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The skeletal muscle, one of the largest tissues in mammals, plays a crucial
role in maintaining body movement and energy metabolism. Dysfunction or
damage to the skeletal muscle can lead to various muscle diseases, such
as muscular dystrophy, myasthenia, and others. The myofiber presents the
fundamental structural unit of the skeletal muscle, and research on its structure
and biological function is of great significance. Here, we review the latest
progress in the structural and functional aspects of the myofiber, focusing
on myofibril, the sarcoplasmic reticulum, mitochondria, and the cytoskeleton.
The basic properties and dynamic interactions of a large number of muscle
proteins have been described in detail, including the scaffold construction of
core protein components and the fine-tuning of secondary protein components
with functional redundancy. This overview provides new insights into skeletal
muscle pathophysiology.
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1 Introduction

The skeletal muscle, the most abundant tissue in vertebrates (accounting for ∼40%
of total body weight), is primarily composed of myofibers with minor contributions
from adipose, vascular, nervous, and connective tissues. Recent advances in single-cell
sequencing, however, have unveiled its intricate cellular diversity, including multinucleated
myofibers, muscle stem cells, endothelial cells, immune cells, adipocytes, neurocytes, and
other mononuclear cell populations (Cai et al., 2023a). This cellular heterogeneity not
only defines the tissue architecture but also enables efficient communication strategies
between cell types to facilitate the exchange of biological information, thereby maintaining
skeletal muscle homeostasis (Cai et al., 2023b; Krauss et al., 2017). Beyond its structural
complexity, the skeletal muscle plays indispensable roles in basic mammalian body
functions such as locomotion, respiration, and metabolism. These functions depend on
a tightly orchestrated developmental program: in vertebrates, skeletal muscle ontogeny
requires successive phases of fetal, postnatal, and adult myogenesis (Salvatore et al.,
2014; Greggio et al., 2017; Egan and Zierath, 2013; Relaix et al., 2021). Central to
this process are the main waves of myogenesis during in utero development, when
myogenic progenitor cells located on the peripheral edge of the dermomyotome
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extend downward to form themyotome, which rapidly differentiates
into spindle mononuclear myoblasts (Deries and Thorsteinsdottir,
2016). Following migration to muscle formation sites, these
myoblasts undergo proliferation, differentiation, and fusion to
assemble multinucleated, contractile myofibers (Buckingham et al.,
2003). Postnatally, skeletal muscle growth shifts focus: myofiber
numbers remain largely constant, with growth instead driven by
hypertrophy and the regenerative activity of satellite cells in response
to damage (Yin et al., 2013). Underpinning these developmental
and regenerative processes is a well-established transcriptional
hierarchy including master regulators such as Pax3, Pax7, myogenic
regulatory factors (MRFs), and the myocyte enhancer factor 2
(MEF2) family (Bryson-Richardson and Currie, 2008; Asfour et al.,
2018). While this transcriptional framework is well-characterized,
the structural and functional complexity of myofibers—particularly
their subcellular components—remains incompletely understood.
To address this gap, we review key myofiber structures such as
myofibrils, the sarcoplasmic reticulum (SR), mitochondria, and
the cytoskeleton, focusing on their molecular architecture and
functional mechanisms to advance our understanding of skeletal
myogenesis.

2 Structure and composition of the
skeletal myofiber

Skeletal muscle functionality hinges on the specialized
organization of myofibers, which are multinucleated syncytia
unique to terrestrial animals. These elongated cells, spanning
centimeters in length and 10–100 µm in diameter, are
surrounded by connective tissues (endomysium, perimysium,
and epimysium) that stabilize the muscle architecture and
transmit mechanical forces (Powell et al., 2002). However,
the functional essence of myofibers resides in their internal
components: myofibrils, dominating the cytoplasmic space; these
tightly packed bundles of actin and myosin filaments form
repeating sarcomeres—the contractile units responsible for muscle
shortening; SR, a specialized endoplasmic reticulum enveloping
myofibrils; the SR stores and releases calcium ions to regulate
excitation–contraction coupling; mitochondria: positioned near the
sarcolemma and between myofibrils; mitochondria generate ATP
through oxidative phosphorylation, sustaining energy-demanding
contractions; cytoskeleton: composed of costameres, intermediate
filament (IF), and microtubules; this network maintains sarcomere
alignment, distributes mechanical stress, and anchors organelles
such as the nuclei and mitochondria. These components collaborate
dynamically: myofibrils drive contraction, the SR synchronizes
calcium signaling, mitochondria fuel activity, and the cytoskeleton
integrates structural integrity.

Myofibers also harbor specialized structures critical to
their function: the neuromuscular junctions (NMJs) for nerve
signal transmission; myotendinous junctions (MTJs) for force
transmission to tendons; and cilia, which have recently been
implicated in mechanosensory signaling (Brooks et al., 2023;
Ng et al., 2021). Notably, myofiber size adapts dynamically through
radial hypertrophy (increase in diameter) or longitudinal growth
(addition of sarcomeres in series), although the molecular drivers of
these processes remain incompletely characterized. Surrounding

the myofibers is a hierarchical network of connective tissues.
From the innermost to the outermost, these include the following:
endomysium, a thin layer of collagen and proteoglycans enveloping
individual myofibers; perimysium, a thicker sheath encircling
bundles of myofibers (fascicles), rich in blood vessels and nerves;
and epimysium, a dense collagenous membrane encasing the entire
muscle. These layers serve dual structural and functional roles: they
transmit mechanical forces during contraction, anchor NMJs and
MTJs, and provide a scaffold for satellite cell-mediated regeneration
(Cretoiu et al., 2018). Intriguingly, recent studies suggest that
connective tissues—not myofibers themselves—bear the majority
of mechanical loads during muscle activity (Gillies and Lieber,
2011). Connective tissues externally reinforce this system, but the
molecular interplay within myofibers ultimately dictates muscle
performance and adaptability.

2.1 Myofibril

It is easily observable under the electron microscope that
myofibers filled with myofibrils are aligned along the longitudinal
axis of the cell body. The myofibril has a diameter of approximately
1 μm and presents a periodic striped structure alternating between
light and dark, in which, each I-band (light area) is divided into
two parts by a Z-line and each A-band (dark area) is divided into
two portions by an M-line within the H zone. The segment of
myofibrils between two adjacent Z lines is commonly described as
a sarcomere, which is the smallest contractile unit of the striated
muscle (Figure 1). On themeta-microscale, the sarcomere primarily
consists of thin and thickmyofilaments that are perpendicular to the
Z-line: the actin, tropomyosin, and troponin complexes (troponin
T, I, and C, respectively) are organized into thin myofilaments that
are anchored in Z-lines, while the myosins are assembled into thick
myofilaments in the A-band that overlap with thin myofilaments
(Ertbjerg and Puolanne, 2017). These structures form the basis
for the “sliding filament theory” of skeletal muscle contraction:
muscle contraction entails the thin myofilaments sliding over the
thick myofilaments into the A-band, causing the shortening of
the I-band and H zone, while the widths of the Z-line, A-band,
and M-line remain unchanged (Huxley and Niedergerke, 1954;
Huxley and Hanson, 1954). Specifically, myosin heads bind actin
at a ∼45° angle, forming the acto-myosin crossbridges, which
pull actin filaments toward the M-line through ATP hydrolysis-
driven conformational changes, resulting in sarcomere shortening.
Additionally, approximately 30% of crossbridges maintain passive
muscle tension even during relaxation, mediated by the spring-like
domains of structural titin in coordination with residual crossbridge
interactions to preserve myofiber elasticity (Al-Khayat, 2013). In
addition, other myofilament-associated proteins such as myosin
binding protein-C (MyBP-C), nebulin, and obscurin have also been
proposed to play important structural and regulatory functions
during the assembly of sarcomeres.

For instance, MyBP-C is a myofilament protein binding to thin
and thick myofilaments maintaining the ordered arrangement of
the sarcomere and cross-bridge cycling (van Dijk et al., 2014). The
interaction of MyBP-C with both myofilaments is restricted to the
C zone, where actin and myosin overlap in the A-band, and MyBP-
C is arranged in 7–9 transverse stripes at 43-nm intervals (Luther
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FIGURE 1
General organization of the sarcomere in the skeletal muscle. From the inside to the outside, the skeletal muscle comprises the myofiber, fascicle, and
whole muscle, respectively. Within the myofiber, the myofibrils are aligned along the longitudinal axis of the cell body and almost occupy the entire
intracellular volume, and the sarcomere is the smallest contractile unit of the myofiber. The major lines and bands are indicated, as well as
myofilament-associated proteins such as thin and thick myofilaments, MyBP-C, titin, nebulin, and obscurin. The thin and thick myofilaments overlap at
the C zone in the A-band where 7–9 MyBP-C stripes connect with both myofilaments; titin is directed toward its N-terminus at the Z-line and its
C-terminus at the M-line; nebulin is aligned with its C terminus in the Z-line; obscurin is oriented with its N-terminus in the M-line and its C-terminus
bound to the SR.

and Craig, 2011). MyBP-C consists of a series of immunoglobin
(Ig) and fibronectin III (Fn)-like domains, and the MyBP-C N-
terminal binds to actin and myosin head, while the MyBP-C C-
terminal binds with meromyosin and titin (Squire et al., 2003).
In addition, accumulating evidence has implicated MyBP-C in the
regulation of myofilament Ca2+ sensitivity and enzymatic activity
of myosin (van Dijk et al., 2014).

As the largest known polypeptide, titin spans the length of
half of the sarcomere, anchoring its N-terminus and C-terminal
at the Z-line and M-line, respectively. The C-terminals of two
titin molecules overlap on both sides of the M-line, forming a
continuous titin filament harboring tight binding sites for a variety
of sarcomeric proteins, which functions as a scaffold, mechanical
sensor, and signaling mediator. For example, within the Z-line, titin
N-terminus interacts with proteins such as α-actinin and telethonin
to maintain the structural integrity and resist high mechanical
stress (Young et al., 1998; Mues et al., 1998). Similarly, titin C-
terminal binds with several proteins at the M-line, including Muscle

RING finger-1 (MURF-1), myomesin, and M-protein, functioning
as scaffolding structures for A-band assembly (Witt et al., 2005).
Titin is normally regarded as a “molecular spring” that generates
passive tension, and the elements responsible for this elasticity
primarily reside in the I-band region of titin, including tandemly
arranged Ig-domains, PEVK motifs, and N2A element (Linke et al.,
1998; Linke et al., 2002; Granzier and Labeit, 2006; Granzier
and Labeit, 2005). Unlike the elastic I band region of titin, the
A‐band region of titin is inextensible and provides a scaffold
for myosin and MyBP-C, therefore determining the length and
structure of thick myofilaments (Whiting et al., 1989). Moreover,
as its I-band and M-line region contain Ser/Thr kinase domains,
titin may be involved in signaling transduction from myofibrils to
other compartments of myofiber, contributing to muscle adaptation
in conditions of mechanical stress changes (Tskhovrebova and
Trinick, 2008; Puchner et al., 2008).

Ultrastructural results with monoclonal antibodies have
established that nebulin is oriented with its N-terminus at the tips
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of thin myofilaments in the I-band and its C-terminus at the Z-
line, whose configuration both stabilizes the thin myofilaments
and regulates the Z-line structure (Wright et al., 1993; Wang and
Wright, 1988; Witt et al., 2006). Actually, nebulin is non-extensible
because nebulin epitopes maintain a fixed distance from the Z-line,
regardless of sarcomere stretching (Kruger et al., 1991). Numerous
studies indicate that nebulin can bind to various proteins, including
actin and myosin components, as well as proteins associated
with its unique N- and C-terminal regions, especially for the
central super repeats of nebulin, through which nebulin laterally
interacts with the thin myofilament proteins actin, tropomyosin,
and troponin complexes, functioning as the scaffold to control thin
myofilament length (Kruger et al., 1991; Labeit et al., 1991). In
addition, nebulin’s super-repeat region also binds to myosin, which
may inhibit actomyosin ATPase activity and the sliding velocity
of actin on myosin in a calcium-/calmodulin-dependent manner
(Root and Wang, 1994). Differing in sequence from the central
super repeats, the N-terminal sequence carries glutamate residues
and can interact with tropomodulin to specify thin myofilament
length, whereas the C-terminus is rich in serine residues, and
the SH3 domain can directly bind to Z-line protein myopalladin
and CapZ and titin to mediate the myofibrillar assembly and
mechanochemical signaling (Mcelhinny et al., 2001; Wear et al.,
2003; Bang et al., 2001; Kontrogianni-Konstantopoulos et al., 2009).

In contrast to MyBP-C, titin, and nebulin presenting within
sarcomeres, obscurin wraps around myofilaments over the M-
line and Z-line, contributing to their assembly and integration
with other sarcoplasmic elements such as the SR (Kontrogianni-
Konstantopoulos et al., 2003). Given its structure composing of
tandem adhesion modules and signaling domains, obscurin can
associate tightly and periodically with the myofilaments and the
periphery of the myofibril. Specifically, the N-terminal Ig domain
of obscurin binds directly to myofibrillar components such as titin,
myomesin, and MyBP-C, while obscurin tightly connects with the
SR component small ankyrin-1 (sAnk1) through the C-terminus to
its last Ig-like domain (Kontrogianni-Konstantopoulos and Bloch,
2005; Porter et al., 2005). Other kinetic studies showed that in
addition to structural support function, obscurin has a possible
involvement in RhoA- and Ca2+-mediated signaling pathways via its
Rho-GEF/PH and IQmotif, and the presence of obscurin at theNMJ
is consistent with this, suggesting its direct or indirect involvement
in signal transduction at the synaptic terminal (Fukuzawa et al.,
2005; Young et al., 2001; Carlsson et al., 2008). Initial subcellular
distribution of obscurin studies using antibodies indicated
that obscurin briefly accumulates at the Z-line and primarily
concentrates at the M-line during embryogenesis; however, it
eventually loses Z-line distribution in later developmental stages
(Young et al., 2001). Actually, multiple alternatively spliced forms
of obscurin exist in distinct sarcomeric locations, such as obscurin
A, obscurin B, and several additional variants that differ in the
combination of C-terminal structural domain elements and localize
to the M-line, A/I junction, and Z-line at the muscle resting state,
respectively (Bowman et al., 2007). Notably though, when muscles
are stretched, obscurin can redistribute to different locations along
the sarcomere length (Bowman et al., 2007). Considering the
preferential integration of these obscurin isoforms with certain
regions of the sarcomere, it further implies specialized functions
of these isoforms during myofibrillogenesis and at maturity.

Collectively, myofibrillogenesis depends on the coordinated
assembly and integration of a large number of myofilament-
associated proteins into the sarcomeres. These molecules may
interact with several protein ligands to function as scaffolds,
regulate signaling cascades, and localize them to particular sites
within or surrounding sarcomeres to coordinate sarcomeric
arrangement.

2.2 Sarcoplasmic reticulum

The skeletal muscle contains a specialized endoplasmic
reticulum network called SR, which is responsible for protein
and calcium homeostasis regulation. Highly precise views under
electron microscopes (EMs) showed that the SR consists of tubules
and cisternae around each myofibril, in which the thin tubules are
named longitudinal SR (l-SR) and are positioned around the A- and
I-band, and its enriched Ca2+ ATPase (SERCA) is responsible for
removing Ca2+ from the cytoplasm to the lumen; the tubule edges
merge into the terminal cisternae at the boundaries of the A- and
I-band and collectively form the triad structure, with the transverse
tubules (TT) originating from the sarcolemma, maintaining
excitation–contraction coupling (ECC) in the skeletal muscle
(Rossi et al., 2022a) (Figure 2; Table 1). Within the muscle field,
ECC is defined as the process linking the sarcolemma depolarization
induced bymotor–neuron stimulation andCa2+ release from the SR.
In particular, there are two Ca2+ channel proteins dihydropyridine
receptor (DHPR) and ryanodine receptor 1 (RyR1) located on the
TT and terminal cisternae region facing the TT terminal junctional
SR (j-SR), respectively. Following sarcolemma depolarization, the
DHPR undergoes conformational changes and directly transmits
signals to open the RyR1 to trigger Ca2+ release into the myoplasm,
thereby initiating muscle contraction (Barone et al., 2015). In fact,
DHPR and RyR1 tightly wound together to form the core of the
macromolecular complex known as the Ca2+ release unit, which
includes numerous interacting proteins, and each of them influences
the entire ECC process (Dulhunty, 2006). These proteins include TT
biogenesis proteins amphiphysin 2/bridging integrator-1 (BIN1),
caveolin 3 (CAV3), and dysferlin (DYSF); triad formation proteins
mitsugumins (MG), junctophilin (JPH), myotubularin (MTM1),
triadin, junctin, and the junctional sarcoplasmic reticulum protein
1 (JP-45); and Ca2+-binding proteins calsequestrin (CASQ),
sarcalumenin (SAR), and HRC (Figure 2). For instance, BIN1 is
highly expressed in the skeletal muscle and capable of driving
membrane tubulation during TT maturation, in which BIN1
works separately or in cooperation with a GTPase dynamin 2
(DNM2) (Lee et al., 2002; Cowling et al., 2017). BIN1 knockout
mouse myofibers present abnormal TTs and deficient ECC, and
DNM2 downregulation improved its motor and histopathological
phenotypes, suggesting that the balance between BIN1 and DNM2
is necessary for TTmaturation, which is mediated by the interaction
of the BIN1 SH3 domain with the proline-rich domain of DNM2
(Silva-Rojas et al., 2022; Fujise et al., 2021; Takei et al., 1999).
As a member of the integral membrane protein family, CAV3
is not only implicated in caveolae membrane formation at the
sarcolemma but also localizes at the developing TTs, and its
deletion leads to TT membrane disorder with lateral loss. However,
CAV3 is undetectable in the mature TTs, suggesting that CAV3
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FIGURE 2
Schematic representation of skeletal muscle SR. The elaborated SR network consists of tubules and cisternae around each myofibril shown in green.
The central TT and the terminal cisternae element on both sides collectively form the triad structure, in which many protein–protein interactions are
responsible for Ca2+ cycling and storage. These proteins include dihydropyridine receptor (DHPR), ryanodine receptor 1 (RyR1), TT biogenesis proteins
amphiphysin 2/bridging integrator-1 (BIN1), caveolin 3 (CAV3), and dysferlin (DYSF); triad formation proteins mitsugumins (MG), transient receptor
potential cation channel type 3 (TRPC3), junctophilin (JPH), myotubularin (MTM1), triadin, junctin, and the junctional sarcoplasmic reticulum protein 1
(JP-45); and Ca2+-binding proteins calsequestrin (CASQ), sarcalumenin (SAR), and HRC.

may be involved in the early development of the TT system
in the skeletal muscle (Tang et al., 1996; Parton et al., 1997;
Galbiati et al., 2001). DYSF mainly localizes to the sarcolemma
for membrane fusion and repair, and DYSF-deficient muscle
shows subsarcolemmal vacuoles contiguous with the TT system
(Selcen et al., 2001). Similarly to mice deficient in CAV3, DYSF
mouse mutants display dilated and longitudinally oriented TTs,
and CAV3 and DYSF show partial colocalization and interaction
in developing TT system, suggesting a specific role of DYSF in
TT biogenesis (Hernandez-Deviez et al., 2006; Matsuda et al.,
2001). Although the precise mechanism is not yet clear, there
is a hypothesis that DYSF may facilitate the fusion of vesicles
containing CAV3 with TTs (Klinge et al., 2010). These findings
suggest that TT biogenesis requires advanced mechanisms of
membrane fusion, and additional factors involved in TT formation
are needed.

An abundance of membrane proteins are involved in triad
formation, including the maturation of SR terminal cisternae and
the connection between TT and SR. A notable example is the
mitsugumin 29 (MG29), a member of the synaptophysin family that
appears preferentially at the SR membrane and is then transferred
to the triad proteins during the early stages of skeletal myogenesis

(Takeshima et al., 1998; Komazaki et al., 1999). Analysis of MG29-
deficient mice exhibited an accumulation of transport vesicles and
incomplete formation of triad and SR networks, suggesting that
MG29 may facilitate the docking and fusion of transport vesicles,
processes that lead to the creation of the SR network and TT
to form the triad (Nishi et al., 1999; Komazaki et al., 2001).
Moreover, MG29-deficient mice showed impaired store-operated
Ca2+ entry (SOCE) in the skeletal muscle, in which MG29 directly
interacts with canonical-type transient receptor potential cation
channel type 3 (TRPC3) on TT membranes to regulate Ca2+

transients during skeletal muscle contraction (Woo et al., 2015).
Another synaptophysin, MG53 (also termed TRIM72), contributes
to intracellular vesicle translocation and accumulation, and it has
been recognized as an essential component of the membrane repair
machinery in the striated muscle (Cai et al., 2009a; Whitson et al.,
2021). It has been suggested that MG53 can interact with CAV3
and DYSF to facilitate membrane repair at injury sites by forming
a molecular complex (Cai et al., 2009b).

In the skeletal muscle, JPHs (JPH1 and JPH2) provide a
structural basis for physiological coupling between the plasma
membrane and SR: they bridge the TT membrane through their
cytosolic N-terminal domain with the j-SR via their C-terminal
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TABLE 1 Summary of key muscle proteins and their roles.

Protein Localization Primary function Key interactions References

MyBP-C C zone of the A-band Maintains the ordered
arrangement of the sarcomere
and cross-bridge cycling and
modulates myofilament Ca2+

sensitivity and myosin enzymatic
activity

Myosin, titin, and actin (van Dijk et al., 2014; Luther and
Craig, 2011; Squire et al., 2003)

Titin Z-disk to M-band Functions as a scaffold,
mechanical sensor, and signaling

mediator

α-actinin, telethonin, and
MyBP-C

(Young et al., 1998; Mues et al.,
1998; Witt et al., 2005,

Linke et al., 1998, Linke et al.,
2002, Granzier and Labeit, 2006;

Granzier and Labeit, 2005;
Whiting et al., 1989;

Tskhovrebova and Trinick, 2008;
Puchner et al., 2008)

Nebulin Z-disk to I-band Controls thin myofilament
length, actomyosin ATPase

activity, myofibrillar assembly,
and mechanochemical signaling

Actin, tropomyosin, troponin
complexes, and myosin

(Wright et al., 1993; Wang and
Wright, 1988; Witt et al., 2006;
Kruger et al., 1991; Labeit et al.,
1991; Root and Wang, 1994;

Mcelhinny et al., 2001;
Wear et al., 2003; Bang et al.,

2001; Kontrogianni-
Konstantopoulos et al., 2009)

Obscurin M-line and Z-line Integrates with other
sarcoplasmic elements and

directly or indirectly participates
in signal transduction

Titin, myomesin, and MyBP-C (Kontrogianni-
Konstantopoulos et al., 2003;

Kontrogianni-Konstantopoulos
and Bloch, 2005; Porter et al.,
2005; Fukuzawa et al., 2005;

Young et al., 2001; Carlsson et al.,
2008)

MG29 SR membrane and triad Facilitates the docking and fusion
of transport vesicles

TRPC3 (Nishi et al., 1999;
Komazaki et al., 2001; Woo et al.,

2015)

MG53 j-SR Facilitates membrane repair at
injury sites

CAV3 and DYSF Cai et al. (2009b)

JPH TT and j-SR Provides a structural basis for
physiological coupling between
the plasma membrane and SR
and serves as a scaffold for
assembling Ca2+-release

complexes to ensure effective
ECC

DHPR, RyR, CAV3, and triadin (Takeshima et al., 2000; Perni and
Beam, 2022; Golini et al., 2011)

MTM1 TT Mediates endocytosis and
membrane trafficking

PtdIns3P and PtdIns(3,5)P2 Hnia et al. (2012)

Trisk 95 Terminal cisternae Maintains the triad organization
and intracellular Ca2+

homeostasis regulation

RyR1, JPH1, and CASQ1 (Shen et al., 2007; Rossi et al.,
2022b; Lee et al., 2001)

Junctin Terminal cisternae Assures transmitting signals from
CASQ1 to RyR1

RyR1 and CASQ1 (Dulhunty et al., 2009;
Beard et al., 2008; Dulhunty et al.,

2017)

JP-45 j-SR Mediates voltage-dependent
Ca2+-release

DHPR and CASQ1 (Anderson et al., 2003;
Anderson et al., 2006;
Gouadon et al., 2006;
Yasuda et al., 2013)

(Continued on the following page)
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TABLE 1 (Continued) Summary of key muscle proteins and their roles.

Protein Localization Primary function Key interactions References

CASQ1 SR Stores 80% of the Ca2+ in the
SR

RyR1, triadin, and junctin (Beard et al., 2004;
Murphy et al., 2009; Wang and

Michalak, 2020; Royer and
Rios, 2009)

SAR SR Enhances SERCA complex
stability to pump Ca2+ into the

lumen of the SR to initiate
muscle relaxation

SERCA (Yoshida et al., 2005;
Conte et al., 2023)

HRC SR Manages Ca2+ release and
uptake

RyR1 and SERCA (Suk et al., 1999;
Arvanitis et al., 2011)

DGC Underneath the sarcolemma Connects the cytoskeletal actin
and the laminin

Dystrophin and DAGs (Blake et al., 2002; Sweeney
and Barton, 2000; Jaka et al.,

2015)

Talin Underneath the sarcolemma Facilitates actin cytoskeleton
interactions with the
surrounding matrix

Integrin and vinculin Mukund and Subramaniam
(2020)

Desmin Around the Z-line Maintains cytoskeletal stability Vimentin, nestin, synemin,
paranemin, and syncoilin

(Capetanaki et al., 1997;
Castanon et al., 2013)

Nestin Around the Z-line, NMJ, and
MTJ

Forms filaments Vimentin and desmin (Romero et al., 2013; Hol and
Capetanaki, 2017;

Cizkova et al., 2009)

Synemin Around the Z-line Links the heteropolymeric IFs
to the sarcolemma

Desmin/vimentin, α-actinin,
α-dystrobrevin, and vinculin

(Sun et al., 2008;
Etienne-Manneville, 2018)

Lamin A/C Beneath the inner nuclear
membrane

Forms a nucleoskeleton and
holds mechano signals

SUN1/2 Etienne-Manneville (2018)

Syncoilin Near the sarcolemma, NMJ,
and MTJ, and around the

nuclei

Links desmin to the
sarcolemma and contributes to
the lateral force transmission

Desmin and α- dystrobrevin (Moorwood, 2008; Blake and
Martin-Rendon, 2002)

transmembrane domain (Takeshima et al., 2000). Apart from their
structural functions, JPHs can also interact with various proteins
such as DHPR, RyR, CAV3, triadin, and CASQ, serving as a scaffold
for assembling Ca2+-release complexes to ensure effective ECC
(Perni and Beam, 2022; Golini et al., 2011).

MTM1 is a phosphoinositide phosphatase localized at triads,
and in phosphoinositide metabolism, MTM1 can specifically
dephosphorylate phosphatidyl-inositol-3-phosphate (PtdIns3P)
and phosphatidyl-inositol-3,5-bisphosphate (PtdIns(3,5) P2), which
mediate endocytosis and membrane trafficking (Hnia et al.,
2012). Moreover, MTM1 knockout in animal models leads to
disruption of triad morphology and Ca2+ homeostasis, while
its overexpression causes membrane stack accumulation in
the subsarcolemmal region, indicating the delicate balanced
expression of MTM1 in triad formation (Al-Qusairi et al., 2009;
Dowling et al., 2009; Buj-Bello et al., 2008).

Triadin is an integral span membrane protein family
localized at the triad, and all isoforms share common N-terminal
transmembrane domains but have different C-terminal segments
(Marty et al., 2009; Oddoux et al., 2009). The classic isoform
of approximately 95 kDa (Trisk 95) is located at the terminal

cisternae of the skeletal muscle, and its knockout mice model
presented abnormal triads and Ca2+ homeostasis, but no significant
changes were observed in ECC (Shen et al., 2007). It has been
demonstrated that Trisk 95 is able to interact with RyR1, JPH1, and
Ca2+-binding protein CASQ1 to maintain the triad organization
and intracellular Ca2+ homeostasis regulation (Shen et al., 2007;
Rossi et al., 2022b; Lee et al., 2001). Similarly, a membrane-spanning
protein structurally homologous to triadin, named junctin, is an
alternative splicing product of the aspartate β-hydroxylase gene
(Dulhunty et al., 2009). Junctin and Trisk 95 both interact with RyR1
and CASQ1, anchoring CASQ1 near RyR1; however, their binding
sites on RyR1 and CASQ1 and the detailed functional effects are
extremely different. For example, in contrast to one samebinding site
(KEKE motifs) on Trisk 95 for RyR1 and CASQ1, there are multiple
binding sites on junctin for RyR1 andCASQ1.Due to the presence of
multiple RyR1/junctin and junctin/CASQ1 binding sites, compared
to Trisk 95, junctin could assure transmittance of signals from
CASQ1 toRyR1 (Beard et al., 2008; Dulhunty et al., 2017).Moreover,
another integral membrane protein JP-45 is highly enriched in j-SR,
which interacts with DHPR via its N-terminal domain and with
CASQ1 through its C-terminal segment (Anderson et al., 2003).
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A substantial body of research indicates that both overexpression
and ablation of JP-45 leads to a reduction in voltage-dependent
Ca2+-release, which may be closely correlated with changes in the
collaboration between JP-45 and DHPR/CASQ1 (Anderson et al.,
2006; Gouadon et al., 2006; Yasuda et al., 2013).

It is well-known that Ca2+ is preserved in the SR and
mainly buffered by the low-affinity and high-capacity Ca2+ binding
protein CASQ to polymerize into elongated linear polymers under
physiological conditions (Wang et al., 1998; Perni et al., 2013).
Actually, CASQ is localized exclusively in the j-SR by binding
to RyR, triadin, and junctin, as well as creating a complex
three-dimensional cross-linked network. In mammals, the CASQ1
isoform is exclusively expressed in the fast-twitch skeletal muscle,
while the CASQ2 isoform is found in the slow-twitch skeletal
muscle and heart; especially, CASQ1 is capable of storing 80%
of the Ca2+ in the SR (Beard et al., 2004; Murphy et al., 2009).
It has become increasingly clearer that CASQ1 interacts with
RyR, triadin, and junctin in a Ca2+-dependent manner, which
is attributed to changes in the Ca2+ concentration that induces
a conformational change in CASQ1: CASQ1 maximally inhibits
the RyR1 when the free Ca2+ concentration reaches 1 mM, and
the inhibition gradually diminishes as the Ca2+ concentration is
altered, while CASQ1 dissociates from the RyR1 complex at Ca2+≤
100 μM or≥ 5 mM (Wang and Michalak, 2020; Royer and Rios,
2009). Recently, new functions of CASQ1 have been proposed,
including regulation of SOCE by binding to STIM1/OraiI and
ER stress responses interacting with IRE1α in the skeletal muscle
(Michelucci et al., 2020; Wang et al., 2019). Similar to the j-SR, the
l-SR also contains Ca2+ binding proteins, and the most plentiful
one is SAR. It has been demonstrated that SAR colocalizes and
directly interacts with SERCA, enhancing SERCA complex stability
to pump Ca2+ into the lumen of the SR to initiate muscle relaxation
(Yoshida et al., 2005; Conte et al., 2023). Another secondary SR
Ca2+-binding protein is HRC, which is far less abundant than
CASQs but structurally similar to CASQs, functioning as Ca2+

buffer. Actually, the local and rapid changes of Ca2+ levels within
the SR may result in different multimer forms of HRC and affect
its interactions with other SR components (Suk et al., 1999).
It has been suggested that HRC could interact with either the
RyR or SERCA complex to manage Ca2+ release and uptake,
respectively. As the SR Ca2+ increases, the HRC/SERCA interaction
gradually diminishes, causing the detachment of SERCA from
HRC. The released HRC then regulates Ca2+ release through
the RyR complex, while locally reduced SR Ca2+ concentration
facilitates the reconnection of HRC/SERCA, resulting in the
reuptake of cytoplasmic Ca2+ (Arvanitis et al., 2011). However,
current research studies on HRC mainly focus on the cardiac
muscle, and the HRC/triadin and HRC/SERCA interactions and
their functional implications on Ca2+-uptake and release in skeletal
muscle remain unclear.

2.3 Mitochondria

As a highly metabolic tissue, the skeletal muscle relies
on mitochondria to convert substrates into ATP via oxidative
phosphorylation. This ATP powers critical processes such as
myofibrillar contraction (through myosin ATPase activity),

ion transport (e.g., Ca2+ reuptake by the SR), and cellular
homeostasis. Beyond energy production, the mitochondria
are central to metabolite biogenesis, cell-cycle regulation, and
apoptosis/autophagy signaling (Mcbride et al., 2006; Dominy
and Puigserver, 2013; Tilokani et al., 2018; Palmer et al.,
2011; Ploumi et al., 2017). Actually, mitochondrial function
is dynamically regulated by cycles of fission (division), fusion
(merging), and motility—collectively termed mitochondrial
dynamics (Ni et al., 2015). These processes depend on coordinated
nuclear gene expression, mtDNA transcription, and protein
import (Ploumi et al., 2017). Dysregulation of fission/fusion
disrupts mitochondrial membrane integrity, exacerbating
apoptosis and autophagy through pathways such as Bax/Bcl-2-
imbalance and mPTP opening (Jeong and Seol, 2008; Xian and
Liou, 2021).

The mitochondria in myofibers exhibit distinct morphological
and functional specialization based on their subcellular localization:
the sub-sarcolemmal mitochondria (SSM) reside beneath the
sarcolemma and are usually spherical in form with few branches,
supplying ATP to sarcolemmal pumps (e.g., Na+/K+-ATPase);
the perinuclear mitochondria (PNM) are in proximity to
nuclei/capillaries and have structural similarities with SSM,
supplying ATP to the nuclear pores, and both SSM and PNM
are termed peripheral mitochondria (PM); the intra-myofibrillar
mitochondria (IFM) are located between myofibrils and have a
close contact with the SR displaying reticular network structure,
which specialize in ATP production for contractile machinery
(myofibrils) and SR Ca2+-ATPase (SERCA) (Vincent et al., 2019;
Swalsingh et al., 2022). IFM exhibit higher oxidative enzyme activity,
respiratory chain complex density, and nucleotide metabolism
proteins compared to SSM, aligning with their role in sustaining
contraction (Ferreira et al., 2010).

Emerging studies demonstrate that mitochondrial
subpopulations diverge in stress responses and signaling. For
instance, some studies demonstrated that IFM possess higher levels
of cytochrome c/apoptosis-inducing factor (AIF) release and lower
membrane potential, ROS production rate, and Bax-to-Bcl-2 ratio
compared with SSM (Adhihetty et al., 2005). Considering its greater
oxidative enzyme activities and respiration rates, IFMmay represent
the larger pro-apoptotic protein pool in the skeletal muscle. A
recent spatial distribution study of mitochondrial enzymes showed
that complexes responsible for membrane potential (complex
IV) and ATP (complex V) production are preferentially located
in PM and IFM, respectively, and it has been postulated that
membrane potential generated in PM can be directly distributed
to IFM through mitochondrial connections, promoting ATP
production (Willingham et al., 2021). It has also been reported
that IFM is structurally and functionally associated with SR,
and their contact sites are referred to mitochondria-associated
membranes (MAMs) for exchanging Ca2+. In the mitochondria,
Ca2+ influx increases ATP production by enhancing the activity of
mitochondrial oxidases, while the exceeding physiological needs of
Ca2+ can promote the opening of the mitochondrial permeability
transition pore (mPTP), thereby triggering apoptosis or necrotic
cell death (Rossi et al., 2019; Matuz-Mares et al., 2022). Therefore,
mitochondrial subcellular specialization is tightly linked with
skeletal muscle quality and function.
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2.4 Cytoskeleton

In the skeletal muscle, the cytoskeleton serves as a cellular
scaffold determining the morphology of myofibers and transmitting
mechanical force between myofibrils and extracellular skeleton. In
addition to myofibrils themselves, the cytoskeleton component also
includes costameres, IF, andmicrotubule. Costameres are positioned
underneath the sarcolemma and vertical to the longitudinal
axis of myofibers, connecting the sarcomere to sarcolemma via
the Z-line and M-line. Along with assembling and stabilizing
the sarcomere, costameres also regulate the interaction between
the cytoskeleton and the extracellular matrix (ECM), all of
which are based on its intricate protein composition. Current
evidence supports the existence of major costameric proteins
including the dystrophin–glycoprotein complex (DGC) and the
vinculin–talin–integrin system (Figure 3). The DGC connects the
cytoskeletal actin and the laminin via dystrophin and dystrophin-
associated glycoprotein (DAG) interactions, respectively, in which
the cytoskeletal protein dystrophin binds to cytoplasmic actin
at its N-terminus, whereas its C-terminus is associated with
DAGs that can be classified as cytoplasmic, supramembrane,
and extracellular subcomplex (Blake et al., 2002; Sweeney and
Barton, 2000). The cytoplasmic subcomplex comprises the α-
dystrobrevin (α-DB) and syntrophin (syn), which are directly
linked to dystrophin C-terminus. The supramembrane subcomplex
includes glycosylated transmembrane protein sarcoglycan (SG)
and sarcospan (SP), which need to be correctly assembled into
a complex with dystrophin for maintaining sarcolemma integrity.
For the extracellular subcomplex, the primary component α-
dystroglycan (α-DG) strengthens the physical linkage between
the ECM and the basement membrane components via binding
to laminin-2 in the ECM and β-dystroglycan (β-DG) in the
sarcolemma. The β-DG can also interact with the dystrophin, thus
establishing the connection between the actin-based cytoskeleton
and the ECM. Hence, it is clear that dystrophin serves a pivotal
role in DGC system, whose absence or dysfunction leads to
increased sarcolemma fragility, thereby weakening its functions to
protect against mechanical stress (Jaka et al., 2015). Similarly, the
vinculin–talin–integrin system is also fundamental for facilitating
actin cytoskeleton interactions with the surrounding matrix,
especially in skeletal muscle cell adhesion and signaling (Mukund
and Subramaniam, 2020). Here, the dimeric protein talin links
vinculin with integrin: on the one hand, talin binds to the
cytoplasmic tails of integrins to activate ECM adhesion; on
the other hand, the interaction between vinculin and talin
provides the connection of actin filaments to the sarcolemma,
reinforcing the adhesion site. Moreover, the complex can also
participate in signal transduction pathways, which influence various
cellular responses, such as changes in gene expression and
cell behavior.

Another cytoskeletal element, IF, has been demonstrated to
tether the contractile myofibrillar apparatus to the sarcolemma and
other organelles such as the myonucleus, mitochondria, SR, and
lysosome, which forms the transverse fixation system of the muscle
together with the costameres (Figure 3). Based on similarities
among their sequence and structure, IF proteins are grouped
into six types, namely, types I and II (keratin), type III (desmin,
vimentin, glial fibrillary acidic protein (GFAP), and peripherin),

type IV (neurofilament-like protein), type V (lamin A/C), and
type VI (large-molecular weight proteins such as nestin, synemin,
paranemin, and syncoilin or a special group for CP49/phakinin
and filensin/CP115), and the list is still growing (Hnia et al.,
2015; Costa et al., 2004; Eldirany et al., 2021). During myogenesis,
myoblasts initially express vimentin and nestin, while desmin is
induced early in myogenic differentiation and then integrated into
the pre-existing network of vimentin, and the mature skeletal
muscle mainly contains desmin and keratin (Schweitzer et al.,
2001). These filamentous structures form extended IF networks
around the Z-line of the myofibrils, thereby linking adjacent
myofibrils together, especially desmin and keratin (K8 and K19),
which are linked to sarcolemma through costameric components.
In addition, desmin knockout in mice causes disruption in the
nuclear position, myofibril alignment, mitochondrial function, and
even NMJ and MTJ integrity, indicating a more prominent role
of desmin in maintaining cytoskeletal stability (Capetanaki et al.,
1997; Castanon et al., 2013). Actually,molecular studies demonstrate
that desmin can bind or copolymerize with IF proteins vimentin,
nestin, synemin, paranemin, and syncoilin and widely interact
with other functional proteins. In early myogenesis, nestin co-
polymerizes with vimentin and later on with desmin to form
filaments, whereas vimentin completely disappears and nestin
is selectively expressed only in the NMJ and MTJ in mature
skeletal myofibers (Romero et al., 2013; Hol and Capetanaki,
2017; Cizkova et al., 2009). Synemin is another desmin-associated
molecule and is considered to link the heteropolymeric IFs to
the sarcolemma by directly interacting with desmin/vimentin, α-
actinin, α-dystrobrevin, and vinculin (a microfilament-associated
protein) (Sun et al., 2008; Etienne-Manneville, 2018). For an IF
component of developing skeletal muscle, paranemin has been
shown to be required for desmin filaments organization, but not
nestin or synemin (Schweitzer et al., 2001). Unlike the majority
of IF proteins that form filaments by homopolymerization or
heteropolymerization, syncoilin is a non-filament-forming member
that binds directly to desmin and α-dystrobrevin, thus linking
desmin to the sarcolemma and contributing to the lateral force
transmission in the skeletal muscle. Except for being located near
the sarcolemma, syncoilin is enriched at the NMJ and MTJ and
around the nuclei in mature skeletal myofibers (Moorwood, 2008;
Blake and Martin-Rendon, 2002). In the skeletal muscle, IFs are
also located in the nuclei as lamins, mainly represented by lamin
A/C, to form a nucleoskeleton beneath the inner nuclear membrane
and hold mechanosignals. LINC complex (SUN1/2-nesprin3) on
the nuclear membrane binds to lamin A/C at the inner nuclear
membrane (through SUN1/2) and to desmin-binding protein
plectin 1 at the outer nuclear membrane (through nesprin3), thus
allowing the association of the nucleoskeleton with the cytoskeleton
(Etienne-Manneville, 2018). Furthermore, via the nuclear pores,
cytoplasmic IFs may directly connect lamins, but it remains to
be determined in the skeletal muscle (Lockard and Bloom, 1993;
Georgatos et al., 1987; Capetanaki et al., 2007). Desmin filaments
have also been suggested to connect other cell components such
as lysosome (via the myospryn), SR (via the MTM1), microtubule
(via the dynein), and M-line (via the MyoM1) (Hnia et al., 2015),
(Kielbasa et al., 2011). Especially, the desmin-binding protein
plectins are responsible for linking desmin IF networks with
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FIGURE 3
Schematic representation of the cytoskeleton in myofibers. Skeletal muscle cytoskeleton comprises myofibrils, costameres, IF, and microtubules.
Costameres mainly contain the dystrophin–glycoprotein complex (DGC) and the vinculin–talin–integrin complex that bidirectionally link the ECM to
myofibrils; IF proteins, especially desmin, tether the contractile myofibril to the sarcolemma and other organelles including myonucleus, mitochondria,
SR, and lysosome, which forms the transverse fixation system of the muscle together with the costameres; microtubules form a grid containing
longitudinal and transverse components across the myofiber to promote muscle maturation.

nuclei (via the plectin 1), mitochondria (via the plectin 1b), Z-
line (via the plectin 1 day), and costamere (via the plectin 1f)
(Castanon et al., 2013), (Carlsson et al., 2000; Konieczny et al.,
2008). These desmin interactions are likely to coordinate the
activity of specific kinases and phosphatases, thus regulating signal
transduction.

In addition to the costamere and IF, myofibers also contain
microtubules to transmit mechanical force, which form a grid
containing longitudinal and transverse components across the
fiber. During myogenesis, myoblast fusion, nuclear localization
to the cell periphery, and assembly of the sarcomere require
microtubules to ensure proper myofiber structure and function
(Lucas and Cooper, 2023). It is well known that microtubule
assembly nucleates at the microtubule-organizing center (MTOC),
and MTOC transferring from the centrosomal to non-centrosomal
location is a marker of differentiation (Sanchez and Feldman, 2017).
During skeletal muscle differentiation, mononuclear myoblasts
cease proliferation and elongation to form myoblasts with fusogenic
capability, attributed to the MTOC switching from centrosomes
to nuclear membranes and bi-polar extension of microtubules

toward the cell (Sanchez and Feldman, 2017; Clark et al., 2002).
Myoblast fusion occurs at the tips of elongated myoblasts through
close contacting and merging of the cell membranes; hence,
the failure of myoblast elongation can lead to a lack of fusion
(Kim et al., 2015). As fusion proceeds, the nucleus of a newly
fused myoblast rapidly migrates to the central myotube nuclei,
which is mediated by dynein motor–Par6 complex that connects
the nuclear envelope with microtubules (Bone and Starr, 2016;
Starr, 2017). Then, these nuclei spread apart and are evenly
spaced throughout the myotube, and the process is currently
thought to be regulated by a variety of mechanisms: the kinesin-
1 motor-nesprin1/2 complex links the nuclei to the microtubules
and transports the nuclei along the microtubules; the kinesin-1
motor-microtubule-associated protein 7 (MAP7) complex drives
the sliding of anti-parallel microtubules that extend outward from
adjacent nuclei, thereby pushing neighboring nuclei apart; Nesprin-
α recruits centrosomal protein Akap450 to the nuclear envelope
independently of kinesin to nucleate microtubules (Starr, 2017;
Gimpel et al., 2017). Eventually, the nuclei move from the center
of the myofiber to the sarcolemma in a desmin-dependent process;
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except for some nuclei thatmigrate to theNMJ and anchor there, the
remaining nuclei are evenly spaced around the myofiber periphery
(Bone and Starr, 2016). Moreover, microtubules bound by myosin-
binding protein Muscle RING finger-2 (MURF-2) provide a scaffold
for the association of sarcomeric myosin with the A-band portion
of titin, thereby generating the mature A band during myofibril
assembly (Pizon et al., 2002; Pizon et al., 2005). In a similar manner,
another microtubule-binding protein dystrophin serves as the
scaffold for microtubule growth, resulting in microtubules aligning
with dystrophin in both longitudinal and transverse directions of the
sarcomere (Prins et al., 2009). Currently, research on microtubule
organization within myofibers is continually deepening, such as its
involvement in fiber type-dependent, Golgi apparatus relevance,
mitochondrial trafficking, and primary cilia signaling (Ng et al.,
2021; Oddoux et al., 2013; Giovarelli et al., 2020).

3 Conclusion

Skeletal myogenesis is a lifelong process in mammals,
governed by molecular mechanisms that remain both intricately
orchestrated and incompletely resolved. While foundational
regulators—including cyclin/CDK complexes, chromatinmodifiers,
and myogenic transcription factors—have been mapped, their
spatiotemporal coordination during myofiber formation and
adaptation is still emerging (Wu and Yue, 2024). Central
to this process is the exquisite architectural organization of
skeletal myofibers, where myofibrils, SR, mitochondria, and
the cytoskeleton coalesce into a contractile machine. Myofibrils
drive force generation, the SR and mitochondria synchronize
excitation–energy coupling, and the cytoskeleton integrates
mechanical and biochemical signals. This structural precision
enables rapid, adaptable responses to physiological demands, but
it also hinges on dynamic protein networks whose complexity we
are only beginning to unravel.

In this review, we synthesized current knowledge on
the structural and functional hierarchy of skeletal myofibers,
emphasizing how core components (myofibrils, SR, mitochondria,
and cytoskeleton) collaborate to enable contraction and
homeostasis. Key findings include the following: myofibrils
rely on scaffold proteins (e.g., titin and nebulin) for sarcomere
assembly and minor regulators (e.g., α-actinin and telethonin) for
stability under stress; SR–mitochondria crosstalk at mitochondria-
associated membranes (MAMs) fine-tunes calcium signaling to
balance ATP production and apoptosis; cytoskeletal networks
(desmin and microtubules) distribute mechanical load and
anchor organelles, linking contractile activity to nuclear
reprogramming. Despite these advances, critical gaps persist.
For example, the biological roles and molecular mechanisms
of muscle protein components in skeletal myogenesis remain
largely unknown, including what their signaling roles are
within the myofiber architecture, what is the order of their
interactions, how they are regulated and how they, in turn,
regulate gene expression and homeostasis in myofibers; what
mechanisms prioritize radial hypertrophy versus longitudinal
growth during adaptation, and how do mechanical cues interface
with transcriptional programs? Future progress will require

leveraging emerging tools such as cryo-electron tomography
to resolve subcellular structures in situ, single-cell multi-omics
to deconvolve myonuclear specialization, and 3D biomimetic
models to recapitulate niche-specific signaling. Building upon these
methodological advances, further investigation of the nature of
the dynamic and extraordinarily complicated interplay among
muscle proteins using sophisticated molecular biology methods
will have far-reaching implications on mammalian skeletal muscle
pathophysiology.
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