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Identification of the key immune 
gene NR3C1 as a diagnostic 
biomarker in differentiating 
ovarian borderline tumors from 
benign tumors

Shiying Chen1†, Yumin Ke1†, Yajing Xie1, Zhimei Zhou1, 
Weihong Chen1, Li Huang1, Liying Sheng1, Yueli Wang1, 
Shunlan Liu2* and Zhuna Wu1*
1Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Fujian Medical 
University, Quanzhou, Fujian, China, 2Department of Ultrasound, The Second Affiliated Hospital of 
Fujian Medical University, Quanzhou, Fujian, China

Background: This study aims to evaluate novel immune-related biomarkers for 
distinguishing borderline ovarian tumors (BOTs) from Benign ovarian tumors 
(BeOTs), addressing the diagnostic challenges posed by their intermediate 
biological behavior between benign and malignant neoplasms.
Methods: We obtained the microarray expression profiles from the datasets 
(GSE4122 + GSE6822 + GSE36668) in the Gene Expression Omnibus 
(GEO) database and integrated them with the immune-related genes in the 
ImmPort database. Differentially immune-related genes (DIRGs) underwent 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis. Protein-protein interaction (PPI) network was built to 
explore the connection. Candidate biomarkers were identified using the 
Least absolute shrinkage and selection operator (LASSO) and support vector 
machine-recursive feature elimination (SVM-RFE), with their diagnostic ability 
evaluated using Receiver operating characteristic (ROC) curves. A nomogram 
was constructed to predict BOTs. To validate the diagnostic potential and 
expression profiles, immunohistochemistry (IHC) analysis was performed in 
conjunction with the evaluation of an independent test group. We characterized 
the infiltration profiles of 22 immune cell types in BOTs through the CIBERSORT 
algorithm.

Results: We identified 26 DIRGs between BOTs and BeOTs. These DIRGs 
were primarily associated with the positive regulation of transferase activity, 
the positive regulation of epithelial cell proliferation, and the positive 
regulation of the MAPK cascade. KEGG analysis indicated enrichment of 
Rap1 and PI3K-Akt signaling pathways. FGFR3, GNAI1, NR3C1, and PDGFA 
were found to have potential diagnostic value for BOTs (AUCFGFR3 = 
0.883, AUCGNAI1 = 0.789, AUCNR3C1 = 0.760, AUCPDGFA = 0.783) and further 
validated in the test group (AUCFGFR3 = 0.917, AUCGNAI1 = 0.900, AUCNR3C1

= 0.867, AUCPDGFA = 0.833). Low expression of NR3C1 and GNAI1 and high 
expression of FGFR3 and PDGFA are associated with the development of
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BOTs. In addition, NR3C1 negatively correlated with CD4 memory resting T cells, 
as well as positively correlated with T cells gamma delta (P < 0.05).

Conclusion: Our study findings suggested that NR3C1 may serve as an 
immune-related diagnostic biomarker for BOTs, offering a novel perspective for 
investigating the development and diagnosis of BOTs.

KEYWORDS

machine-learning, borderline ovarian tumors(BOTs), benign ovarian tumors(BeOTs), 
NR3C1, immune-related biomarkers 

Introduction

BOTs represent 10%–20% of epithelial ovarian tumors, 
constituting a distinct pathological entity with clinical and 
histological features intermediate between benign and malignant 
neoplasms. The lack of specific screening modalities and the 
absence of early clinical symptoms pose significant challenges 
to accurate diagnosis. Most patients are diagnosed incidentally 
during routine physical examinations or upon presentation with 
nonspecific abdominal symptoms such as pain or distension. 
Despite the majority of patients having a favorable prognosis 
and high overall survival rates, there has been an increasing 
incidence in recent years, with recurrence rates ranging 
from 5% to 34%. A subset of these cases demonstrates a 
propensity for malignant transformation, particularly those 
with high recurrence rates and seeding metastases, leading to 
less favorable outcomes (Vo et al., 2019; Sangnier et al., 2021; 
Raad et al., 2020; Armstrong et al., 2021).

The factors and molecular pathways implicated in the 
initiation and progression of BOTs are intricate and diverse, 
with ongoing discovery and exploration of diagnostic markers 
such as AGR2 (Armes et al., 2013), Rb/p105 (Masciullo et al., 
2020), Aurora (Alkhateeb et al., 2021), among others. 
However, many of these markers have inherent limitations 
in terms of diagnostic sensitivity or specificity. Therefore, 
we hope to identify more efficient diagnostic biomarkers for 
BOTs through molecular biological information technology, 
enabling early diagnosis and treatment of BOTs, and reducing 
recurrence.

There is a growing body of research that establishes a 
connection between the immune microenvironment and the 
development and progression of cancer. Cancerous tumors must 
evade anti-tumor immune effects to grow gradually. The tumor 
immune microenvironment (TIME) consists of tumor cells, 
immune cells, and cytokines, and the interactions among these 
components determine the direction of anti-tumor immunity. 
Understanding the immunological characteristics of TIME has 
led to the development of new immunotherapeutic approaches 
and the identification of potentially useful biomarkers for 
clinical diagnosis, particularly for patients with challenging 
diseases, significantly improving their survival and prognosis 
(Gajewski et al., 2013; Lv et al., 2022). Therefore, this study aims 
to explore a highly efficient and specific method based on immune-
related genes to assist in the clinical diagnosis and distinction of 
BOTs, thereby enhancing the prognosis and survival outcomes of 
BOTs patients.

TABLE 1  GEO database data of BOTs mRNA expression profile.

Dataset ID Platform BOTs BeOTs

Train Group

GSE4122 GPL201-30390 3 18

GSE6822 GPL80-30376 9 6

GSE36668 GPL570-55999 4 0

16 24

Test Group

GSE51088 GPL7264-9589 12 5

Methods

Data collection and processing

We obtained the train group datasets (GSE4122+GSE6822+GSE
36668) from the GEO database (https://www.ncbi.nlm.nih.
gov/geo/), including 16 BOTs samples and 24 BeOTs samples. 
The test group dataset (GSE51088, including 12 BOTs and 5 
BeOTs) (Table 1). Microarray probes were mapped to gene symbols 
in each dataset based on their probe annotation files. Genes 
detected by multiple probes were represented by aggregated mean 
expression values derived from corresponding probe measurements. 
To merge the three independent datasets into a unified meta-
cohort, we implemented the “SVA” R package for batch effect 
correction (Supplementary Figure S1). The “limma” package in R 
was used for normalization of raw data and background correction 
(Ritchie et al., 2015). Differentially expressed genes (DEGs) were 
defined as those genes meeting the threshold of |log2 fold change 
(FC)| > 1 with an adjusted p-value < 0.05. The Immune-related 
genes (IRGs) Data were downloaded from the ImmPort database 
(https://www.immport.org/shared/) (Supplementary Table S1). 
Subsequently, DIRGs were identified as the intersection of IRGs 
and DEGs of BOTs.

Function and pathway enrichment of 
DIRGs

Functional annotation analysis was conducted through 
GO and KEGG pathway enrichment using the R packages 
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‘clusterProfiler’ (Yu et al., 2012), ‘org.Hs.e.g.,.db’, ‘enrichplot’, and 
‘DOSE’. We performed the GO enrichment analysis using the full 
set of IRGs as the background gene set. Enriched terms were 
systematically characterized across three GO domains: biological 
processes (BP), molecular functions (MF), and cellular components 
(CC), along with curated KEGG signaling pathways. Enrichment 
results were visualized through dot plot representations generated 
by the R package “ggplot2”, employing a modular visualization 
framework. Statistical significance for functional enrichment was 
established using a p-value threshold of < 0.05. 

PPI network construction and analysis

We employed the STRING website (https://string-db.org/) 
(von Mering et al., 2003) to search for a PPI network using 26 
DIRGs in the “multiple proteins” module and “Homo sapiens” in 
the organism module. Based on the protein IDs, corresponding 
gene symbols were assigned using the STRING Database. PPIs 
were filtered using a high confidence interaction score threshold (≥ 
0.700), and those lacking associated gene symbols were excluded. 
Subsequently, the calculation of MCC was performed using the 
[cytoHubba] plugin (version 0.1) of Cytoscape software (version 
3.10.0) (https://cytoscape.org/) (Chin et al., 2014) to identify key hub 
genes with degrees ranking in the top 10 based on the topology of 
protein-protein interaction networks. This algorithm calculates the 
connection pattern score of each node in the network to construct 
the PPI network. 

Building a model to predict BOT diagnosis 
based on DIRGs

Significantly diagnostic biomarkers were identified through 
the selection of DIRGs via Spearman correlation analysis in 
BOTs with cutoff = 0.3, pFilter = 0.05. We identified these 
biomarkers by combining the LASSO algorithm with the mSVM-
RFE method. To perform LASSO, an algorithm used in regression 
analysis for variable selection to prevent overfitting, we utilized 
the “glmnet” package (Friedman et al., 2010). Meanwhile, 
the mSVM-RFE algorithm was executed with the help of the 
“e1071″R package (Zhou and Tuck, 2007). This algorithm makes 
use of resampling methods in each iteration. Its purpose is to 
stabilize the rankings of features and to pinpoint the most relevant 
features. It does so by eliminating the feature vectors produced by 
the SVM through supervised machine-learning techniques. Using 
the R package “pROC” to conduct ROC curves on the dataset. The 
area under the curve (AUC) value was calculated to assess the ability 
of the expected biomarker to distinguish BOTs from BeOTs tissue. 

Establish and validate the PCA and 
nomogram model for the diagnostic ability 
of BOTs

PCA reduces the dimensionality of gene expression data through 
eigenvalue decomposition and quantifies the statistical significance 
of differences between groups based on grouped confidence ellipses. 

PCA was used to further verify the diagnostic ability of DEGs for 
BOTs using the “limma” and “ggplot2” R packages. A nomogram 
model was constructed using the “rms” and “rmda” packages to 
predict the diagnosis of BOTs. Each factor’s score is represented as 
“points,” while the cumulative score of all factors is referred to as 
“total points.” Subsequently, calibration curves were generated to 
assess the predictive performance of the nomogram model. 

Evaluation of immune cell infiltration in 
BOTs and biomarkers

We utilized the CiberSort algorithm (http://cibersort.stanford.
edu/) to quantify the proportion of 22 infiltration immune 
cells in BOTs (Gao et al., 2020) and conducted the penetration 
difference between the two groups using the “corrplot”, “reshape2”, 
and “ggpubr” packages in R software. Spearman’s correlation analysis 
was employed to investigate the relationship between screened 
diagnostic biomarkers and the levels of immune-infiltrating cells, 
and the results were visualized using the “ggplot2″ R package. 

Patient and tissue samples

We collected 40 paraffin-embedded specimens from patients 
with BOTs and 43 with BeOTs who underwent ovarian cystectomy 
or oophorectomy at the Second Affiliated Hospital of Fujian Medical 
University between January 2019 and May 2024. This study was 
approved by the Research Ethics Committee of the Second Affiliated 
Hospital of Fujian Medical University before commencement. 

Immunohistochemistry (IHC)

The IHC staining method using an anti-NR3C1 antibody was 
employed to categorize the intensity ratio of staining in specimens. 
The scoring criteria were as follows: Based on the proportion of 
positive cells among all tissue cells and the intensity of positive cell 
staining, the experimental results were determined as follows: (A) 
Score based on the number of stained cells. If the number of positive 
cells is less than 1/3 of the total number of cells, it is scored as 1 point; 
if it is between 1/3 and 2/3, it is scored as 2 points; if it is greater 
than or equal to 2/3, it is scored as 3 points. (B) Score based on the 
intensity of staining. If the staining is negative, it is scored as 0 points; 
if the staining is light yellow, it is scored as 1 point; if the staining is 
brownish yellow, it is scored as 2 points; if it is tan, it is scored as 3 
points. The total score = A x B. Subsequently, the slide samples were 
divided into the low-expression and the high-expression groups, 
which were defined by total scores <6 and ≥ 6, respectively. The 
pathological diagnosis for tissue samples from study patients was 
conducted by two gynecologic oncology pathologists. 

Quantitative real-time PCR (qRT-PCR)

We extracted total RNA from frozen ovarian tissues after 
oophorectomy using TRIzol reagent (Beyotime, Biotechnology, 
China). Subsequently, we synthesized cDNA following the 
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manufacturer’s instructions (TaKaRa, Japan). We employed GAPDH 
as an internal reference gene and calculated the relative mRNA 
expression levels of NR3C1 using the 2−ΔΔCT method. We performed 
qRT-PCR in triplicate for each sample across three independent 
experimental replicates. 

Statistical methods

All statistical analyses were conducted using R software (v.4.1.1). 
The Mann-Whitney U test was employed to compare different 
groups, and the Chi-square test was utilized for the comparison of a 
2 × 2 contingency table. The analyses included LASSO regression, 
SVM-RFE algorithm, ROC analysis, Spearman’s correlation, and 
unpaired t-test. Statistical significance was defined as P < 0.05.

Results

Study procedure

Figure 1 shows the analytical procedure outlined in the study. 
Microarray data were obtained from the GEO database. Based on 
the probe annotation file, the microarray probes were associated 
with the gene symbols in each dataset. DEGs were intersected 
with IRGs to obtain DIRGs. Enrichment analysis of DIRGs was 
performed using GO and KEGG databases. Candidate overlapping 
genes were further screened through PPI networks as well as 
two machine learning algorithms (LASSO and SVM-RFE). The 
predictive ability of the biomarkers was validated using principal 
component analysis (PCA) and ROC curves, which were further 
verified in the GSE51088 dataset. The composition pattern of 22 
immune cells in BOTs was calculated using the Cibersort algorithm, 
followed by an analysis of immune cell correlations with diagnostic 
biomarkers. Finally, IHC staining was conducted on paraffin-
embedded specimens meeting the inclusion criteria to validate 
our findings.

Identification of DIRGs in BOTs

From three integrated datasets (GSE4122, GSE6822, and 
GSE36668), we identified 172 DEGs between 16 BOT patients 
and 24 BeOTs samples. These DEGs were filtered using 
thresholds of adj.P.Val < 0.05 and |log2FC| > 1 (Figure 2A; 
Supplementary Table S2). A total of 91 genes demonstrated 
significant downregulation, while a lower number (81 genes) 
showed significant upregulation (Figure 2B). IRGs were refined to 
1,509 high-confidence candidates through standardization of gene 
names (trimming spaces) and deduplication before intersection 
analysis (Supplementary Table S3). To identify DIRGs in BOTs, we 
performed an intersection of the DEGs and IRGs to identify 26 
DIRGs (Figure 2C; Supplementary Table S4). Among these DIRGs, 
16 DIRGs were downregulated, whereas 10 DIRGs were significantly 
upregulated in the BOTs.

Functional enrichment analysis

Using the “ClusterProfiler” package in R, functional enrichment 
analysis was carried out to investigate the potential biological 
functions and signaling pathways associated with the 26 DIRGs. 
These biological processes (BP) were mainly associated with positive 
regulation of the MAPK cascade, epithelial cell proliferation, and 
positive regulation of transferase activity. The cellular components 
(CC) of the DIRGs are primarily focused on the platelet alpha 
granule lumen, actin-based cell projection, and vesicle lumen. The 
molecular function (MF) of the DIRGs was significantly enriched 
in receptor-ligand activity, signal receptor activator activity, and 
growth factor binding (P < 0.05, Figures 2D,E, Supplementary 
S1). Furthermore, KEGG enrichment results highlighted the 
26 DIRGs’ major involvement in several signaling pathways, 
including Rap1, PI3K-Akt, Ras, and MAPK signaling pathways. 
These findings will facilitate further exploration into potential 
mechanisms underlying BOT development (P < 0.05, Figure 2F,
Supplementary S2). 

PPI network construction and hub gene 
selection

To construct a PPI network, we employed the STRING 
database (https://string-db.org/) by inputting 26 DIRGs into the 
“multiple proteins” module and selecting H. sapiens as the 
target species. Following the removal of disconnected nodes, 
the PPI network retained 12 interconnected DIRGs (Figure 3A). 
Subsequently, cluster analysis of the network genes was performed 
using the cytoHubba plugin in Cytoscape software. 10 hub nodes 
prioritized by the MCC (Maximal Clique Centrality) algorithm 
were identified and categorized (Figure 3B). The expression levels 
of FGFR3, HRAS, and PDGFA genes were observed to be 
upregulated, whereas the expression levels of GNAI1, PDGFRA, 
CXCL12, AR, NR3C1, FGFR1, and IGF1 genes were found to be 
downregulated (Figures 3C,D).

Correlation of prospective biomarkers in 
BOTs

To investigate the interrelationships among the 10 DIRGs, 
Spearman correlation analysis was conducted with a cutoff 
of 0.3, pFilter = 0.05. Leveraging the ‘tidyverse’ and ‘corrr’ 
packages in R, co-expression correlation heatmap (Figure 4A) 
and co-expression network diagram (Figure 4B) present key 
interactions included strong positive correlations between CXCL12 
and PDGFRA (r = 0.58, p = 0.0194), and significant negative 
correlations between FGFR3 and CXCL12 (r = −0.71, p = 0.002) 
(Supplementary Tables S5, S6). Scatter plots showed that the 
expression level of IGF1 was significantly positively correlated with 
the levels of CXCL12, GNAI1, and PDGFRA. Furthermore, the 
expression level of FGFR3 was negatively correlated with CXCL12 
expression (Figure 4C).
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FIGURE 1
The flowchart of the overall study.

Construction of a diagnostic model for 
BOTs

To precisely identify key diagnostic biomarkers in BOTs, we used 
the Lasso algorithms (Figures 5A,B) and SVM-RFE (Figures 5C,D) 
algorithms to identify potential diagnostic biomarkers. It is worth 
noting that the DIRGs identified by the two algorithms were 
completely consistent. In the end, we provided a comprehensive 
summary of the 8 candidate genes (PDGFA, HRAS, GNAI1, 
NR3C1, FGFR3, IGF1, AR, and FGFR1) parameters and 
results from both LASSO and SVM-RFE algorithms, as shown
in Table 2.

Comprehensive characterization and 
verification of the eight key DIRGs

Figure 6A shows the location of 8 DIRGs on the chromosome. 
PCA results showed that the first two principal components 
(PC1 and PC2), with percentage values of explained variance 
indicated in parentheses (“PC1 = 48.06%; PC2 = 15.46%”). The 
result demonstrated that these 8 candidate genes possessed robust 
discriminatory capacity between BOTs and BeOTs, suggesting their 
critical roles in BOT diagnosis (Figure 6B; Supplementary Table S7). 
As previously demonstrated (via heatmap) and differential 
expression analysis (Figure 6C), the 8 DIRGs, including five 

downregulated genes (GNAI1, AR, NR3C1, FGFR1, and IGF1) 
and three upregulated genes (FGFR3, PDGFA, and HRAS) in BOTs, 
showed significant expression differences between the two groups. 
ROC analyses were performed on potential DIRGs to assess their 
predictive accuracy. The results revealed that the AUC values of 
the 8 DIRGs all exceeded 0.7, indicating a good discriminatory 
diagnostic value for these 8 biomarkers in BOTs (Figure 6D). To 
provide a quantitative tool for clinical application, we developed 
a nomogram that incorporates the eight DIRGs (Figure 6E). Each 
gene expression level is converted to a point score, and the total 
points are used to predict the risk of borderline ovarian tumor. 
The nomogram demonstrated good discriminative ability with a 
C-index of value. Furthermore, the calibration curve (Figure 6F) 
showed good agreement between the predicted risk and the actual 
outcome, especially after bias correction. Furthermore, to select 
more reliable and accurate DIRGs, we conducted validation of the 
expression levels of 8 DEGs using the GSE51088 dataset. The PCA 
results showed that the first two principal components (PC1 and 
PC2), with percentage values of explained variance indicated in 
parentheses (“PC1 = 67.75%; PC2 = 14.72%”). The plot visualizes 
sample distribution based on the expression patterns of the 8 DIRGs
(Figure 7A; Supplementary Table S8). The findings revealed that 
FGFR3 and PDGFA exhibited significantly higher expression levels, 
while NR3C1 and GNAI1 showed significantly lower expression 
levels in BOTs tissue (Figure 7B). The AUC values of the ROC 
curves for these four DIRGs (AUCFGFR3 = 0.917; AUCPDGFA = 0.833; 
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FIGURE 2
Detection and function of DIRGs between BOTs and BeOTs. (A) Heatmap showing the expression levels of top differentially expressed genes (DEGs) 
between BeOTs and BOTs groups. Each row represents a gene (with gene names shown in row annotations), and each column represents a sample 
(sample IDs not shown). The color scale represents row Z-score normalized expression values, with blue indicating low expression and red indicating 
high expression. Sample groups are annotated at the top (BeOTs vs. BOTs). (B) Volcano plot shows the distribution of DEGs. The x-axis shows log2 fold 
change (logFC), and the y-axis represents -log10 (adjusted P-value). Red dots denote significantly upregulated genes (adjusted P < 0.05, positive logFC) 
with higher expression in BOTs. Green dots denote significantly downregulated genes (adjusted P < 0.05, negative logFC) with lower expression in 
BOTs. Gray dots represent non-significant genes. Vertical dashed lines indicate |logFC| > 1 thresholds; horizontal dashed line marks the significance 
threshold (adjusted P = 0.05). (C) A Venn plot was used to identify the intersection of DIRGs between the IRGs and the DEGs. (D) Circular visualization 
  (Continued)
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FIGURE 2 (Continued)
of GO terms. Enriched terms across BP (outer sector), CC (middle sector), and MF (inner sector) are shown. Bar height: Gene count (0–400). Bar 
color: Significance (-log10P-value; darker = better). Inner marks: Rich Factor (0–1; specificity). Labels: GO term IDs. (E) Bar plot of enriched Gene 
Ontology (GO) terms. Top 10 significantly enriched terms (p < 0.05) are shown for each ontology: Biological Process (top), Cellular Component 
(middle), and Molecular Function (bottom). The x-axis indicates the Gene Ratio (number of enriched genes in term÷total background genes). Terms 
are ranked by statistical significance. (F) Bar plot of enriched KEGG pathways. Top 30 significantly enriched pathways (p < 0.05). The x-axis indicates 
the Gene Ratio (number of enriched genes in pathway÷total background genes). Pathways are ranked by statistical significance

FIGURE 3
Association between DIRGs and hub genes. (A) PPI network of the 12 DIRGs constructed using the STRING database. Nodes represent proteins (gene 
products) with colors indicating their functional clustering: proteins with similar biological roles share the same color. Lines (edges) represent predicted 
functional associations with colors denoting the types of supporting evidence: experimentally validated interactions (pink), database-curated 
interactions (blue), co-expression evidence (black), and text mining predictions (yellow). Line thickness reflects the confidence score of each 
interaction. (B) Top 10 hub genes identified by the MCC algorithm using the cytoHubba plugin in Cytoscape. Node color intensity reflects MCC score, 
where warmer (redder) colors indicate higher centrality scores and greater importance in the network. (C) Heatmap showing expression patterns of the 
top 10 hub DIRGs between BeOTs and BOTs groups. The color gradient represents row Z-score normalized expression values, with blue indicating low 
expression (negative Z-score) and red indicating high expression (positive Z-score). Each row represents a gene (labeled on the right), and each column 
represents a sample. Sample groups are annotated at the top (BeOTs vs. BOTs). (D) volcano plot presenting the top 10 hub DIRGs.

AUCNR3C1 = 0.867; AUCGNAI1 = 0.900) demonstrated a superior 
predictive power for BOTs compared to BeOTs (Figure 7C).

NR3C1 is associated with immune 
infiltration

To gain a more intensive understanding of the association 
between immune cell infiltration and BOTs, we utilized the 

CIBERSORT algorithm to determine the relative abundances of 
22 types of immune cells in both the control and BOT samples 
(Figure 8A). Subsequently, we made a comparison of immune cell 
infiltration in BOT samples and BeOTs samples. The findings 
revealed a significantly higher abundance of Macrophages M0 
and Neutrophils in the BOTs group (Figure 8B). Furthermore, we 
investigated the association between key diagnostic biomarkers 
and distinct infiltrating immune cells. Our correlation analysis 
revealed a statistically significant positive association between 
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FIGURE 4
Analyzing the Correlation among DIRGs. (A) This heatmap visualizes pairwise Spearman correlations between 10 hub genes. Hierarchical clustering 
reorders genes to group similar correlation patterns. Red indicates positive correlations (max ρ = 0.58), blue indicates negative correlations (min ρ = 
−0.71), and white denotes weak/no correlation. Absolute correlations below the cutoff (|ρ| < 0.3) are filtered out. Numerical values represent correlation 
coefficients (ρ). Generated using “ggcorrplot” in R. (B) Nodes represent hub genes; edges (colored lines) indicate statistically significant correlations (|ρ| 
> 0.3). Edge colors reflect correlation direction: red for positive correlations, blue for negative correlations. Node size and label font were enlarged for 
visibility. Generated using corrrnetwork_plot in R with a gradient legend (ρ: −1 to 1). (C) A scatter plot for some highly correlated DIRGs is provided. 
Positive correlation in red and negative correlation in blue. The darker the color, the greater the correlation.

NR3C1 expression and T cells gamma delta infiltration (Spearman 
r = 0.664, p = 0.005), suggesting a potential role for NR3C1 
in modulating this immune subset. Conversely, NR3C1 showed 
a significant negative correlation with T cells CD4 memory 
resting levels (r = −0.524, p = 0.040), indicating an inverse 
relationship with this cell population. However, no significant 
correlation was observed between the expression of FGFR3, 
GNAI1, and PDGFA genes and immune cells (Figure 8C) 

(Supplementary Table S9). These observations provide support 
for the close relationship between NR3C1 and immune activity, 
highlighting its potential significance in regulating immune cell 
function in BOTs. We further evaluated the expression of NR3C1 in 
BOTs and BeOTs tissues by IHC and found that the low expression 
of NR3C1 was significantly correlated with BOTs (Figure 8D, 
P = 0.0031). We assessed the expression of NR3C1 using qRT-
PCR and revealed that low expression of NR3C1 was associated 
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FIGURE 5
Development of a Prediction Model for BOTs. (A) The LASSO regression coefficient profiles of the 8 DIRGs are presented as a curve; each curve 
represents a gene’s coefficient path across regularization parameters (logλ). Gene-specific colors shown in legend (top-right). (B) The LASSO Cox 
regression model was utilized to generate a plot of partial likelihood deviance against log(λ). The left dotted line is at lambda. Min (at the minimum 
deviation), and the right dotted line is at lambda. 1se. (C) When n = 8, the curve of the total within sum of squared error curve under the corresponding 
cluster number n arrives at the “elbow point”. (D) Cross-validation error rate decreases as feature count increases, reaching its minimum (0.15) at 8 
features (red point). The blue curve tracks mean error across 10-fold cross-validation, with the dashed line indicating chance-level performance (0.5).

TABLE 2  Gene selection parameters and results from LASSO 
and SVM-RFE.

Method Key parameters Selected genes

LASSO - Family: Binomial
- α: 1 (L1 penalty)
- λ: lambda.min
- nfolds: 10
-Type.measure: Devian

FGFR3, PDGFA, GNAI1, AR, 
NR3C1, FGFR1, IGF1, HRAS

SVM-REF - Kernel: Radial
- Step size (k): 10
- halve. above: 50
- nfold: 10

PDGFA, HRAS, GNAI1, 
NR3C1, FGFR3, IGF1, AR, 

FGFR1

with BOTs (Figure 8E; p < 0.05). It was further verified that 
NR3C1 has a high diagnostic ability in differentiating the two 
ovarian tumors.

Discussion

BOTs are ovarian tumors that exhibit intermediate growth patterns 
and cytological features between benign and malignant tumors, with 
non-destructive stromal infiltration characteristics (Niu et al., 2021). 
Therefore, preoperative imaging examination and tumor marker 
detection often cannot provide a definitive diagnosis of BOTs, and the 
concordance rate of intraoperative frozen sections and postoperative 
pathology is also low. Some patients may require a second operation. 
Considering that there are currently no predictive indicators that 
can accurately distinguish BOTs from BeOTs, we conducted the 
above study to identify potential biomarkers for the diagnosis of 
BOTs, intending to provide some assistance for the clinical diagnosis 
and distinction of BOTs to improve the prognosis and survival 
outcomes of BOT patients. 

With the advancement of bioinformatics technology, an 
increasing number of tumor diagnostic and therapeutic targets have 
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FIGURE 6
Additional analysis of eight key DIRGs. (A) The positions on the chromosome of the right crucial DIRGs. (B) The PCA plot displays the sample 
distribution based on the expression profiles of 8 key DIRGs. Samples are colored by group (Control = blue, Treat = red), with dashed ellipses 
representing 95% confidence intervals for each group. The x- and y-axes correspond to the first two principal components (PC1 and PC2), with 
percentage values of explained variance indicated in parentheses. (C) The comparative expression levels of three crucial DIRGs in BOTs as opposed to 
BeOTs are presented by the train group datasets (GSE4122+GSE6822+GSE36668). (D) The efficacies of three crucial DIRGs in predicting BOTs within 
the train group were validated by ROC curves. (E) Nomogram for predicting the risk of borderline ovarian tumor based on eight differentially 
immune-related genes (DIRGs). The nomogram includes eight genes (FGFR3, PDGFA, GNAI1, AR, NR3C1, FGFR1, IGF1, and HRAS). For each gene, a 
point is assigned according to its expression level. The total points are calculated by summing the points of all genes and then converted to the risk of 
disease. (F) Calibration curve of the nomogram. The calibration curve compares the predicted risk (x-axis) with the actual observed risk (y-axis). The 
diagonal line represents the ideal prediction. The solid red line (Apparent) and the dashed blue line (Bias-corrected) show the performance of the 
model before and after bias correction by bootstrapping (1,000 repetitions), respectively.
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FIGURE 7
Validation of diagnostic biomarkers in the test group. (A) The PCA plot displays the sample distribution based on the expression profiles of 8 key DIRGs 
in the test dataset. Samples are colored by group (Control = blue, Treat = red). The x- and y-axes correspond to the first two principal components 
(PC1 and PC2), with percentage values of explained variance indicated in parentheses. (B) Boxplot showed the expression of DIRGs between BOTs and 
BeOTs in the test group (GSE51088) (∗P < 0.05, ∗∗P < 0.01). (C) The ROC curve of the diagnostic efficacy verification of eight immune-related hug 
genes in the test group.

been identified from a vast database of sample data. Concurrently, 
as more studies focus on the correlation between immune cell 
infiltration and the onset, progression, and prognosis of various 
diseases, the presence of immune targets becomes crucial for the 
outcome of disease immunotherapy. By conducting cross-analysis 
using IRGs data and DEGs, we identified 26 overlapping DIRGs. GO 
and KEGG analyses revealed that these DIRGs were predominantly 
enriched in MAPK cascade, Rap1, PI3K-Akt, and Ras signaling 
pathways. They exhibited receptor activator activity related to 
signaling pathways, cytokine activity regulation, and positive 
effects on epithelial cell proliferation. Notably, activation of MAPK 
subfamily members such as ERK, P38, and JUN can collaborate 
with NF-κB and interferon regulatory factor transcription factors 
to induce the expression of multiple genes while jointly regulating 
immune and inflammatory responses (Arthur and Ley, 2013). The 
PI3K-Akt signaling pathway is believed to participate in immune 
suppression within the ovarian tumor microenvironment by 
regulating tumor-associated macrophage expression (Cannon et al., 
2015). These findings will contribute to a deeper understanding of 
immune regulation mechanisms associated with BOTs.

Our study employed two machine learning algorithms to 
validate 8 DIRGs and utilized the GSE51088 dataset for validation, 
confirming that NR3C1, GNAI1, FGFR3, and PDGFA are potential 
biomarkers for BOT diagnosis. Furthermore, to gain a deeper 
understanding of the tumor immune microenvironment, CiberSort 
analysis revealed an association between increased levels of 
Macrophages M0 and Neutrophils with the development of 
BOTs. Consistent with this finding, Martin J. Cannon et al. also 
demonstrated that ovarian tumor-associated macrophages may play 
a pivotal role in creating an immunosuppressive environment 
that hinders anti-tumor immune responses and promotes disease 
progression (Cannon et al., 2015). Ke Huang et al. proposed 
a method of integrating inflammation biomarkers and tumor 
biomarkers to enhance the diagnosis of borderline and malignant 
epithelial ovarian tumors. The study observed a gradual increase 
in inflammatory markers such as neutrophils, neutrophil-to-
lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), and 
monocyte-to-lymphocyte ratio (MLR) from benign to borderline 
and malignant ovarian tissues, which were significantly correlated 
with tumor progression and prognosis, consistent with our research 
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FIGURE 8
The evaluation of four DIRGs related to immune infiltration. (A) Stacked bar plot showing the relative abundance of 22 immune cell subtype 
proportions between BOTs and BeOTs samples. (B) Differential immune cell infiltration profiles between BOTs and BeOTs. A stacked bar plot displays 
relative proportions of 22 immune cell types in each sample. Samples are grouped by tumor type (left: BeOTs, n = BeOTs number; right: BOTs, n = 
BOTs number). Color-coded segments indicate the relative abundance of specific immune cell subsets. (C) DIRGs-immune cell correlation network 
diagram: It shows the interactions between four genes (FGFR3, PDGFA, GNA11, NR3C1) and 22 types of immune cells in BOTs. Line colors indicate the 
direction of correlation (orange: positive correlation; green: negative correlation; gray: non-significant). Line thickness indicates the strength (thin → 
thick: weak → strong). The heatmap at the bottom shows the interaction relationships between immune cells (red: positive correlation; blue: 
negative correlation). All significant lines have passed statistical tests (p < 0.05). (D) Distribution of patients with 40 BOTs and 43 BeOTs stratified by NR3C1 
  (Continued)
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FIGURE 8 (Continued)
expression levels. The bar plot illustrates the number of patients with BOTs and BeOTs categorized according to NR3C1 expression levels (Low vs 
High; y-axis: Number of patients). Statistical analysis compared distribution differences between BOTs and BeOTs within each NR3C1 expression 
group using the Chi-square test. Significance level was set at p < 0.05, with ∗∗ denoting p < 0.01. Representative images (×40 and ×200) of IHC 
staining for NR3C1 in BOTs and BeOTs specimens (high expression versus low expression). (E) qRT-PCR of NR3C1 expression in BOTs when 
compared with BeOTs specimens. Scale bars are shown. ∗p < 0.05. p-values were calculated by chi-square tests.

findings. Furthermore, the study assessed the diagnostic system 
combining CA125 with NLR and PLR by constructing a multivariate 
Logistic regression model and determining optimal cutoff values 
for each indicator. The results indicated suggested cutoff values 
for CA125, NLR, and PLR to differentiate between benign and 
borderline epithelial ovarian tumors as 18.72 U/ml, 1.244, and 89, 
respectively, with sensitivities of 53.97%, 87.5%, and 92.06%, along 
with specificities of 100%, 69.87%, and 75.48%. This diagnostic 
system demonstrates greater accuracy in distinguishing the nature 
of epithelial ovarian tumors (EOTs) compared to single or arbitrary 
dual combinations, particularly for BOTs (Huang et al., 2023). 
Examination of immune infiltration in BOTs will facilitate a more 
comprehensive understanding of the cellular composition involved 
in immune suppression, thus offering new insights for innovative 
immune-boosting therapies.

Furthermore, we have identified diagnostic biomarkers 
associated with infiltrating immune cells. Our results indicate that 
NR3C1 may impact the development of BOTs by regulating the 
expression of T cells, gamma delta, and CD4 memory resting. 
This finding supports the immunoregulatory activity of NR3C1. 
The NR3C1 gene encodes the glucocorticoid receptor (GR), which 
specifically binds to promoter regions of glucocorticoid response 
genes in the cell nucleus to promote gene transcription. It also 
participates in cellular inflammatory responses and interferes with 
the activities of other immune-related transcription factors such as 
nuclear factor kappa B, activator of T cells nuclear factor, activator 
protein 1, interferon regulatory factor 3, cAMP response element 
binding protein, T-box transcription factor 21, GATA binding 
protein 3, etc., exerting anti-transcriptional inhibition (Xie et al., 
2021). The GR signal is believed to play a role in the pathogenesis 
of diseases such as breast cancer, prostate cancer, and hematological 
tumors. There have been several studies investigating the association 
between NR3C1 and solid tumor diagnosis and treatment, both 
domestically and internationally. It has been demonstrated that 
abnormal expression of NR3C1 in various malignant tumors, 
including colon cancer, renal clear cell carcinoma, breast cancer, 
and pancreatic cancer, affects the proliferation and migration 
of cancer cells (Zhai et al., 2024; Yan et al., 2023; Dwyer et al., 
2023; Wang et al., 2023), although the number of related studies 
remains relatively limited. Peng Zhai et al. study demonstrates that 
DNA methyltransferase 1-mediated NR3C1 DNA methylation 
can upregulate the transcription of CX40, thereby promoting 
angiogenesis in colorectal cancer. Restoration of NR3C1 suppresses 
the angiogenic, proliferative, survival, and oncogenic activities of 
colorectal cancer cells (Zhai et al., 2024). Yan, M. et al. demonstrated 
that knockout of the NR3C1 gene activates endoplasmic reticulum 
stress and affects cell division and migration of renal clear cell 
carcinoma through the ATF6-PINK1/BNIP3 pathway, providing 
a novel biological target for clinical treatment of chronic renal 
cell carcinoma (Yan et al., 2023). It has been confirmed that 

NR3C1 in pancreatic cancer is highly regulated by upstream miR-
1270, and silencing NR3C1 can inhibit the malignant phenotype 
of pancreatic cancer cells (Wang et al., 2023). Fahai Chen et al. 
identified 5 immune-related hub genes associated with poor 
prognosis and response to trastuzumab treatment in breast cancer 
patients, with NR3C1 being one of them (Chen and Fang, 2022). 
Jin, X. et al. validated the potential diagnostic biomarker value of 
NR3C1 as a breast cancer marker using bioinformatics methods 
(Jin et al., 2023). Additionally, Junfeng Chen et al. established 
a risk model based on the four hypoxia-related genes NR3C1, 
ANXA2, AKAP12, and GPI to predict the prognosis and survival 
rate of endometrial cancer patients (Chen et al., 2022). These 
related research conclusions, to some extent, support the potential 
of NR3C1 as an immune-related diagnostic marker for solid 
malignant tumors.

After conducting a comprehensive literature review, several 
studies have been conducted to explore the correlation between 
NR3C1 and ovarian reproductive function and ovulation. 
Julian T. Pontes et al. examined the expression levels and 
immunohistochemical localization of NR3C1 in primordial and 
follicular ovarian tissues, revealing its presence in all types of 
ovarian tissues except for granulosa cells in primordial follicles, 
with varying intensity and location of expression. Additionally, 
elevated cortisol levels were found to be detrimental to follicle 
survival, leading to a significant reduction in the percentage of 
normal follicles (Pontes et al., 2019). Shumail Syed et al. identified 
two intronic variants (rs10482672 and rs11749561) within the 
NR3C1 gene that are linked to PCOS risk by regulating the stress 
response, marking the first study to designate NR3C1 as a risk 
gene for PCOS (Syed and Gragnoli, 2024). However, there is still 
a scarcity of clinical studies on NR3C1 concerning ovarian solid 
tumors, particularly those associated with BOTs, which have not 
been previously reported. Jennifer T. Veneris et al. investigated the 
association between NR3C1 and ovarian serous carcinoma through 
analysis of whole-genome sequencing and gene expression data from 
high-grade serous ovarian cancer patients, revealing that elevated 
expression of the glucocorticoid receptor gene was correlated with 
poor overall survival in ovarian cancer, regardless of BRCA1 and 
BRCA2 mutation status (Veneris et al., 2019). Our study observed 
that the expression level of NR3C1 was significantly lower in the 
BOTs group than in the group of BeOTs.

Currently, the molecular mechanisms underlying the 
involvement of NR3C1 in tumorigenesis and progression remain 
incompletely elucidated. Nandini Acharya et al. observed a 
progressive upregulation of glucocorticoid receptor (GR) expression 
and signaling from the naive state to dysfunctional CD8+ tumor-
infiltrating lymphocytes (TILs). These glucocorticoids are locally 
produced by tumor-associated monocyte-macrophage cell lines, 
and the impact of GC on CD8+ T cells is contingent upon NR3C1. 
Conditional deletion of GR in CD8+ TILs significantly ameliorated 
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this differentiation, decreased the expression of transcription factor 
TCF-1, and suppressed the dysfunctional phenotype, ultimately 
impeding tumor growth. The authors propose that endogenous 
steroid hormone signaling drives dysfunction in CD8+ TILs, 
with implications for cancer immunotherapy (Acharya et al., 
2020). Amy R. Dwyer et al.'s research shows that cell damage, 
stress, and related factors in the tumor microenvironment can 
activate MAPK, causing phosphorylation of the glucocorticoid 
receptor at Ser134, which regulates the migration-related (NEDD9, 
CSF1, RUNX3) and metabolism-related (PDK4, PKG1, PFKFB4) 
gene sets to regulate the development and progression of triple-
negative breast cancer. This discovery provides a potential new 
therapeutic target for TNBCs (Dwyer et al., 2023). NR3C1 is a 
potential downstream target of the NF-κB pathway, and silencing 
MDK (Midkine) by suppressing NF-κB activation and nuclear 
distribution reduces NR3C1 expression, thereby significantly 
inhibiting BC cell proliferation and migration (Zhang et al., 2022). 
The FKBP4/NR3C1/NRF2 signaling pathway has also been shown 
to be one of the pathways regulating BC cell autophagy and 
proliferation (Xiong et al., 2022). Minbo Yan et al. observed that 
when NR3C1 expression was silenced in renal cancer cells, lipid 
metabolism disorder, endoplasmic reticulum stress, and expression 
of mitotic genes were significantly enriched, which may be achieved 
through the ATF6-PINK1/BNIP3 pathway (Yan et al., 2023). 
Zhongbo Han et al.'s research found that microRNA-19b can target 
NR3C1 for downregulation, inhibiting cell apoptosis through the 
PI3K/AKT/mTOR pathway, thereby enhancing the resistance of 
colorectal cancer patients to oxaliplatin (Han et al., 2021). It can 
be seen that NR3C1 plays a role in cell regulation through multiple 
pathways and mechanisms. Our study only found that the role 
of NR3C1 in the development of BOTs may be achieved through 
regulating the expression of gamma delta T cells and CD4 memory 
resting cells, but the specific molecular mechanisms and pathways 
involved remain to be further elucidated by future relevant studies.

There are still several limitations to this study. The data 
sets used were solely obtained from the GEO database, and 
the sample size is relatively small. Furthermore, it should be 
noted that this study represents a bioinformatics analysis based 
on publicly available data. The diagnostic value and associated 
molecular mechanisms of NR3C1 as a clinical biomarker for BOTs 
still require validation through large-scale prospective studies in
the future.

Conclusion

In summary, by employing machine-learning techniques, 
we delved into the potential link between immunity and the 
development of BOTs. Our research revealed a significant 
association between the two. We finally determined that the NR3C1 
gene affects the occurrence of BOTs through an immune-related 
pathway. This provides a strong basis for the early diagnosis and 
treatment of BOTs in the future.
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