found that bleomycin-induced acute lung
injury in rats led to patchy fibrosis, atelectasis, hyperinflation,
thickened alveolar septa, and significant inflammatory cell
infiltration in lung tissues, accompanied by increased NLRP3
expression. Inhibition of HMGB1 expression promoted the
nuclear translocation of nuclear factor erythroid 2-related factor
2 (NRF2) and enhanced HO-1 levels, thereby reducing NLRP3
expression and partially reversing lung fibrosis (Huang et al.,
2023). The NLRP3 inflammasome has also been shown to
regulate epithelial-mesenchymal transition in the development of
pulmonary fibrosis, while HMGB1 promotes fibroblast proliferation
and collagen accumulation. Furthermore, inhibition of the
HMGB1/TLR4 axis and NLRP3 inflammasome/NF-κB signaling
pathways attenuates both inflammation and fibrosis (Aydin et al.,
2023; Elkhoely et al., 2023; Yang et al., 2024a). Targeting these
pathways may offer new therapeutic options for PF, though clinical
validation is needed.

4.2.3 Asthma
Asthma is a heterogeneous chronic inflammatory disease of

the respiratory system that causes airflow obstruction and affects
approximately 10% of adults. Among these, up to 6% have severe
asthma, which is associated with a reduced quality of life and
an increased risk of exacerbations, hospitalization, and death
(Settipane et al., 2019; Varricchi et al., 2022). The HMGB1/NLRP3
axis plays a pivotal role in asthma initiation and progression.
HMGB1 activates the NF-κB signaling pathway through TLR4
binding, which subsequently activates and releases the NLRP3
inflammasome. Additionally, HMGB1 induces autophagy in
bronchial epithelial cells, further promoting NLRP3 inflammasome
activation (Meng et al., 2023). Similarly, pre-treatment with ROS
scavengers and NF-κB inhibitors in human bronchial epithelial
cells downregulates NLRP3 inflammasome proteins, reduces IL-1β
and IL-18 levels, and improves mitochondrial membrane potential
(Jiao et al., 2021). Li et al. (2018) found that, in a mouse model of
ovalbumin-induced asthma, the ATP/P2X7 axis activated NLRP3
inflammasomes, inducing the expression and release of HMGB1
in dendritic cells. HMGB1 was shown to regulate allergic airway
inflammation, mucus production, and Th2 and Th17 polarization
in asthmatic mice.

4.2.4 Other respiratory conditions
Inflammation and immunity play critical roles in the

pathogenesis of pulmonary hypertension, with HMGB1 acting as
a key DAMP released by ferroptotic cells to activate the NLRP3
inflammasome via binding to TLR4. Inhibition of ferroptosis

in pulmonary artery endothelial cells attenuates pulmonary
vascular remodeling and protects the right ventricle in pulmonary
hypertensive rats (Xie et al., 2022). Additionally, HMGB1’s
interaction with RAGE and NF-κB exacerbates inflammation
through a positive feedback loop in the lung tissues of patients with
drug-associated pulmonary toxicity (Abd Elmaaboud et al., 2024).
Notably, although hyperactivation of the HMGB1/NLRP3 axis often
plays a detrimental role in humans, Gao andHuang (2024) observed
that is oflurane treatment in lung cancer cells activated HMGB1 and
RAGE, upregulated NLRP3 expression, and promoted pyroptosis
in tumor cells without affecting the viability of normal human
bronchial epithelial cells. This finding suggests that isoflurane may
be amore suitable anesthetic option for lung cancer surgery patients.

4.3 Digestive system

4.3.1 Liver injury
The importance of HMGB1 and the NLRP3 inflammasome

in liver diseases has garnered increasing attention. In acute
liver injury, macrophages release extracellular vesicles containing
HMGB1, which are taken up by hepatocytes through transferrin-
mediated endocytosis via binding to RAGE or TLR4. This
process activates the NLRP3 inflammasome, triggering hepatocyte
pyroptosis and injury. These findings suggest that HMGB1 not
only serves as a marker of liver cell injury but also actively
participates in regulating inflammatory responses (Wang et al.,
2021; Chen et al., 2024a). Autophagy is essential for maintaining
liver homeostasis. He et al. found that inducing autophagic flux
reduced HMGB1 secretion in hepatocytes, which subsequently
inhibited macrophage NLRP3 inflammasome activation, offering
a potential therapeutic strategy for liver fibrosis (He et al.,
2023). Conversely, autophagy-deficient hepatocytes actively release
HMGB1, promoting cholangiocyte proliferation and tumorigenesis.
This is driven by increased transcription of Caspase-11, triggered
by sustained NRF2 activation, which activates inflammasomes and
enhances HMGB1 release (Khambu et al., 2023). In alcoholic
liver disease, HMGB1 translocates from the nucleus to the
cytoplasm in hepatocytes, increasing apoptosis signal-regulating
kinase 1-positive hepatocytes, passive HMGB1 release, and NLRP3
inflammasome activation, promoting inflammation and hepatic
fibrosis (Adjei-Mosi et al., 2023). Inhibiting the NLRP3/HMGB1
signaling pathway reduces the feedback loop between inflammation
and oxidative stress, protecting hepatocytes (Cao et al., 2022;
Yao et al., 2024). Studies on hepatic ischemia-reperfusion injury
(IRI) have demonstrated that hepatic IRI upregulates the expression
of inflammation-related proteins, including HMGB1, TLR4, and
NLRP3, which triggers inflammatory responses and hepatocyte
injury (Du et al., 2021; Tong et al., 2023; El-Sisi et al., 2021). Xie et al.
(2020) found that HBV protein X induced an increase in
mitochondrial ROS under oxidative stress, activating the NLRP3
inflammasome. This activation led to hepatocyte death and
the release of inflammatory factors, including IL-1β, IL-18,
and HMGB1. Furthermore, the expression of inflammasome
components, such as NLRP3 and IL-1β, was positively correlated
with the HBV DNA load, suggesting the involvement of the NLRP3
inflammasome pathway in the progression ofHBV-related hepatitis.
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4.3.2 Gastrointestinal disorders
The release of HMGB1 is closely linked to the development of

various diseases, including acute pancreatitis and gastrointestinal
injury (Wu et al., 2021; Arab et al., 2022). In acute pancreatitis,
HMGB1 upregulation promotes the activation of the NLRP3
inflammasome, leading to the release of pro-inflammatory
cytokines, including IL-1β, which further exacerbates pancreatic
injury (Wu et al., 2021). HMGB1 plays a critical role in ethanol-
induced gastric ulcers by binding to TLR4 andRAGE, activatingNF-
κB, and inducing the activation of the NLRP3 inflammasome, which
delays ulcer healing. Conversely, inhibiting HMGB1 expression
accelerates the healing process (Alzokaky et al., 2020). In bile reflux
gastritis, pyroptosis mediated by the NLRP3 inflammasome results
in the release of HMGB1, which contributes to the inflammatory
response. Additionally, ubiquitin-specific protease 50 interacts with
ASC to deubiquitinate and activate the NLRP3 inflammasome,
promoting the release of HMGB1. This release subsequently drives
gastric tumorigenesis through the PI3K/AKT and MAPK/ERK
pathways, revealing a novel mechanism in bile reflux-associated
gastric carcinogenesis (Zhao et al., 2024b). Activation of the
NLRP3/HMGB1 pathway disrupts intestinal tight junction proteins
and promotes intestinal epithelial cell death, thereby compromising
the integrity of the intestinal barrier (Li et al., 2024). Ulcerative
colitis is a chronic inflammatory bowel disease affecting the colon
and rectum, significantly impairing patients’ quality of life and
causing long-term, burdensome complications (Le Berre et al.,
2023). Bioinformatics analysis revealed high expression levels of
several inflammation-associated genes, including TNF-α, HMGB1,
and NLRP3, in the colonic tissues of patients with ulcerative
colitis (Gao et al., 2024). Experiments have demonstrated that
the anti-inflammatory effects achieved by inhibiting HMGB1
binding to TLR4 and suppressing the activation of the NF-
κB/NLRP3 inflammasome pathway can ameliorate colonic mucosal
barrier disruption and neutrophil recruitment in ulcerative colitis
(Chen et al., 2023b; Sun et al., 2024). A prospective observational
study revealed elevated serum levels of NLRP3 and HMGB1 in
patients with ulcerative colitis, which were positively correlated
with disease severity (Chen et al., 2020). Although the sample size
of this study was small, it provides clinical evidence supporting the
role of NLRP3 and HMGB1 in ulcerative colitis and suggests their
potential as novel diagnostic markers for the disease.

4.4 Urinary system

In acute kidney injury, HMGB1 mediates cellular pyroptosis
and renal tissue injury by binding to and activating TLR4 and
RAGE receptors, triggering the NF-κB signaling pathway, and
promoting downstream activation of NLRP3 and proinflammatory
mediators (Hassan et al., 2024; Yang et al., 2024b; Henedak et al.,
2024). Inhibition of HMGB1/NF-κB/NLRP3 pathway-related
protein expression in HK-2 cells exerts anti-oxidative stress
and anti-apoptotic effects. Treatment with glycyrrhizin analogs
to inhibit HMGB1 levels accelerated the excretion of urea
nitrogen and serum creatinine in septic mice, attenuated renal
tissue injury, and preserved the integrity of the brush border
(Qiang et al., 2023). Zhang et al. (2023) showed that DAMP
accumulated after ferroptosis in renal cells recruits macrophages,

activates HMGB1/RAGE/TLR4/MyD88 signaling, activates the
NF - κB signaling pathway, and induces NLRP3 accumulation
and cellular pyroptosis. Hypertension and diabetes mellitus, two
major contributors to the global burden of chronic diseases, often
lead to renal fibrosis during the progression of chronic kidney
disease. HMGB1 and the NLRP3 inflammasome serve as key
mediators of renal fibrosis and may even contribute to renal
failure in hypertensive nephropathy and diabetic nephropathy
(Awa et al., 2024; Zhang et al., 2020).

4.5 Genital system

Recurrent spontaneous abortion (URSA) is a common
pregnancy complication with a complex etiology. In approximately
50% of cases, the underlying mechanism remains unknown.
However, inflammation and abnormal immune tolerance are
thought to be important pathogenic factors. Zhu et al. (2021)
demonstrated that HMGB1, GSDMD, NLRP3, and caspase-1
proteins were elevated in the decidua tissues of URSA mice and
patients. These results suggest that HMGB1, actively secreted by
macrophages, may induce cellular pyroptosis via activation of
the NF-κB signaling pathway, leading to aseptic inflammation,
disruption of the maternal-fetal interface, and ultimately triggering
URSA. Research indicates that HMGB1 and NLRP3 also contribute
to pro-inflammatory processes in endometriosis and pre-eclampsia
(Nunes et al., 2022; Huang et al., 2022).TheHMGB1/RAGE/NLRP3
axis plays a pivotal role in cervical epithelial pyroptosis, promoting
tumor cell proliferation and inflammation (You et al., 2021).

4.6 Circulatory system

4.6.1 Cardiac injury
Studies have shown that HMGB1 is upregulated inmacrophages

after cardiac injury and contributes to myocardial inflammation
by promoting NLRP3 inflammasome activation under hypoxic
conditions (Hu et al., 2022). Fan et al. found that elevated plasma
levels of NLRP3 and HMGB1 were associated with poor prognosis
in congenital heart disease, suggesting their potential as prognostic
biomarkers for the condition (Fan et al., 2020). Furthermore,
the HMGB1/NLRP3/caspase-1 pathway plays a role in hypoxia-
reoxygenation-induced cellular pyroptosis in cardiomyocytes.
Targeted inhibition of HMGB1 levels mitigates cytotoxicity and
reduces the release of inflammatory factors (Fei et al., 2022). Song
et al. demonstrated that Lipocalin-2 induces NLRP3 inflammasome
activation through the HMGB1/TLR4 signaling pathway in mice
with pressure overload-induced cardiac dysfunction, thereby
impairing cardiac function (Song et al., 2017). Inhibiting HMGB1-
dependent NLRP3 inflammasome activation reduces inflammation
and apoptosis, enhances cellular antioxidant defenses, and shows
potential for treating septic myocardial dysfunction and myocardial
infarction (Zhao et al., 2021b; Wei et al., 2024).

4.6.2 Hematological disorders
Acute myeloid leukemia (AML) is the most common acute

leukemia in adults and can be either de novo or secondary to other
processes (Bhansali et al., 2023). Using a mouse model of AML,
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Liu et al. (2021a) found that chronic restraint stress caused weight
loss and reduced survival in AML mice. The proposed mechanism
suggests that stress-induced HMGB1 secretion promotes AML
progression by activating NLRP3 inflammasomes.The upregulation
of the platelet NLRP3 inflammasome in patients with sickle cell
disease is dependent on HMGB1/TLR4. This upregulation may
regulate platelet responses and contribute to platelet aggregation,
thrombosis, and vascular leakage through an autocrine or paracrine
IL-1 receptor-mediated feed-forward loop (Vogel et al., 2018).
Inhibiting the HMGB1/NLRP3 signaling pathway could serve as
a potential therapeutic target for treating inflammation-induced
thrombosis and vascular remodeling diseases in the future
(Wei et al., 2022; Kim et al., 2018; Zhang et al., 2024c). During
Burkitt lymphoma development, lysate cells express elevated levels
of HMGB1, which activate the NLRP3 inflammasome to sustain
ZEBRA expression. ZEBRA initiates the transition of the virus from
the latent to the lytic state in lysate cells, therebymaintaining the lytic
signal. This process facilitates viral replication and dissemination
within host cells and may contribute to lymphoma progression
(Reinhart et al., 2022). In sepsis, lipopolysaccharide, a cell wall
component of Gram-negative bacteria, stimulates macrophages,
leading to the release of HMGB1, an important inflammatory
mediator. HMGB1 provides an inflammatory microenvironment
conducive to the activation of NLRP3 inflammasomes. In turn,
inflammatory factors released by activated NLRP3 inflammasomes
further amplify HMGB1 release and inflammatory signaling.
Together, these processes escalate the inflammatory response in
sepsis, resulting in severe tissue injury, organ dysfunction, and
ultimately poor patient prognosis (Xie et al., 2016). Studies have
shown that the expression levels of NLRP3 and HMGB1 are
markedly elevated in patients with myelodysplastic syndromes and
myelofibrosis, suggesting their potential involvement in disease
pathogenesis (Basiorka et al., 2016; Apodaca-Chávez et al., 2022;
De Luca et al., 2024; Parciante et al., 2023). Although the direct
mechanistic linkage between the two molecules remains to be
fully elucidated, their concurrent upregulation under analogous
pathological conditions suggests that the HMGB1/NLRP3 axis may
play a pivotal role in driving disease progression and could serve as
a promising target for therapeutic intervention.

4.7 Motor system

Following tendon injury, macrophages undergo cellular
pyroptosis, and HMGB1 translocates from the nucleus to the
cytoplasm, where it is subsequently packaged into extracellular
vesicles and released into the extracellular space. The HMGB1/TLR
axis activates the NF-κB signaling pathway in tendon-derived
stem cells, working synergistically with NLRP3 inflammasomes
to induce tendon-derived stem cell senescence and aberrant
osteogenic differentiation, ultimately contributing to traumatic
ectopic ossification (Li et al., 2023). HMGB1 triggers the
assembly and activation of the NLRP3 inflammasome, leading to
extracellular matrix disorganization, inflammation, and impaired
healing after tendon injury (Thankam et al., 2018). Macrophages
play a crucial role in maintaining tissue homeostasis and
immune regulation, with M1-polarized macrophages promoting
the production of inflammatory factors and influencing disc

degeneration. While attenuating M1-polarized macrophage-
mediated nucleus pulposus cell injury through inhibition of the
HMGB1-MyD88-NF-κB pathway and NLRP3 inflammasome
(Zhao et al., 2021c). The levels of HMGB1, NF-κB, NLRP3,
IL-1β, and TNF-α proteins were significantly elevated in bone
marrow mesenchymal stem cells following SCI, while inhibiting
the HMGB1/NF-κB/NLRP3 inflammatory pathway, attenuating
spinal cord tissue destruction, and improving the motor function of
rats with SCI (Gholaminejhad et al., 2022).

4.8 Immune system

Macrophage exposure to inflammasome agonists induces the
autophosphorylation of double-stranded RNA-dependent protein
kinase, which broadly regulates inflammasome activation through
physical interactions with various inflammasome components,
including NLRP3, and is critical for caspase-1 activation, IL-1β
cleavage, and HMGB1 release (Lu et al., 2012; Yu et al., 2019).
HMGB1 also plays a crucial role in aseptic inflammation by
activating the NLRP3 inflammasome, inducing IL-1β secretion and
sepsis, and recruiting neutrophils and eosinophils, resulting in
inflammatory infiltration and tissue damage (Jessop and Holian,
2015; Noguchi et al., 2021). Activation of the HMGB1/MyD88/NF-
κB/NLRP3 signaling pathway plays a central role in inflammation
in endothelial cells, which are classical antigen-presenting cells
(Liu et al., 2021b; Yu et al., 2022). Interestingly, diurnal changes
in ATP levels in peripheral blood regulate the diurnal release of
hematopoietic and non-hematopoietic stem/progenitor cells from
the bone marrow to peripheral blood through the activation
of NLRP3/HMGB1 (Adamiak et al., 2020). In atopic dermatitis,
HMGB1 activates the secretion of the NLRP3 inflammasome and
inflammatory factors in epidermal keratinocytes by interacting
with the RAGE receptor, as well as with IFN-γ and TNF-α,
either individually or synergistically, leading to erythema and
inflammation in the skin (Chang et al., 2023). Binsaleh et al. (2024)
identified a strong association with the skin inflammatory response,
influencing disease severity and patient depression, suggesting
a potential link between this axis in skin inflammation and
associated psychological states. Kawasaki disease is an immune-
mediated vasculitis in which the body’s immune system is
abnormally activated, with immune cells releasing large amounts
of inflammatory mediators, resulting in vascular endothelial cell
damage and an inflammatory response (McCrindle et al., 2017).
Studies have shown that endothelial cellular pyroptosis is a
key pathophysiological event in Kawasaki disease, triggered by
high levels of HMGB1, leading to elevated RAGE expression
and increased histone B activity, ultimately resulting in NLRP3
inflammasome-dependent, caspase-1-mediated endothelial cellular
pyroptotic death. Circulating HMGB1 may serve as a sensitive
predictor of endothelial injury in Kawasaki disease, and the
inhibition of pyroptosis activation may represent a potential
therapeutic target (Jia et al., 2019). Moreover, in addition to
promoting viral replication and the inflammatory response during
viral infection (Zhang et al., 2024d), HMGB1/NLRP3 is also
involved in various biological processes in tumor cells, including
cell proliferation, apoptosis, and immune regulation, thus offering

Frontiers in Cell and Developmental Biology 09 frontiersin.org

https://doi.org/10.3389/fcell.2025.1600596
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Yang et al. 10.3389/fcell.2025.1600596

FIGURE 4
The roles of activation or inhibition of the HMGB1/NLRP3 axis in systemic diseases.

new targets and strategies for tumor therapy (Chen et al., 2024b;
Yang et al., 2024c) (Figure 4).

5 Potential therapeutic targets of the
HMGB1/NLRP3 axis

Given the central role of the HMGB1/NLRP3 axis in various
systemic diseases, therapeutic strategies targeting HMGB1 and
NLRP3 have progressively emerged as a prominent area of research.
By modulating the activation of this axis, it is possible to reduce the
inflammatory response, block inflammation-induced tissue damage,
and improve disease outcomes. Current therapeutic strategies focus
on two primary approaches: first, inhibiting the release of HMGB1
or blocking its interaction with TLR/RAGE, and second, targeting
NLRP3 to prevent inflammasome activation and subsequent pro-
inflammatory cytokine release.

Recent advancements have highlighted a range of promising
therapeutic agents targeting HMGB1 and NLRP3. Anti-HMGB1
monoclonal antibodies have shown efficacy in preclinical models
of inflammatory diseases, such as sepsis and acute liver injury, by
neutralizing HMGB1 and reducing the inflammatory response.
Recombinant HMGB1 box A proteins, which specifically bind

to the receptor-binding domain of HMGB1, have been shown
to attenuate tissue damage in models of traumatic injury and
chronic inflammation (Yang et al., 2020a; Andersson et al.,
2018; Wang et al., 1999). Additionally, endogenous molecules
such as immunoglobulins, antithrombin, thrombomodulin,
vasoactive intestinal peptide, and growth hormone-releasing
peptide have demonstrated potential in reducingHMGB1-mediated
inflammation in various conditions, including infections and
chemical toxicity (Yang et al., 2020a; Lu et al., 2014). Among natural
compounds, niacin and mung bean extracts have been found
to effectively inhibit HMGB1 release, offering novel therapeutic
options for inflammatory diseases. Exogenous herbal ingredients
are particularly promising due to their low toxicity and broad
therapeutic potential, but their clinical development still faces
hurdles, such as standardization of dosages and efficacy validation
(Lu et al., 2014). In the field of NLRP3 inhibition, numerous
compounds are currently under extensive investigation. MCC950,
a potent small-molecule inhibitor of NLRP3, has demonstrated
significant efficacy in attenuating inflammatory responses across
both preclinical studies and early-phase clinical trials, showing
therapeutic potential for a range of diseases, including Alzheimer’s
disease, type 2 diabetes mellitus, and cardiovascular disorders
(Li et al., 2022). Andrographolide, a bioactive natural compound
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isolated from Andrographis paniculata, has also been reported
to effectively suppress NLRP3 inflammasome activation and
ameliorate inflammatory pathologies in conditions such as asthma
and rheumatoid arthritis (Agrawal and Nair, 2022). Additionally,
synthetic small molecules, such as JC121, which exhibit high
selectivity for NLRP3 targeting, have emerged as promising
candidates for the treatment of inflammasome-mediated diseases
(Blevins et al., 2022). Recent research efforts have facilitated the
development of clinically promising NLRP3-targeted compounds.
Dapansutrile Klück et al. (2020) and Inzomelid (NCT04015076), as
next-generationNLRP3 inhibitors, have successfully entered clinical
trials and demonstrated favorable safety profiles. These advances
represent a critical step forward in the clinical translation of NLRP3-
targeted therapies. HMGB1 and the NLRP3 inflammasome engage
in a reciprocal activation process, establishing a positive feedback
loop that amplifies inflammatory responses. Inhibiting either
HMGB1 or the NLRP3 inflammasome alone reduces the activation
of the other to some extent, attenuating the pro-inflammatory effects
of the HMGB1/NLRP3 axis.

While these therapeutic strategies have shown potential,
challenges remain in translating preclinical findings into clinical
success. One of the primary concerns is the selectivity of inhibitors.
Many compounds targeting NLRP3 also affect other immune
signaling pathways, which can lead to unintended side effects.
HMGB1 and NLRP3 are critically involved in multiple immune
regulatory and inflammatory processes, maintaining a delicate
and dynamic balance between inflammatory homeostasis and
pathological responses. Although pharmacological inhibition of
these key mediators holds promising therapeutic potential, it
may also lead to immune dysregulation, aberrant inflammatory
responses, and even tumor progression in certain pathological
contexts. Furthermore, due to the structural diversity and functional
complexity of the targets themselves, as well as the limited specificity
and in vivo stability of current inhibitors, off-target toxicity remains
a significant challenge. For instance, MCC950 was evaluated in a
Phase II clinical trial for rheumatoid arthritis but was subsequently
discontinued due to elevated serum liver enzyme levels observed in
patients, Although the precisemechanism of its hepatotoxicity is not
fully understood, it may be related to both its molecular structure
and the high dosage used in clinical settings (Mangan et al., 2018).
Therefore, bioavailability and the long-term safety of these agents
require further validation in large-scale clinical trials.

6 Conclusion

The HMGB1/NLRP3 pathways serve as critical modulators
in the development and progression of systemic inflammatory
disorders. As pivotal drivers of innate immune responses, these
pathways bridge inflammation and disease pathogenesis by
orchestrating cellular stress signals, inflammasome activation, and
the subsequent release of pro-inflammatory cytokines. Evidence
increasingly underscores the centrality of HMGB1 and NLRP3 in
promoting chronic inflammation and multi-organ damage across a
spectrum of diseases, including autoimmune disorders, trauma, and
stress. Notably, although the synergistic activation betweenHMGB1
and NLRP3 may form a pro-inflammatory positive feedback loop
that accelerates disease progression, their regulatory mechanisms

exhibit distinct variability and complexity across different tissue
environments and pathological conditions. In particular, the
functional roles and interactions of HMGB1 and NLRP3 may vary
significantly depending on the cell type and stimulation context,
and the ensuing activation of the associated inflammatory signaling
cascades also displays diverse characteristics. In this review, we
primarily describe the role of HMGB1/NLRP3 in systemic diseases
and do not explore the related targeted therapeutic mechanisms in
detail. Future studies should aim to unravel the precise molecular
mechanisms underlying their interplay, enabling the development
of highly specific, pathway-targeted interventions. Such approaches
hold promise for improving outcomes in patients suffering from
inflammation-driven systemic diseases. In summary, advancing our
understanding of the HMGB1/NLRP3 axis will not only elucidate
the molecular underpinnings of systemic inflammation but also
pave the way for innovative therapeutic strategies to address the
unmet medical needs in chronic inflammatory conditions.
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