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The tumor suppressor p53 plays a crucial role in maintaining genome integrity in
response to exogenous or endogenous stresses. The dynamics of p53 activation
are stimulus- and cell type-dependent and regulate cell fate. Acting as a
transcription factor, p53 induces the expression of target genes involved in
apoptosis, cell cycle arrest and DNA repair. However, transcription is not a
deterministic process, but rather occurs in bursts of activity and promoters
switch stochastically between ON and OFF states, resulting in substantial
cell-to-cell variability. Here, we characterized how stimulus-dependent p53
dynamics are converted into specific gene regulation patterns by inducing
diverse forms of DNAdamage ranging from ionizing andUV radiation to clinically
relevant chemotherapeutics. We employed single molecule fluorescence in-
situ hybridization (smFISH) to quantify the activity of target gene promoters at
the single-cell and single-molecule level. To analyse this comprehensive data
set, we developed a new framework for determining parameters of stochastic
gene expression by Bayesian inference. Using this combined theoretical and
experimental approach, we revealed that features of promoter activity are
differentially regulated depending on the target gene and the nature and
extent of the DNA damage induced. Indeed, stimulus-specific stochastic gene
expression is predominantly regulated by promoter activation and deactivation
rates. Interestingly, we found that in many situations, transcriptional activity
was uncoupled from the total amount of p53 and the fraction bound to
DNA, highlighting that transcriptional regulation by p53 is a multi-dimensional
process. Taken together, our study provides insights into p53-mediated
transcriptional regulation as an example of a dynamic transcription factor that
shapes the cellular response to DNA damage.
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1 Introduction

Throughout their lives, cells in our bodies are confronted with various sources of
stress. Altering gene expression is crucial for them to adapt to these stresses and elicit
appropriate cell fate decisions. These changes in expression are mediated by the activity
of transcription factors that change over time in response to cellular signal processing,
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FIGURE 1
p53 dynamics are stimulus- and dose-dependent. (A) Schematical representation of selected stimuli, which induce the p53 stress response. (B)
Illustration of promoter activity according to the random telegraph model. TS: transcription site, RE: response element. (C–G) Median trajectories of
p53 dynamics using live cell time-lapse microscopy of A549 reporter cell line. p53 levels are quantified as fluorescent intensity (y-axis) over 24 h
(x-axis). Basal levels are shown in grey. Cells were irradiated with ionizing radiation at 10 Gy (C) and UV radiation at 3 J/m2 and 6 J/m2 (D), and treated
with different chemotherapeutics, such as 5µM and 50 µM Etoposide (E), 5 μg/mL 5-FU (F) and 10 µM Nutlin-3a (G). The number of cells analysed is
provided in Supplementary Table S1.

thereby enabling the transfer of information from an incoming input
into a cellular response. A central hub of the cellular stress response
is the tumor suppressor p53.As one of themost studied transcription
factors, p53 plays a pivotal role in maintaining genome stability and
inhibiting tumorigenesis. Under normal conditions, p53 is modified
by the ubiquitin ligaseMdm2anddegraded through the proteasome.
In response to diverse stress signal, p53 undergoes post-translational
modifications that stabilize the protein (Oren and Prives, 2024).
After translocation to the nucleus, p53 promotes the expression of
target genes that mediate its biological responses and determine
cell fate decisions (Figure 1A) (Sammons et al., 2020). Among the
target genes of p53 are MDM2 and other negative regulators such
as the phosphatase PPM1D/Wip1.These interactions form feedback
loops that shape the dynamics of p53. Time-resolved analysis in
individual living cells demonstrated that upon induction of DNA
double strand breaks (DSBs), p53 accumulates in pulses of uniform
amplitude and duration that are generated by excitability in the
p53 network and cell-specific activation thresholds (Mönke et al.,
2017; Loewer et al., 2010). However, in response to other stresses,
p53 shows different temporal patterns of accumulation, such as a
single p53 pulse following UV radiation (Batchelor et al., 2011),
or a monotonic increase correlated with cell death upon cisplatin
treatment (Paek et al., 2016).

When p53 induces expression of its target genes, a series of
molecular events are triggered at the promoter. These include
exchange of repressive to permissive histone marks, recruitment of
the basal transcription machinery, modification of the C-terminal
domain of RNA Polymerase II (Pol II) and elongation of nascent
transcripts until a poly-A signal is reached at the end of the gene
(Coulon et al., 2013). Studies at the singlemolecule level have shown

that transcription is a discontinuous process and occurs in episodic
bursts of transcribed RNA (Bahar et al., 2015), leading to cell-to-
cell variability of RNA levels (Bartman et al., 2019). To describe
burst dynamics and their regulation, one of the most successfully
applied models in both prokaryotes and eukaryotes is the random
telegraph model (Suter et al., 2011). According to this model, a
promoter switches stochastically between a transcriptionally active
“ON” state, during which RNAs are produced by trains of Pol II,
and an inactive “OFF” state, when no new RNA is transcribed,
while existing mRNA undergoes degradation (Figure 1B). Within
this framework, the telegraph model helps to elucidate diverse RNA
distributions, enables rapid reliable parameter inference (Jiao et al.,
2024), and predicts rates at which genes are turned on and
off by TFs, providing insights into gene expression regulation
(Ezer et al., 2016). Although more complex models, such as
three-state and multi-state promoters, have been proposed, the
telegraph model remains a robust framework for capturing the
distributions observed in these more intricate systems (Jiao et al.,
2024). Parameter inference is typically performed using a Bayesian
approach (Kilic et al., 2023) and requires single-cell data at multiple
time points. Consequently, single molecule fluorescence in situ
hybridization (smFISH) (Bahar et al., 2015; Neuert et al., 1979;
Munsky et al., 2015), single-cell RNA sequencing (scRNA-seq)
(Larsson et al., 2019; Ramsköld et al., 2024) and live-cell imaging
using the MS2-MCP system (Ramsköld et al., 2024; Hu et al., 2023;
Donovan et al., 2019; Pomp et al., 2024) are among the most suitable
experimental approaches for inferring the kinetic parameters of
bursty transcription.

In our study, we implemented dual-color smFISH, utilizing two
probe sets labelled with different fluorophores to simultaneously
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detect exons and introns of the same gene (Bahar et al., 2015).
This approach not only provided single-molecule resolution, but
also enabled us to distinguish and quantify mature RNA in nucleus
and cytoplasm as well as nascent RNAs at transcription sites
(TSs). Unlike previous studies (Bahar et al., 2015; Friedrich et al.,
2019), we used this powerful tool in combination with a novel
framework for describing stochastic gene expression based on
Bayesian inference. We extended the set of considered measurable
quantities representing statistical features of the telegraph model
compared to the approach in Friedrich et al. (2019) with the
goal to improve parameter identifiability. We derived an explicit
expression for the distribution of the RNA counts in polyploid
cells and introduced an additional, phenomenological parameter to
capture overdispersion in the fluorescence intensity from nascent
RNA at single TSs. Bayesian inference estimates the distribution of
model parameters given the measured quantities. This estimate is
called the posterior distribution and provides a principled way to
capture uncertainty in the model parameter (José, 1994). In higher-
dimensional cases, where normalization of and thus direct sampling
from the posterior distribution is not viable, Markov-chain-Monte-
Carlo (MCMC) has become the baseline method of choice to obtain
samples from the posterior distribution (Andrieu et al., 2003). We
thus used MCMC to update our knowledge of model parameters in
the presence of the experimentally acquired data.

Quantification of bursting transcription of p53 target genes has
been previously explored. In 2019, Friedrich et al. used an smFISH-
based approach and demonstrated the p53-dependent transcription
is intrinsically stochastic and mainly regulated by the fraction of
active promoters (burst frequency) (Friedrich et al., 2019). Similarly,
Hafner et al. observed in living cells that p53 predominantly
influences the probability of transcriptional activation, likely due to
transcriptional saturation during the ON state (Hafner et al., 2020a).
Both studies reported modulation of transcriptional dynamics
following DNA damage induced by ionizing radiations (IR).
However, the regulation of p53 target gene promoters in response
to other external stimuli remains unclear.

Our study aimed to systematically compare p53-dependent
gene expression in a subset of targets upon various clinically
relevant treatments and to investigate transcriptional regulation at
the single-molecule and single-cell levels. We provide evidence for
an uncoupling between p53 dynamics and its target gene expression.
Additionally, using a combinatorial experimental and mathematical
approach we identified that regulation of promoter activity is both
stimulus- and gene-specific, and mainly driven by the frequency of
promoters switching between ON and OFF states.

2 Materials and methods

2.1 Cell line

A549 cells (#CCL‐185) were cultured in McCoy’s 5A growth
medium (GE Healthcare, Solingen, GER) supplemented with 10%
(v/v) Fetal Bovine Serum, 2 mM GlutaMAX, 100 U/mL penicillin
and 100 μg/mL streptomycin. When required, the medium was
supplemented with selective antibiotics to maintain transgene
expression (400 μg/mL G418, 50 μg/mL hygromycin, or 0.5 μg/mL

puromycin). The A549 p53 reporter and p53 knockdown cell lines
have been described before by Finzel et al. (2016).

2.2 Irradiation and treatments with
chemotherapeutics

Cells were irradiated with 10 Gy X-rays with a dose rate of
1 Gy/26 s and an energy of 250 keV. UV-C irradiation (256 nm) was
performed using a UV lamp at 40 cm distance, with exposures of 2 s
(3 J/m2) and 4 s (6 J/m2). Prior to UV-C irradiation, the cell culture
medium was replaced with sterile PBS. Consequently, smFISH
measurements distinguished between basal conditions (no medium
change) and the 0 h time point (PBS replacement). Drug treatments
were applied at the following final concentrations: etoposide
(#E1383, Sigma-Aldrich, St. Louis, United States) at 5 µM (low)
and 50 µM (high), 5-fluorouracil (CAS 51-21-8, Sigma-Aldrich, St.
Louis, United States) at 5 μg/mL, and Nutlin-3a (#N6287, Sigma-
Aldrich, St. Louis, United States) at 10 µM.

2.3 Live-cell time lapse microscopy

A549 reporter cells with both p53-mVenus and H2B-CFP
nuclear marker were used for live-cell time-lapse microscopy. Two
days prior the experiment, cells were grown on 24-well clear
bottom plates or 35-mm clear bottom plates (both Ibidi GmbH,
Gräfelfing, GER) depending on the treatment.Mediumwas changed
to FluoroBriteTM DMEM microscopy medium (Thermo Fisher
Scientific,Waltham,MA,United States) supplementedwith 5%Fetal
Bovine Serum and cells were kept at stable conditions of 5% CO2
and 37°C. Cells were imaged on a Nikon Eclipse Ti-E inverted
microscope with perfect focus system (Nikon) using a ×20 CFI Plan
Fluor objective (NA 0.75) and a Nikon DS-Qi2 digital camera. X-
Cite 120 LED illumination system (Lumen Dynamics) was used for
imaging and appropriate filter sets: (mVenus: 500/20 nm excitation
(EX), 515 nm dichroic beam splitter (BS), 535/30 nm emission
(EM); eCFP: 436/20 nm EX, 455 nm BS, 480/40 nm EM. Images
were acquired every 15 min for 24 h.

2.4 Automated tracking of cells and
analysis of p53 dynamics

Automated segmentation of nuclei and quantitative analysis of
p53 levels were performed inMATLAB (MathWorks, Natick, United
States) using custom written scripts as described in Finzel et al.
(2016). In brief, flat field correction and background subtraction
were applied to raw images, afterwards individual nuclei were
segmented using thresholding and watershedding algorithms.
Segmented cells were then assigned to corresponding cells in
following images using a greedymatch algorithm. Only cells tracked
from the first to last time-point were considered for quantitative
analysis. The integrated nuclear fluorescence intensity was used to
determine p53 abundance and generate single-cell trajectories for
individual cells over time.

To determine effect sizes of changes in p53 levels upon treatment
and their significance, we performed permutation testing (1,000
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permutations) by repeatedly calculating changes of population
medians relative to the basal condition from subsamples of the
data corresponding to 20% of the imaged cells and established
corresponding 90% confidence intervals.

2.5 Single molecule FISH

Stellaris probe sets for single-molecule fluorescent in situ
hybridization (smFISH) (Biosearch Technologies) were custom-
designed for targeting p53 target genes and were directly
adopted from Friedrich et al. (2019). Exon probes were labelled with
CAL Fluor Red 610, while intron probes with Quasar 670 dye. A549
wild-type cells were grown for 2 days on 18 mm uncoated coverslips
(thickness #1). After treatment, cells were washed with sterile ice-
cold PBS at indicated time points, fixed with 2% paraformaldehyde
(EM-grade) (Electron Microscopy Sciences, Hatfield, United States)
for 10 min at room temperature and permeabilized over night
with 70% ethanol at 4°C. Each probe set was pre-diluted in Tris-
EDTA (Sigma Aldrich, St. Louis, United States) and hybridized
at a final concentration of 0.1 μM for 16 h at 37°C in a humified
chamber. Afterwards, cells were washed and incubated with
Hoechst-33342 (Life technologies, Carlsbad, United States) for
10 min at room temperature for nuclear staining and with HCS
CellMaskTM (Thermo Fisher Scientific, Waltham, MA, United
States) for cytoplasmic counterstain. Coverslips were then mounted
on Prolong Gold Antifade (Life Technologies). Cells were imaged
on a Nikon Eclipse Ti-E inverted fluorescence microscope with a
DS-Qi2 camera. A ×60 plan apo objective (NA 1.4) and appropriate
filter sets were used: (Hoechst: 387/11-nm excitation (EX), 409-nm
dichroic beam splitter (BS), 447/60-nm emission (EM); Alexa Fluor
488: 470/40 nm (EX), 495 nm (BS), 525/50 nm (EM); CAL Fluor
Red 610: 580/25 nm (EM), 600 nm (BS), 625 nm (EX); Quasar
670: 640/30 nm (EX), 660 nm (BS), 690/50 nm (EM)). Images were
acquired as multipoints of 21 z-stacks with 300 nm step-width using
Nikon Elements software (Nikon instruments, Tokyo, JPN).

2.6 Analysis of smFISH data in FISH-Quant

Automated segmentation of nuclei and cytoplasm was
performed using Cellpose (St et al., 2021). TSs were manually
detected based on the intron signal in nuclei in all z-planes. In brief,
according to the FISH-Quant workflow as described inMueller et al.
(2013) for spot detection, images were filtered, pre-detection was
performed, then spots were fitted, and fits were further thresholded
to exclude outliers. TS detection was based on the intron signal and
an average cytoplasmic spot intensity was computed for determining
the number of nascent RNAs at the detected TS. Each analysis was
performed using the FISH-Quant batch processing toolbox. RNA
counts anddetectedTSswere thenused formathematicalmodelling.

To assess the significance of changes in RNA counts across time
points for all conditions, pairwise non-parametric Mann–Whitney
U tests were performed. For each condition, RNA counts at
the selected time points after stimulation were compared to the
corresponding basal level (first time point). To account for multiple
comparisons, Bonferroni correction was applied. Adjusted p-values
below 0.05 were considered statistically significant.

2.7 The likelihood factors from bayesian
inference

The factors of the likelihood, abbreviated as L1 and L2, are
detailed in the following. The first factor L1 accounted for the
measured RNA count m (estimated from exon fluorescence) and
the amount k < K of active TSs in a cell (with a total of K TSs in
this cell, active or inactive). We assumed the decomposition L1 =
L1,1 ·… · L1,C, where the cells (enumerated 1,…,C) were considered
independent. Based on the telegraph model, L1,c then determines
the likelihood of seeing a total of m RNA molecules at steady-state
when K independent telegraph models with identical parameters
θ = (λ,γ,μ,δ) are present in cell c, of which k are active and K− k
are inactive. Let Xn ∈ {0,1} give the activity of the n-th TS and Yn ∈
{0,1,2,…} give the amount of present RNA from the n-th TS. Then,
with X = X1 +…+XK and Y = Y1 +…+YK, the likelihood L1,c was
obtained in closed form as

L1,c(θ; k,m) = P[X = k,Y =m |Θ = θ] = [(
K
k
)p∗kθ ∗ q

∗(K−k)
θ ](m),

where the superscript x
∗k denotes the k-times convolution of

a function x with itself and the partial mass functions pθ =
P[Xn = 1,Yn =m] and qθ = P[Xn = 0,Yn =m] (equal for all m) were
found to be given as

pθ(m) =
Γ(b)Γ(m+ a+ 1)
Γ(a)Γ(m+ b+ 1)

M(m+ a+ 1,m+ b+ 1,−
μ
δ
)

μm

m!δm

and

qθ(m) =
Γ(b)Γ(m+ a)(m− b)
Γ(a)Γ(m+ b− 1)

M(m+ a,m+ b− 1,−
μ
δ
)

μm

m!δm
,

where M denotes Kummer’s confluent hypergeometric function
and a = λ/δ and b = (λ+ γ)/δ. The derivation of the equation for
L1,c can be found in the Supplementary Material and is based on
a result by Peccoud and Ycart (1995). In this likelihood alone,
the parameters stay ambiguous w.r.t. their scale, because of the
consistent division by δ.

The second factor L2 accounted for the measured fluorescence
from exon probes in the vicinity of a detected TS, but only in those
cases in which fluorescence from intron probes was present as well.
Presence of fluorescence from intron probes was used to declare the
respective TS as active. We assumed the decomposition L2 = L2,1 ·
… · L2,T, where the active TSs (enumerated 1,…,T) were considered
independent. The factor L2,t then determines the likelihood that the
measured total exon fluorescence z for the detected active TS t is a
sample from a Gamma distribution, i.e.,

L2,t(θ; z) =
dP[Z ≤ z |Θ = θ]

dz
= Γ(z; m

2

β
,
β
m
),

where Γ is the Gamma probability density function in shape-scale
parametrization, obtained by moment-matching with the statistics
m (mean) and β (variance). The mean m of the distribution
was chosen as the total exon fluorescence intensity from nascent
RNA currently transcribed at an active TS, as predicted by the
telegraph model with parameters γ, λ and μ. This mean was
obtained by rejection sampling from the telegraph model in the
following way. We first sampled N trajectories π1,…,πN from
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the underlying telegraph process determining active and inactive
periods of the TS. Conditioned on a trajectory πn, we sampled an
inhomogeneous Poisson point process (with arrival rates in {0,μ},
depending on the active and inactive periods in πn) to obtain
a sample of positions pn = (pn,1,pn,2,…) of polymerases on the
gene. For a sample of polymerase positions pn, we then calculated
the exon fluorescence intensity zn of nascent RNA if at least one
polymerase resided within the range of an intron of the respective
gene downstream of at least one corresponding intron probe or
otherwise rejected the entire sample (πn,pn) and resampled it. This
is due to our simplifying assumption of fast splicing rates and fast
spatial displacement of intronic RNA.Therefore, a polymerase needs
to still reside within an intronic region for an intron signal to be
present. The elongation rate of the polymerases was considered
a hyperparameter and set to 50bps, the transcription initiation
rate was identified with the burst rate μ. The mean m was then
approximated as

m ≈ 1
N
(z1 +…+ zN).

The variance β of the Gamma distribution was set as an
additional model parameter that is not mechanistically justified but
considered a phenomenological parameter.

2.8 Configuration of the MCMC

The initial values of the model parameters were manually
adjusted to reasonable values. Since all parameters were positive,
real, and could be of different orders of magnitude, inference
was done on the logarithmic values and the logarithmic step
proposal distribution was chosen to be a multivariate normal
distribution with initial unit covariance (corresponding to a
multivariate log-normal scaling-distribution in the linear domain).
A Robbins-Monro schedule was used to adjust the covariance
continuously during the burn-in period from a moving window
of samples (Andrieu and Thoms, 2008). The schedule and the
length of themoving windowwere considered hyperparameters and
adjusted manually to achieve allowable acceptance rates during the
posterior sampling phase.

2.9 Chromatin immunoprecipitation

A549 wild-type cells were grown in 10-cm plates to reach 80%
confluency. After treatment, cells were washed with sterile ice-cold
PBS at indicated time points, fixed with 1% paraformaldehyde (EM-
grade) (Electron Microscopy Sciences, Hatfield, United States) for
10 min at room temperature and incubate with 125 mM Glycine in
PBS for 5 min to stop fixation. Cells were washed with ice-cold PBS
and harvested in PBS supplemented with 1 mM PMSF. Cell pellet
was resuspended in Lysis buffer (5 mM Tris–HCl, pH 8.0, 85 mM
KCl, 0.5% Igepal‐CA630 supplemented with protease inhibitor
cocktail and 1 mM PMSF) and incubated for 20 min on ice. Nuclear
pellet was collected by centrifugation, resuspended in Sonication
buffer (50 mM Tris–HCl, pH 8.1, 0.3% SDS [w/v], 10 mM EDTA
supplemented with 1 mM PMSF and Protease Inhibitor Cocktail),
and incubated for at least 30 min on ice. Chromatin fragmentation

was performed using the Bioruptor® Pico (Diagenode, LLC, NJ,
United States) according to the manual. Two cycle of sonication
(30 s ON, 30 s OFF) per 6 × 106 cells were sufficient to ensure
fragment size of 200–700 bp. 10 μg of chromatin was then diluted
with Dilution buffer (16.7 mM Tris–HCl, 167 mM NaCl, 0.01% SDS
[w/v], 1.2 mM EDTA, 1.1% Triton [v/v], 1 mM PMSF, Protease
Inhibitor Cocktail) and incubated overnight at 4°C with 1 µg of
p53 antibody (#2527, Cell Signaling Technology,MA, United States)
or a control IgG (normal rabbit IgG, Merck Millipore). To collect
the immunocomplexes, 20 μL of Dynabeads Protein G (Thermo
Fisher Scientific) were added for 2 h at 4°C. The beads were washed
once with low salt washing buffer (0.1% SDS [w/v], 2 mM EDTA,
20 mMTris–HCl pH8.1, 1%TritonX‐100 [v/v], and 150 mMNaCl),
high salt washing buffer (0.1% SDS [w/v], 2 mM EDTA, 20 mM
Tris–HCl pH 8.1, 1% Triton X‐100 [v/v], and 500 mM NaCl) and
LiCl washing buffer (10 mM Tris–HCl pH 8.1, 1 mM EDTA, 1%
IGEPAL CA630 [v/v], 1% deoxycholic acid [w/v], 250 mM LiCl),
and TE‐Buffer (10 mM Tris–HCl pH 8.1, 1 mM EDTA). Chromatin
was eluted from the beads for 30 min at 65°C in Elution buffer (1%
SDS, 0.1 M NaHCO3) twice. Crosslinks were reversed incubating
the samples with 200 mM NaCl at 65°C overnight and by following
addition of 10 μg/mL RNase A for 30 min at 37°C and 100 μg/mL
Proteinase K, 10 mM EDTA, and 40 mM Tris–HCl pH 6.5 for 3 h
at 45°C. Finally, the DNA was purified using the Monarch® PCR &
DNA Cleanup Kit (NEB, Ipswich, MA) and 3 μL of each sample was
used for qPCR.

2.10 Quantitative real-time PCR (RT-qPCR)

RNA was extracted at the indicated time points using the
Monarch® Total RNA Miniprep Kit (#T2010, NEB). cDNA
was generated from 1 µg extracted RNA using M-MuLV reverse
transcriptase and oligo-dT primers (both NEB). Quantitative
real-time PCR was performed in triplicates using ProtoScript
II Reverse Transcriptase (NEB) and SYBR Green reagent
(Thermo Fisher Scientific, United States) on a StepOnePlus PCR
machine (Thermo Fisher Scientific, United States). Relative gene
expression changes were analyzed using the 2−ΔΔCT method.
Actin served as the reference gene. The final concentration
of primers used was 243.2 nM. The following intron-spanning
primerswere used: BAX forward:CTGACGGCAACTTCAACTGG;
BAX reverse: GATCAGTTCCGGCACCTTGG; MDM2
forward: AGATGTTGGGCCCTTCGTGAGAA; MDM2
reverse: GCCCTCTTCAGCTTGTGTTGAGTT; CDKN1A
forward: TGGACCTGTCACTGTCTTGT; CDKN1A
reverse: TGGACCTGTCACTGTCTTGT; PPM1D forward:
ATAAGCCAGAACTTCCCAAGG;PPM1Dreverse: TGGTCAATA
ACTGTGCTCCTTC; β‐ACTIN forward: GGCACCCAGCACAAT
GAAGATCAA; β‐ACTIN reverse: TAGAAGCATTTGCGGTGGA
CGATG.

For ChIP assays, these primers were used: BAX
forward: AACCAGGGGATCTCGGAAG; BAX reverse:
AGTGCCAGAGGCAGGAAGT;MDM2 forward: GTTCAGTGGG
CAGGTTGACT;MDM2reverse: CGGAACGTGTCTGAACTTGA;
CDKN1A forward: AGCCTTCCTCACATCCTCCT; CDKN1A
reverse: GGAATGGTGAAAGGTGGAAA.
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2.11 Western blot

Cells were grown for 2 days in 6 cm plates to reach 80%
density. After treatment, cells were harvested at indicated time
points. Protein isolation was performed by lysis in RIPA buffer
in the presence of protease and phosphatase inhibitors (Carl Roth
GmBH, Karlsruhe, GER and Sigma Aldrich, St. Louis, United
States) as well as Panobinostat (#404950-80-7, Cayman Chemical,
United States) as deacetylase inhibitor. For the SDS-PAGE, 20 µg of
protein were used and loaded on 10% acrylamide gels. Afterwards,
proteins were transferred to PVDF membranes (GE Healthcare)
by electroblotting (Bio‐Rad). The membrane was blocked with 5%
milk in TBS-T and incubated overnight with the primary antibody.
The next day, the membrane was washed with TBS-T, incubated
with secondary antibody coupled to peroxidase, washed again,
and protein levels were determined using chemoluminescence
(WesternBright® Quantum® , Advansta). For detection of p53
acetylation, all blocking, wash and incubation buffers contained
Panobinostat. Precision Plus Protein Dual Color Standard (Bio-Rad,
Feldkirchen, GER) was used for molecular mass comparison and
GAPDH as loading control. The following antibodies were used:
anti‐GAPDH (Sigma‐Aldrich, G9545), anti‐p53 (Santa Cruz #DO1,
Cell Signaling, #9282), anti‐p53K382ac (Abcam, ab75754), goat
anti‐rabbit-IgG‐HRP (Thermo Fisher Scientific), goat anti‐mouse-
IgG‐HRP (Thermo Fisher Scientific).

2.12 Labelling of cells with EdU

A549 wild type cells were seeded on 15 mm circular, uncoated,
#1 high-precision coverslips (round) 2 days prior the experiment.
After treatment, they were incubated with 1 mM EdU for 1 h
and subsequently washed with PBS. Cells were then fixed with
2% paraformaldehyde for 10 min at room temperature and
permeabilized with 0.1% Triton X-100 in PBS for 20 min. After
washing, cells were stained with 20 µM Eterneon Red 645-Azide
according to the manufacturer’s instructions using the EdU Click-
647 ROTI®kit for Imaging (Carl Roth, #7777.1). Counterstain of
nuclei was performed using Hoechst-33342. Coverslips were finally
mounted and imaged as described for the smFISH method.

3 Results

3.1 P53 dynamics are stimulus- and
dose-dependent

To investigate stimulus-dependent gene regulation, we induced
different types of DNA damage, focusing on ionizing and UV
radiations as well as clinically relevant chemotherapeutics. First,
we characterized p53 dynamics in response to different doses of
these stimuli in a previous established small cell lung carcinoma
cell line A549 expressing wild type p53 fused with the mVenus
fluorescent protein (Chen et al., 2013) using live-cell time-lapse
microscopy (Figures 1C–G; Supplementary Figures S1A, B). Cells
exposed to ionizing radiation (IR) accumulate DSBs, triggering
the DNA damage response (DDR) primarily mediated by the
PI3K-like kinase ATM (Ciccia and Elledge, 2010). A subsequent

phosphorylation cascade induces p53 accumulation in the nucleus
in pulses of uniform amplitude and duration (Batchelor et al., 2008).
We observed these pulsatile p53 dynamics after irradiation with
10 Gy (Figure 1C). In contrast, UVC light provokes cross-link of
consecutive pyrimidine bases leading to exposure of single-stranded
DNA (ssDNA) and activation of an ATR-dependent DNA damage
response (Lee et al., 2020). Upon low doses of UV, p53 exhibited
pulsatile dynamics similarly to the response upon IR. Upon high
doses, p53 showed instead a single pulse of accumulation with
higher amplitude and duration (Figure 1D). A bimodal response
was also observed upon etoposide treatment. Indeed, at 5 µM
concentration, oscillatory p53 dynamics were detected, while at
higher concentrations p53 accumulated in a single pulse (Figure 1E).
This chemotherapeutic drug stabilizes the binding between DNA
topoisomerase II and DNA resulting in DSBs (Chen et al., 2013).
In contrast, the antimetabolite 5-fluorouracil (5-FU) mainly acts
by blocking the enzyme thymidylate synthase and by inhibiting
both RNA and DNA synthesis (Sun et al., 2007). After treatment
with 5-FU, p53 levels constantly increased over time. Decreasing
p53 at the end of the experiment might be due to cytotoxicity
(Figure 1F). To complete our analysis, we induced p53 accumulation
in absence of DNA damage using Nutlin-3a as an inhibitor of the
p53-Mdm2 interaction (Vassilev et al., 2004). As expected, we
observed a constant increase of p53 levels over time (Figure 1G).
Moreover, we noted substantial differences in p53 accumulation
across treatments, with the highest levels detected following Nutlin,
5-FU, and high-dose UV radiation. We validated these stimulus-
specific p53 dynamics using Western blot assays in wild-type A549
cells, which were used to quantify transcription in subsequent
experiments (Supplementary Figure S1C). In conclusion, we
identified a set of stimuli that resulted in different dose-dependent
dynamics of p53 in A549 cells that allowed us to investigate the
correlation between temporal changes in transcription factor levels
and stochastic expression of its target genes.

3.2 Expression of p53 targets show
stimulus and gene-specific pattern

In a previous study, we demonstrated that following IR, the
first p53 pulse induces a general increase in target gene expression
(Friedrich et al., 2019). However, at later time points, gene-specific
changes were observed. If p53 exhibits different dynamic patterns,
do target genes adjust their expression accordingly? And if so, how
do these changes manifest over time? To address these questions,
we selected four well-characterized p53 target genes involved in
different cell fate programs: MDM2, PPM1D/Wip1 (both feedback
regulators); CDKN1A/p21 (cyclin-dependent kinase inhibitor) and
BAX (apoptosis). We first confirmed that expression of the chosen
target genes was induced by p53 accumulation in response to
the selected stimuli by comparing mRNA levels in populations of
p53 wild type and knockdown cell lines using quantitative RT-
qPCR (Supplementary Figures S2A, B). We then employed smFISH
(Bahar et al., 2015; Friedrich et al., 2019) and measured total RNA
levels over time using exon-targeting probes (Figures 2A,B). Nuclear
and cytoplasmic stainings (Supplementary Figures S2C) allowed us
to identify individual cells and assign mRNAs to both subcellular
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FIGURE 2
p53 target genes show stimulus and gene-specific expression patterns. (A) Schematic depiction of smFISH probe sets. Exon (red) and intron (yellow)
probes were labelled with the fluorophores CAL Fluor Red 610 and Quasar 670, respectively. (B) Fluorescence microscopy images of smFISH probes
CAL Fluor 610 (grey) overlayed with Hoechst 33,342 staining (blue) 3 h after Nutlin treatment for the indicated target genes in A549 cells. Scale bar
corresponds to 5 µm distance; images were contrast and brightness enhanced for better visualization. (C) Median p53 levels from live-cell time-lapse
microscopy experiments. Boxplots represent the quantification of nuclear fluorescent intensity at indicated time points following treatments. Estimated
changes relative to basal conditions are shown in the lower plots; error bars represent 90% confidence intervals determined by permutation testing.
See Supplementary Figure S2E for a comparison of p53 levels across conditions. (D–J) RNAs per cell were quantified using FISH-Quant for four target
genes at the indicated time points upon treatment with the selected stimuli and displayed as box plots. For all boxplots, lines indicate medians of
distributions; boxes include data between the 25th and 75th percentiles; whiskers extend to maximum values within 1.5× the interquartile range. See
Supplementary Figure S3A for replicate data. Number of cells analyzed for each experiment and condition are indicated in Supplementary Table S1.
Statistical analysis of changes in RNA counts compared to unstimulated conditions was performed using pairwise non-parametric Mann–Whitney U
tests with Bonferroni correction for multiple testing and provided in Supplementary Table S2.

compartments using FISH-Quant (Mueller et al., 2013) and custom-
written Matlab scripts (see Methods for details). smFISH requires
cell fixation at defined time points, which were selected based on
changes of p53 levels in response to different doses of the previously
described stimuli (Figure 2C; Supplementary Figures S2D).

Surprisingly, our smFISH analysis revealed a disconnect
between p53 dynamics and mRNA expression (compare
Figures 2C–J; see Supplementary Figures S2E 3A for replicate data;

Supplementary Table S2 for statistical analysis). Specifically, following
irradiation with 10 Gy, we observed pulsatile p53 dynamics which
did not correspond to the expression patterns of its target genes. The
selected genes exhibited either transient expression or a sustained
increase in RNA levels over time (Figure 2D). In contrast, after UV
radiation at 3 J/m2, only a single full p53 pulsewas detectedwithin the
analyzed timepoints.MDM2,CDKN1A,andPPM1Dinitially showed
increasedRNA levelswhich returned tobasal levels at later timepoints
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(Figure 2E). At higher UV doses, although p53 levels progressively
increased, RNA levels rose only at later time points (Figure 2F).
Notably, BAX showed only slight induction of gene expression at both
low and high UV doses compared to IR (Figures 2E,F). Following
treatment with etoposide, p53 levels were twice as high when cells
were treated with 50 μM compared to 5 µM. However, the expression
pattern of all target genes remained unchanged between the two
conditions, with RNA levels increasing over time (Figures 2G,H).
Upon 5-FU treatment, p53 accumulation increases monotonously to
high levels. Surprisingly, target gene expression did not reflect these
dynamics to the same extent, with some target genes showing only
minor changes (Figure 2I). As expected, we observed increased target
genes expression followingNutlin treatment (Figure 2J). Interestingly,
we noted that basal RNA levels varied among the genes, with BAX
showing high number of transcripts already without induction.
Moreover, each p53 target reached its maximum level of transcription
atdifferent timepoints after induction,definingagene-specificpattern
of expressiondependingon the stimulus (Supplementary Figure S3B).
The described expression patterns were consistent across smFISH
experiments, with some variability in timing and amplitude (compare
Figures 2D–J; Supplementary Figure S3A). Overall, our findings
indicate that RNA expression is gene-specific upon most of the
stimuli, but poorly dose-dependent. Moreover, transcription patterns
do not correlate with p53 dynamics over the selected time points.

Surprisingly, most target genes did not exhibit a robust increase
in expression following high doses of UV radiation at early
time points, despite elevated p53 levels. Several studies have
reported that UV exposure leads to transcriptional inhibition
through both elongation blockage and initiation impairment
(Rockx et al., 2000). To assess this phenomenon, we imaged EU-
labeled RNA levels in cells at 3 h post-irradiation. Consistent
with expectations, our analysis revealed a reduction in nascent
RNA levels upon both low and high doses of UV compared to
unirradiated cells (Supplementary Figure S4).

3.3 Identification of regulation patterns of
promoter activity through bayesian
inference

While RNA transcript measurements provide valuable insights
into gene expression, they are insufficient to fully characterize
the bursting dynamics of target gene promoters. Therefore,
we employed dual-color smFISH labeling to measure both
mature RNAs (as described above) and nascent transcripts using
intron-targeting probes conjugated to a distinct fluorophore
(Figure 3A; Supplementary Figure S2C). This approach enabled
the identification of actively transcribing transcription sites (TSs),
which, as expected, were detected exclusively in the nucleus. Because
our study was conducted in a polyploid cell line, we identified more
than two TSs for all the selected p53 targets.The number of genomic
loci and their potential to be fully activated upon stimulation has
been previously validated by Friedrich et al. using DNA FISH
(Friedrich et al., 2019). Consistently, our data confirm independent
allele activity, as we observed single cells displaying zero, one, two,
or more active TSs (Supplementary Figure S5A). Measurements of
RNA molecules, TS counts and fluorescence intensities of the exon
probes were extracted from the FISH-Quant analysis (Mueller et al.,

2013) (see Methods for details). When quantifying nascent RNAs,
it is important to keep in mind that individual oligonucleotides
of the exon and intron probe sets are unevenly distributed
across the gene length (Supplementary Figure S5B). Therefore, the
fluorescence intensity of individual nascent transcripts depends on
the respective progression of RNA polymerase II (Pol II).

To derive bursting parameters, mathematical modelling based
on mRNA distributions and polymerase occupancies has been
previously used (Bahar et al., 2015; Friedrich et al., 2019). However,
this approach relies on Poisson-like distributions and provides
limited details in the reported parameters. To achieve more accurate
estimates of transcriptional activity for p53 target gene promoters,
we refined a framework based on Bayesian inference and the
random telegraph model. This model consists of a non-leaky two-
state promoter, switching between active and inactive periods with
activation rate λ and deactivation rate γ. During an active period,
RNA is transcribed at the promoter with a rate μ. Existing RNA
is degraded with rate δ (Figure 3B). Investigation of the statistical
relation between the telegraphmodel and nascent RNAfluorescence
revealed an overdispersion of the fluorescence intensity data, which
was captured by an additional model parameter β.

The Bayesian posterior distribution is proportional to the
product of the observation likelihood and the prior distribution
over the model parameters, which in our case were γ, λ, μ, δ and
β. Inference was done for each condition, gene, and time-point
independently. An improper uniform prior over the non-negative
real parameter space was chosen. The observation likelihood
consisted of a product of two independent factors (given the model
parameters, i.e., a sample thereof), of which more details can be
found in the Methods section.

One of the factors accounted for was the total measured RNA
counts (estimated from exon probes) and the total number of TSs
present in a cell. Based on the telegraph model, we calculated the
likelihood tomeasure the given total amount of RNA,whenmultiple
independent telegraphmodels with identical parameters (γ, λ and μ,
all normalized by δ) are present (Figure 3C).

The other factor accounted for was the measured fluorescence
from exon probes in the vicinity of a detected TS, but only in
those cases in which fluorescence from intron probes was present
as well. Presence of fluorescence from intron probes was used to
declare the respective TS as active. Having assumed a separation
of timescales between spatial displacement and transcription of
RNA, we declared the measured exon fluorescence to come from
nascent RNA. We calculated the likelihood that the measured exon
fluorescence intensities for the detected active TSs are samples of
a Gamma distribution with the following statistics. Its mean was
predicted by the telegraph model with parameters γ, λ and μ, and
its variance was given by the additional phenomenological model
parameter β. The positions of polymerases on the gene determine
the count of exon probes already transcribed in the nascent RNAs
that contribute to the fluorescence. These positions were inferred
using the telegraph model. As each single exon probe contributes to
the measured total intensity by a fixed amount, we could determine
the mean fluorescence intensity at the active TSs from the mean
occupancy of the gene by Pol II (Figure 3D).

Correlation in the posterior of the parameters varied across
cases (conditions, genes, time-points). However, in most cases the
strongest correlationswere observed between λ and γ aswell as μ and
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FIGURE 3
Bayesian inference enables characterization of promoter features. (A) Multicolor fluorescent imaging of the CDKN1A gene upon Nutlin treatment,
shown as representative smFISH data. From left to right: individual images of intron staining with Quasar 670 dye, exon staining with Cal Fluor 610, and
merge. Scale bar corresponds to 5 µm distance; images were contrast and brightness enhanced for better visualization. (B) Schematic representation
of promoter activity based on the random telegraph model, incorporating RNA production and degradation. Transcriptional parameters were inferred
using Markov-Chain-Monte-Carlo (MCMC): activation rate λ, deactivation rate γ, transcription rate µ, degradation rate δ, variance of nascent RNA
fluorescence intensity β (not shown). (C) Histogram of CDKN1A mRNA transcripts at 6 h following Nutlin treatment (grey bars). The orange curve
represents the predicted probability mass function by the model for multiple independent TSs. (D) Histogram of measured fluorescence intensity levels

(Continued)
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FIGURE 3 (Continued)
at TS for CDKN1A at 6 h time point following Nutlin treatment (grey bars). The orange curve represents the density of the fitted Gamma distribution.
(E) Corner plot displaying low-dimensional marginals of the MCMC-obtained empirical estimate of the posterior distribution in the (natural)
logarithmic domain. The diagonal elements show the marginal distributions of individual parameters, while the off-diagonal elements present
two-dimensional marginal distributions for parameter pairs. (F) Plot of posterior sample traces for all parameters from the MCMC run for CDKN1A at
6 h following Nutlin treatment. Convergence of the Markov chain was assessed visually. λ values (in blue) are not visible because they overlap with
γ and δ values. (G) Bar plot depicting the posterior mean estimates of f(corresponding to λ/(λ+γ)), μ, and δ for CDKN1A 6 h after Nutlin addition as
representative example. The horizontal axis represents time points after treatment, while the vertical axis shows posterior means and confidence
intervals (2.5% and 97.5% quantiles). (H) Summary of MCMC estimates of f, μ, and δ represented as a clustergram. Each row corresponds to a specific
gene and stimulus, while each column represents a given time point post-treatment (3 h, 6 h and 9 h for IR, 5-FU and Nutlin; 2.5 h, 4.5 h and 6.5 h
for etoposide low and high; 3 h, 5 h, 7 h, for UV 3 J/m2and 5 h, 7 h, 9 h for UV 6 J/m2). In the heatmap, color intensity represents fold changes,
ranging from 0-fold (white) to 15-fold (black), normalized to the basal (untreated) condition. The dendrogram was generated by computing pairwise
Euclidean distances between time points and applying the average linkage method.

δ (Figure 3E).Hyperparameters were carefully calibrated for (single-
chain) MCMC to appropriately sample the Bayesian posterior
(details in the Methods section). All samples were obtained in the
logarithmic domain. We generated 30,000 posterior samples with
an additional 10,000 samples for the burn-in period. Convergence
was later assessed visually from the sample traces (Figure 3F).
All reported estimated parameters correspond to posterior mean
estimates.

Using this combined experimental and theoretical approach, we
generated a comprehensive data set describing gene- and stimulus-
specific regulation of promoter activity by p53. For each of the
stimuli described above, we selected informative time points and
analysed hundreds of individual cells. For simplicity, we defined
f as the fraction λ/(λ+γ) of active promoters in the steady state.
Characterizing f, μ and δ provided insights into regulation of
transcriptional bursting for p53 target genes. However, since δ is a
derived parameter, its estimation should be interpretedwith caution,
as it may not directly reflect underlying biological processes.

We first analyzed stochastic gene expression from the CDKN1A
promoter following Nutlin treatment. We observed that in this
condition, f exhibited a two-fold increase at 3 h post-treatment and
remained constant over time. We observed a similar pattern for μ.
In contrast, δ decreased at later time points (Figure 3G). To allow a
better comparison of promoter regulation over time, we normalized
each parameter to the basal time point and present the resulting fold-
changes as a heat map. Using this approach, we analysed promoter
activity of the CDKN1A gene upon the selected stimuli as well as
the promoter activity of all target genes upon IR. We again observed
that f was strongly regulated in most conditions, with additional
contributions by μ (Supplementary Figure S5C). In this context, we
determined the reproducibility of MCMC estimates on biological
replicates. While the main findings were robust, we observed a
certain degree of variability for some parameters and time points
due to technical limitations as well as the stochastic nature of the
biological process.

To systematically analyse promoter activity across genes and
conditions, we performed hierarchical clustering of normalized
transcriptional parameters (Figure 3H). This approach allowed us
to gain insights into distinct transcriptional regulatory patterns. The
underlying raw and processed measurements are available via our
institutional repository (see data availability section). Our analysis
revealed that p53 target gene expression is predominantly regulated
by the switching ON/OFF ( f ) of their promoters, with a minor
modulation of μ and δ. However, there appear to be both stimulus-

and gene-specific features of promoter regulation. In absence
of DNA damage, upon Nutlin treatment where transcriptional
activation is driven solely by the accumulation of p53 over time,
promoter properties became most easily apparent. Specifically,
the promoters of BAX and PPM1D were primarily regulated by
f, whereas MDM2 and CDKN1A exhibited additional regulation
through μ. Following IR, promoter regulation patterns resembled
those observed in Nutlin-treated cells, despite the different p53
accumulation dynamics (Figures 1C–G). Upon etoposide treatment,
CDKN1A promoter remained predominantly regulated by f. BAX
also followed this pattern, though with a reduced magnitude
of f and a different temporal profile. In contrast, MDM2 and
PPM1D promoters showed increased regulation through promoter
activation and a stronger contribution of δ. Notably, no significant
differences in regulation were observed between the two etoposide
doses. Upon UV radiation, we observed greater variability in
promoter regulation across genes and doses. As indicated by the
RNA measurements, most promoters exhibited attenuated activity
despite high p53 levels (Figures 2E,F), likely due to the UV-induced
decrease in transcription (Supplementary Figure S4). At low UV
doses, BAX, MDM2 and CDKN1A promoters showed minimal
regulation across all three parameters, except for MDM2, which
displayed slight regulation through δ. In contrast, the PPM1D
promoter showed an increase in f. At high UV doses, PPM1D
and BAX clustered together, with μ and δ playing a major role in
their promoter regulation.Meanwhile,MDM2 exhibited remarkably
high regulation through f across time points. Ultimately, following
5FU treatment, PPM1D and CDKN1A promoters exhibited weak
regulation across transcriptional parameters, whereas MDM2 and
BAX promoters displayed an f -driven regulation of their activity.

Taken together, our results demonstrate that the implementation
of our Bayesian inference-based approach enabled the successful
identification of differential regulation of transcriptional bursting
in p53 target genes in response to diverse stimuli. Consistent
with previous studies, most promoters predominantly modulate the
frequency of activation and deactivation rates upon induction.

3.4 p53 post-translational modifications
contribute to the regulation of promoter
activity

Our data unexpectedly showed that gene- and stimulus-
specific promoter activity is uncoupled from p53 dynamics. We
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FIGURE 4
Post-translational modifications and promoter binding of p53 are uncoupled from its dynamics. (A) Amount of p53 bound to indicated target gene
promoters upon different stimuli measured by ChIP and calculated as percentage of input. Individual data points (mean values of triplicate
quantification in RT-qPCR measurements) from three to four biological repeats are shown as dots; mean values are displayed as bars. (B) Schematic
illustration of p53′s C-terminal modifications (modified from Friedrich et al., 2019). (C) Comparison of total p53 and acetylated p53 at K382 upon
different stimuli through Western blot assays. The time points were chosen based on the peak p53 levels measured in population assays. GAPDH was
used as loading control. Data is representative of three independent repeats.

hypothesized that this could be due to differential binding of
p53 to its response elements (REs). Therefore, we performed
Chromatin Immunoprecipitation (ChIP) experiments to quantify
the fraction of p53 bound to REs at gene promoters. Strong
p53 binding was observed following IR and chemotherapeutic
treatments, with no substantial differences between these
conditions. Interestingly, low UV doses resulted in p53 binding
levels comparable to basal conditions, while higher UV doses
led to increased binding (Figure 4A). Surprisingly, these findings
showed only a weak correlation with total p53 detected by Western
blot analysis (Supplementary Figure S1C).

As p53 binding to its target gene promoters was not able
to explain the observed gene- and stimulus-dependent promoter
activity, we explored further regulatory mechanisms. Many studies
reported that post-translational modifications at the p53 C-terminal
domain (CTD) play a critical role in transcriptional regulation.
Particularly, acetylation at the residues K370 and K382 is associated
with increased target gene expression (Figure 4B). In vitro and in
vivo studies have demonstrated that acetylated p53 is enriched at
the CDKN1A promoter compared to total p53 (Luo et al., 2003). To
compare total and acetylated p53 levels across different stimuli, we
performed Western blot analysis on A549 cells harvested at selected
time points corresponding to peak p53 accumulation. Consistent
with time-lapse microscopy observations, p53 showed different

pattern of accumulation depending on the applied stimulus.Notably,
despite high total p53 levels under certain conditions, its acetylation
state was unexpectedly low in many cases, as exemplified by
etoposide, 5-FU and low UV treatments (Figure 4C). Importantly,
p53 acetylation mostly correlated with smFISH measurements of
RNA levels. For example, at the 3-h time point, IR and Nutlin
treatment led to higher expression of target genes compared to
etoposide and 5FU (Figures 2D–J).

Taken together, our results indicate that total p53 levels alone do
not predict transcriptional activity. Instead, acetylation of the p53
CTD appears to be implicated in determining gene activation. This
suggests that post-translational modifications act as a regulatory
layer that fine-tunes p53-dependent transcriptional responses to
different stimuli. Overall, we provided evidence that p53-mediated
gene expression is not solely dictated by its accumulation or
DNA binding, but rather by the integration of multiple regulatory
mechanisms.

4 Discussion

In this study, we systematically compared the dynamic p53
response and the induction of its target genes upon multiple sources
of genotoxic stress, focusing on the A549 non-small cell lung
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carcinoma cell line as a model system. Distinct p53 dynamics enable
cells to respond differently to various stimuli, ultimately influencing
cell fate. For example, pulsatile p53 primarily induces the expression
of genes involved in transient responses to DNA damage (cell cycle
arrest), while sustained p53 is more closely associated with terminal
outcomes (apoptosis, senescence) (Purvis et al., 2012). Therefore,
understanding how different p53 dynamics regulate gene expression
is crucial for understanding its role in tumor suppression. Our
data reveal that the dynamics of p53 do not always correlate with
the corresponding gene expression, indicating an uncoupling of TF
levels and the activity of its target gene promoters. This disconnect
has been observed in other studies (Friedrich et al., 2019) and
for other TFs, such as SMAD2/4 where TGF-β-dependent nuclear
translocation does not alignwith the transcription profile of its target
gene ctgf (Tidin et al., 2019). Although TFs are key players in gene
expression, they are not the sole determinants.

In our study, we induced various types of DNA damage that
could directly interfere with transcription. For instance, following
UV radiation, we observed a general reduction in newly synthesized
RNA. This is consistent with previous findings, showing that UV
radiation not only inhibits transcriptional initiation, but also slows
transcript elongation due to Pol II stalling (Rockx et al., 2000;
Andrade-Lima et al., 2015; Gregersen and Svejstrup, 2018). We
hypothesize that in these cases, p53 acts as a sensor of DNA lesions:
it accumulates upon UV exposure but can only activate its gene
expression response once the damage is repaired by the nucleotide
excision repair machinery. This is evidenced by the increase in
mRNA levels for most target genes only at later time points and
the fact that promoter activity is not strongly regulated by the
transcription rate following UV exposure. Similarly, 5-FU treatment
also stabilizes p53 by disrupting the MDM2-p53 feedback circuit
(Sun et al., 2007). 5-FU misincorporation is known to disrupt many
aspects of RNA metabolism, particularly affecting rRNA, tRNA and
snRNA (Mojardín et al., 2013; Longley et al., 2003). However, its
potential impact on mRNA processing remains unclear.

To build a comprehensive dataset for studying stochastic
gene expression, we employed smFISH. This powerful tool
offers single-molecule resolution and spatial information within
individual cells. It provides high sensitivity and specificity, avoids
amplification biases and enables multiplexing to study several
genes simultaneously (Li and Neuert, 2019). Our approach yields
largely reproducible and statistically relevant results as shown by
replicate measurements of RNA counts. However, it is limited by
low temporal resolution in fixed cells and the ability to analyze
only a relatively small number of cells, which might lead to
elevated variability across experiments in the context of stochastic
processes. This is most noticeable when comparing results to
population-based measurements such as RT-qPCR. To counteract
these limitations, researcher have employed live-cell imaging
of transcriptional dynamics to follow individual cells over time
(Hu et al., 2023; Xia et al., 2025) and be able to capture the timescale
of transcription, which ranges fromminutes to hours inmammalian
cells. Nevertheless, dual-color smFISH allowed us to gain insights
into transcriptional bursting. By fitting a telegraph model to our
smFISH data using Bayesian inference, we calibrated five model
parameters and systematically characterized features of promoter
activity in a stimulus-specific manner. Consistent with other studies
(Friedrich et al., 2019; Hafner et al., 2020a), our results reveal that

p53-dependent transcription is mainly regulated by the activation
and deactivation rates of the promoter. Although p53 accumulation
drives promoter activation, its temporally changing levels do not
directly lead to differential promoter regulation. For example,
increasing p53 levels following Nutlin treatment and pulsatile p53
dynamics upon IR result in similar regulation of f, μ and δ.Moreover,
gene expression appears to be unaffected by p53 concentration.
For instance, despite etoposide inducing vastly different p53 levels
at different concentrations, the response profiles of target genes
remained largely similar.

The telegraph model, i.e., the two-state promoter model with
Markovian switching, is a simple, accessible model that often
represents bursting kinetics of gene transcription sufficiently well
and is thus commonly used (Jiao et al., 2024). In our application,
however, measured fluorescence from nascent RNA at active TSs
was overdispersed w. r.t the model prediction. We compensated this
effect by the addition of a phenomenological variance parameter,
but a mechanistic description is lacking. While the base model
itself stayed unaltered, we derived an explicit expression for the
distribution of the total RNA count at steady state in the presence
of multiple TSs (telegraph models with identical parameters,
indistinguishable from data) that can be applied to polyploid cells,
and for whichwe could show good agreement betweenmodel fit and
data. Bayesian inference provided us with two important advantages
compared to frequentist point estimates (e.g., taking only the most
likely combination of parameters). First, the posterior distribution
quantifies the remaining uncertainty in the model parameters after
training on the experimental data in a principledway. Second, it gave
us access to the minimum-mean-square-error (MMSE) estimator
for the parameters which has many desirable statistical properties
(Barber, 2012). While MCMC is a versatile tool to implement
Bayesian inference, it requires a fair amount of expert knowledge
to adjust in order to achieve its desired statistical properties.
At the same time, single-chain MCMC can perform poorly in
scenarios with multiple distant posterior modes, often unknowingly
so to the user (Barber, 2012). Finally, Bayesian inference with
MCMC comes with a high computational cost, though this is
often outweighed by the expense of generating experimental data
in the lab.

Moreover, as model parameters of CDKN1A show some
inconsistencies among biological replicates, some interpretation
should be drawn with caution. At the same time, theses parameters
appear more consistent when comparing multiple target genes
under the same stimulus. In this context, it is important to
keep in mind that stochastic gene expression leads by itself to
heterogeneity. Most of the genes are transcribed in bursts at low
and high expression levels. However higher RNA levels are mainly
dominated by extrinsic noise (Hafner et al., 2020a; Zechner et al.,
2014). Additionally, TF dynamics positively affect noise in gene
expression.

Although the random telegraph model could help us describing
how the transcriptional parameters change in response to varying
stimuli, our findings suggest that underlying levels of promoter
regulation are not fully captured by a two-state promoter model. For
instance, more complex models incorporate feedback regulation,
multiple gene activation steps, and multiple gene activation
pathways (Jiao et al., 2024). Recent studies have integrated
transcriptional bursting with genomic architecture and chromatin
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accessibility (Wang et al., 2024), revealing that these factors
preferentially affect burst frequency (BF). Using high-throughput
imaging screens, researchers demonstrated that histone acetylation
influences BF and TS intensity, primarily by reducing off-times
(Sood et al., 2025). Therefore, profiling histone modifications
at p53 target genes could help to further unravel promoter
regulation. However, bioinformatic databases provide only partial
profiles of acetylation marks, such as the canonical H3K27Ac and
H3K9me3. Additionally, most analysis are performed in untreated
cells or following Nutlin/DMSO treatments (Sammons et al.,
2015). Notably, DNA damage induces numerous post-translational
modifications not only of the TF, leading to a stabilization of p53
levels in the nucleus, but also affecting histones and other co-
factors. In future studies it will be interesting to implement histone
modifications of p53 target gene promoters to investigate features
of transcriptional bursting in more detail. Such studies could also
include additional cell lines and types, in which epigenetic states of
promoters may differ.

The interaction between chromatin and TF is relatively brief,
and p53 residence time is modulated by C-terminal acetylation
upon DNA damage induction (Loffreda et al., 2017). Recent studies
have observed changes in CTD acetylation between the first and
the 2nd p53 pulses upon IR, which may explain the regulation of
target genes with oscillatory expression. In our study, we expanded
the investigation of CTD PTMs to multiple sources of both p53
induction and DNA damage. We observed significant differences
across stimuli, with the highest levels of p53 acetylation occurring
after IR and Nutlin treatment. Interestingly, these conditions also
exhibit similar f -driven promoter regulation. Moreover, total p53
levels do not correlate with its acetylation state, suggesting that
PTMs fine-tune promoter activation. Indeed, p53 acetylation may
enhance transcriptional regulation by increasing site-specific DNA
binding activity (Luo et al., 2003). However, our findings show
that p53 binding at the promoter remains consistent across target
genes and treatments, except for low doses of UV. These results
align with previous studies showing conserved p53 DNA binding
across treatments and cell-types (Hafner et al., 2020b). It has
been recently shown that spatio-temporal genome organization is
directly affected by p53 activation, through its binding to DNA,
and indirectly by other factors transcriptionally regulated by p53
(Serra et al., 2024). Therefore, PTMs and p53 binding alone
cannot fully explain the regulation of promoter activity, highlighting
the contribution of co-regulatory factors recruited at the site of
transcription. Additionally, studies have demonstrated that mRNA
half-life plays a crucial role in determining differential target gene
expression of pulsatile transcription factors like p53 (Porter et al.,
2016). With our study, we present a systematic analysis of
stimulus-dependent stochastic gene expression, setting the stage
for further exploration of the complex mechanism controlling
p53 target gene expression and ultimately cell fate upon damage
induction.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Ethics statement

Ethical approval was not required for the studies on humans in
accordance with the local legislation and institutional requirements
because only commercially available established cell lines were used.

Author contributions

FV: Conceptualization, Data curation, Investigation,
Methodology, Validation, Writing – original draft, Visualization,
Writing – review and editing. NE: Data curation, Formal Analysis,
Methodology, Software, Writing – original draft, Visualization,
Writing – review and editing. MS-D’A: Methodology, Software,
Writing – review and editing, Formal Analysis. HK: Funding
acquisition, Resources, Supervision, Writing – review and editing.
AL: Conceptualization, Funding acquisition, Supervision, Writing –
original draft, Project administration, Writing – review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This work was funded by
German Research Foundation grants 421980029 and 446059690 (to
AL). The work from NE und MS-D’A were funded by the European
Union (ERC-COG CONSYN, GA 773196/ERC-PoC PLATE, GA
101082333).

Acknowledgments

We thank Petra Snyder (Technical University Darmstadt) for
technical assistance, Dhana Friedrich for help in setting up smFISH
experiments, and members of the Alexander Loewer and Heinz
Koeppl labs for helpful discussion.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the

Frontiers in Cell and Developmental Biology 13 frontiersin.org

https://doi.org/10.3389/fcell.2025.1603603
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Vigliotti et al. 10.3389/fcell.2025.1603603

reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Author disclaimer

The Views and opinions expressed are those of the author(s)
only and do not necessarily reflect those of the European Union.

Neither the European Union nor the granting authority can be held
responsible for them.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fcell.2025.
1603603/full#supplementary-material

References

Andrade-Lima, L. C., Veloso, A., Paulsen, M. T., Menck, C. F. M., and Ljungman,
M. (2015). DNA repair and recovery of RNA synthesis following exposure to
ultraviolet light are delayed in long genes. Nucleic Acids Res. 43 (5), 2744–2756.
doi:10.1093/nar/gkv148

Andrieu, C., De Freitas, N., Doucet, A., and Jordan, M. (2003). An introduction to
MCMC for machine learning, 50, 5–43.

Andrieu, C., and Thoms, J. (2008). A tutorial on adaptive MCMC. Stat. Comput. 18
(4), 343–373. doi:10.1007/s11222-008-9110-y

Bahar Halpern, K., Tanami, S., Landen, S., Chapal, M., Szlak, L., Hutzler, A., et al.
(2015). Bursty gene expression in the intact mammalian liver.Mol. Cell 58 (1), 147–156.
doi:10.1016/j.molcel.2015.01.027

Barber, D. (2012). Bayesian reasoning and machine learning. Cambridge: Cambridge
University Press.

Bartman, C. R., Hamagami, N., Keller, C. A., Giardine, B., Hardison, R. C.,
Blobel, G. A., et al. (2019). Transcriptional burst initiation and polymerase pause
release are key control points of transcriptional regulation. Mol. Cell 73 (3), 519–532.
doi:10.1016/j.molcel.2018.11.004

Batchelor, E., Loewer, A., Mock, C., and Lahav, G. (2011). Stimulus-dependent
dynamics of p53 in single cells. Mol. Syst. Biol. 7, 488. doi:10.1038/msb.2011.20

Batchelor, E., Mock, C. S., Bhan, I., Loewer, A., and Lahav, G. (2008). Recurrent
initiation: a mechanism for triggering p53 pulses in response to DNA damage. Mol.
Cell. 30 (3), 277–289. doi:10.1016/j.molcel.2008.03.016

Chen, X., Chen, J., Gan, S., Guan,H., Zhou, Y., Ouyang,Q., et al. (2013). DNAdamage
strength modulates a bimodal switch of p53 dynamics for cell-fate control. BMC Biol.
11, 73. doi:10.1186/1741-7007-11-73

Ciccia, A., and Elledge, S. J. (2010).TheDNA damage response: making it safe to play
with knives. Mol. Cell 40 (2), 179–204. doi:10.1016/j.molcel.2010.09.019

Coulon, A., Chow, C. C., Singer, R. H., and Larson, D. R. (2013). Eukaryotic
transcriptional dynamics: from single molecules to cell populations. Nat. Rev. Genet.
14, 572–584. doi:10.1038/nrg3484

Donovan, B. T., Huynh, A., Ball, D. A., Patel, H. P., Poirier, M. G., Larson, D. R.,
et al. (2019). Live‐cell imaging reveals the interplay between transcription factors,
nucleosomes, and bursting. EMBO J. 38 (12), e100809. doi:10.15252/embj.2018100809

Ezer, D., Moignard, V., Göttgens, B., and Adryan, B. (2016). Determining physical
mechanisms of gene expression regulation from single cell gene expression data. PLoS
Comput. Biol. 12 (8), e1005072. doi:10.1371/journal.pcbi.1005072

Finzel, A., Grybowski, A., Strasen, J., Cristiano, E., and Loewer, A. (2016).
Hyperactivation of ATM upon DNA-PKcs inhibition modulates p53 dynamics
and cell fate in response to DNA damage. Mol. Biol. Cell 27 (15), 2360–2367.
doi:10.1091/mbc.E16-01-0032

Friedrich, D., Friedel, L., Finzel, A., Herrmann, A., Preibisch, S., and Loewer,
A. (2019). Stochastic transcription in the p53‐mediated response to DNA
damage is modulated by burst frequency. Mol. Syst. Biol. 15 (12), e9068.
doi:10.15252/msb.20199068

Gregersen, L. H., and Svejstrup, J. Q. (2018). “The cellular response to transcription-
blocking DNA damage,”Elsevier Ltd, 43. 327–341. doi:10.1016/j.tibs.2018.02.010Trends
Biochem. Sci.

Hafner, A., Kublo, L., Tsabar, M., Lahav, G., and Stewart-Ornstein, J. (2020b).
Identification of universal and cell-Type specific p53 DNA binding. BMCMol. Cell Biol.
21 (1), 5. doi:10.1186/s12860-020-00251-8

Hafner, A., Reyes, J., Stewart-Ornstein, J., Tsabar, M., Jambhekar, A., and Lahav, G.
(2020a). Quantifying the central dogma in the p53 pathway in live single cells. Cell Syst.
10 (6), 495–505. doi:10.1016/j.cels.2020.05.001

Hu, Y., Xu, J., Gao, E., Fan, X., Wei, J., Ye, B., et al. (2023). Enhanced single
RNA imaging reveals dynamic gene expression in live animals. Elife 12, e82178.
doi:10.7554/eLife.82178

Jiao, F., Li, J., Liu, T., Zhu, Y., Che,W., Bleris, L., et al. (2024).What can we learn when
fitting a simple telegraph model to a complex gene expression model? PLoS Comput.
Biol. 20 (5), e1012118. doi:10.1371/journal.pcbi.1012118

José, M. (1994). Bernardo AFMS. Bayesian theory. 2000th ed., Wiley.

Kilic, Z., Schweiger, M., Moyer, C., Shepherd, D., and Pressé, S. (2023). Gene
expression model inference from snapshot RNA data using Bayesian non-parametrics.
Nat. Comput. Sci. 3 (2), 174–183. doi:10.1038/s43588-022-00392-0

Larsson, A. J. M., Johnsson, P., Hagemann-Jensen, M., Hartmanis, L., Faridani, O. R.,
Reinius, B., et al. (2019). Genomic encoding of transcriptional burst kinetics. Nature
565 (7738), 251–254. doi:10.1038/s41586-018-0836-1

Lee, J. W., Ratnakumar, K., Hung, K. F., Rokunohe, D., and Kawasumi, M. (2020).
“Deciphering UV-induced DNA damage responses to prevent and treat skin cancer,”
Photochem. Photobiol., 96. 478–499. doi:10.1111/php.13245

Li, G., and Neuert, G. (2019). Multiplex RNA single molecule FISH of inducible
mRNAs in single yeast cells. Sci. Data 6 (1), 94. doi:10.1038/s41597-019-0106-6

Loewer, A., Batchelor, E., Gaglia, G., and Lahav, G. (2010). Basal dynamics of
p53 reveal transcriptionally attenuated pulses in cycling cells. Cell 142 (1), 89–100.
doi:10.1016/j.cell.2010.05.031

Loffreda, A., Jacchetti, E., Antunes, S., Rainone, P., Daniele, T., Morisaki, T.,
et al. (2017). Live-cell p53 single-molecule binding is modulated by C-terminal
acetylation and correlates with transcriptional activity. Nat. Commun. 8 (1), 313.
doi:10.1038/s41467-017-00398-7

Longley, D. B., Harkin, D. P., and Johnston, P. G. (2003). 5-fluorouracil: mechanisms
of action and clinical strategies. Nat. Rev. Cancer 3, 330–338. doi:10.1038/nrc1074

Luo, J., Li,M., Tang, Y., Laszkowska,M., Roeder, R. G., andGu,W. (2003). Acetylation
of p53 augments its site-specificDNAbinding both in vitro and in vivo. Proc. Natl. Acad.
Sci. U. S. A. 101 (8), 2259–2264. doi:10.1073/pnas.0308762101

Mojardín, L., Botet, J., Quintales, L., Moreno, S., and Salas, M. (2013). New insights
into the RNA-based mechanism of action of the anticancer drug 5′-fluorouracil in
eukaryotic cells. PLoS One 8 (11), e78172. doi:10.1371/journal.pone.0078172

Mönke, G., Cristiano, E., Finzel, A., Friedrich, D., Herzel, H., Falcke, M., et al.
(2017). Excitability in the p53networkmediates robust signalingwith tunable activation
thresholds in single cells. Sci. Rep. 7, 46571. doi:10.1038/srep46571

Mueller, F., Senecal, A., Tantale, K., Marie-Nelly, H., Ly, N., Collin, O., et al. (2013).
FISH-quant: automatic counting of transcripts in 3D FISH images. Nat. Methods 10,
277–278. doi:10.1038/nmeth.2406

Munsky, B., Fox, Z., andNeuert, G. (2015). “Integrating single-molecule experiments
and discrete stochastic models to understand heterogeneous gene transcription
dynamics,” Methods, 85. 12–21. doi:10.1016/j.ymeth.2015.06.009

Neuert, G., Munsky, B., Tan, R. Z., Teytelman, L., Khammash, M., and Van
Oudenaarden, A. (1979)2013). Systematic identification of signal-activated stochastic
gene regulation. Science 339 (6119), 584–587. doi:10.1126/science.1231456

Oren, M., and Prives, C. (2024). “p53: a tale of complexity and context,”, Cell. 187,
1569–1573. doi:10.1016/j.cell.2024.02.043

Paek, A. L., Liu, J. C., Loewer, A., Forrester, W. C., and Lahav, G. (2016). Cell-
to-Cell variation in p53 dynamics leads to fractional killing. Cell 165 (3), 631–642.
doi:10.1016/j.cell.2016.03.025

Peccoud, J., and Ycart, B. (1995). Markovian modeling of gene-product synthesis.
Theor. Popul. Biol. 48, 222–234. doi:10.1006/tpbi.1995.1027

Pomp, W., Meeussen, J. V. W., and Lenstra, T. L. (2024). Transcription factor
exchange enables prolonged transcriptional bursts. Mol. Cell 84 (6), 1036–1048.e9.
doi:10.1016/j.molcel.2024.01.020

Porter, J. R., Fisher, B. E., and Batchelor, E. (2016). P53 pulses diversify
target gene expression dynamics in an mRNA half-life-dependent manner
and delineate Co-regulated target gene subnetworks. Cell Syst. 2 (4), 272–282.
doi:10.1016/j.cels.2016.03.006

Frontiers in Cell and Developmental Biology 14 frontiersin.org

https://doi.org/10.3389/fcell.2025.1603603
https://www.frontiersin.org/articles/10.3389/fcell.2025.1603603/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fcell.2025.1603603/full#supplementary-material
https://doi.org/10.1093/nar/gkv148
https://doi.org/10.1007/s11222-008-9110-y
https://doi.org/10.1016/j.molcel.2015.01.027
https://doi.org/10.1016/j.molcel.2018.11.004
https://doi.org/10.1038/msb.2011.20
https://doi.org/10.1016/j.molcel.2008.03.016
https://doi.org/10.1186/1741-7007-11-73
https://doi.org/10.1016/j.molcel.2010.09.019
https://doi.org/10.1038/nrg3484
https://doi.org/10.15252/embj.2018100809
https://doi.org/10.1371/journal.pcbi.1005072
https://doi.org/10.1091/mbc.E16-01-0032
https://doi.org/10.15252/msb.20199068
https://doi.org/10.1016/j.tibs.2018.02.010
https://doi.org/10.1186/s12860-020-00251-8
https://doi.org/10.1016/j.cels.2020.05.001
https://doi.org/10.7554/eLife.82178
https://doi.org/10.1371/journal.pcbi.1012118
https://doi.org/10.1038/s43588-022-00392-0
https://doi.org/10.1038/s41586-018-0836-1
https://doi.org/10.1111/php.13245
https://doi.org/10.1038/s41597-019-0106-6
https://doi.org/10.1016/j.cell.2010.05.031
https://doi.org/10.1038/s41467-017-00398-7
https://doi.org/10.1038/nrc1074
https://doi.org/10.1073/pnas.0308762101
https://doi.org/10.1371/journal.pone.0078172
https://doi.org/10.1038/srep46571
https://doi.org/10.1038/nmeth.2406
https://doi.org/10.1016/j.ymeth.2015.06.009
https://doi.org/10.1126/science.1231456
https://doi.org/10.1016/j.cell.2024.02.043
https://doi.org/10.1016/j.cell.2016.03.025
https://doi.org/10.1006/tpbi.1995.1027
https://doi.org/10.1016/j.molcel.2024.01.020
https://doi.org/10.1016/j.cels.2016.03.006
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Vigliotti et al. 10.3389/fcell.2025.1603603

Purvis, J. E., Karhohs, K. W., Mock, C., Batchelor, E., Loewer, A., and Lahav,
G. (2012). p53 dynamics control cell fate. Sci. (1979) 336 (6087), 1440–1444.
doi:10.1126/science.1218351

Ramsköld, D., Hendriks, G. J., Larsson, A. J. M., Mayr, J. V., Ziegenhain, C.,
Hagemann-Jensen, M., et al. (2024). Single-cell new RNA sequencing reveals principles
of transcription at the resolution of individual bursts. Nat. Cell Biol. 26, 1725–1733.
doi:10.1038/s41556-024-01486-9

Rockx, D. A. P.,Mason, R., VanHoffen, A., Barton,M. C., Citterio, E., Bregman, D. B.,
et al. (2000).UV-induced inhibition of transcription involves repression of transcription
initiation and phosphorylation of RNA polymerase II. Proc. Natl. Acad. Sci. U. S. A. 97
(19), 10503–10508. doi:10.1073/pnas.180169797

Sammons, M. A., Nguyen, T. A. T., McDade, S. S., and Fischer, M. (2020). “Tumor
suppressor p53: from engaging DNA to target gene regulation,”, Nucleic Acids Res. 48.
8848–8869. doi:10.1093/nar/gkaa666

Sammons, M. A., Zhu, J., Drake, A. M., and Berger, S. L. (2015). TP53 engagement
with the genome occurs in distinct local chromatin environments via pioneer factor
activity. Genome Res. 25 (2), 179–188. doi:10.1101/gr.181883.114

Serra, F., Nieto-Aliseda, A., Fanlo-Escudero, L., Rovirosa, L., Cabrera-Pasadas, M.,
Lazarenkov, A., et al. (2024). p53 rapidly restructures 3D chromatin organization to
trigger a transcriptional response.Nat. Commun. 15 (1), 2821. doi:10.1038/s41467-024-
46666-1

Sood, V., Holewinski, R., Andresson, T., Larson, D. R., and Misteli, T.
(2025). Identification of molecular determinants of gene-specific bursting
patterns by high-throughput imaging screens. Mol. Cell 85 (5), 913–928.e8.
doi:10.1016/j.molcel.2025.01.022

Stringer, C.,Wang, T.,Michaelos,M., and Pachitariu,M. (2021). Cellpose: a generalist
algorithm for cellular segmentation.Nat.Methods 18 (1), 100–106. doi:10.1038/s41592-
020-01018-x

Sun, X. X., Dai, M. S., and Lu, H. (2007). 5-fluorouracil activation of p53
involves an MDM2-ribosomal protein interaction. J. Biol. Chem. 282 (11), 8052–8059.
doi:10.1074/jbc.M610621200

Suter, D. M., Molina, N., Naef, F., and Schibler, U. (2011). Origins and
consequences of transcriptional discontinuity. Curr. Opin. Cell Biol. 23 (6), 657–662.
doi:10.1016/j.ceb.2011.09.004

Tidin, O., Friman, E. T., Naef, F., and Suter, D. M. (2019). Quantitative relationships
between SMADdynamics and target gene activation kinetics in single live cells. Sci. Rep.
9 (1), 5372. doi:10.1038/s41598-019-41870-2

Vassilev, L. T., Vu, B. T., Graves, B., Carvajal, D., Podlaski, F., Filipovic, Z., et al. (2004).
In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science
303, 844–848. doi:10.1126/science.1092472

Wang, Z., Zhang, Z., Luo, S., Zhou, T., and Zhang, J. (2024). Power-law behavior of
transcriptional bursting regulated by enhancer–promoter communication.GenomeRes.
34 (1), 106–118. doi:10.1101/gr.278631.123

Xia, C., Colognori, D., Jiang, X. S., Xu, K., and Doudna, J. A. (2025). Single-molecule
live-cell RNA imaging with CRISPR–Csm. Nat. Biotechnol. doi:10.1038/s41587-024-
02540-5

Zechner, C., Unger, M., Pelet, S., Peter, M., and Koeppl, H. (2014). Scalable inference
of heterogeneous reaction kinetics from pooled single-cell recordings. Nat. Methods 11
(2), 197–202. doi:10.1038/nmeth.2794

Frontiers in Cell and Developmental Biology 15 frontiersin.org

https://doi.org/10.3389/fcell.2025.1603603
https://doi.org/10.1126/science.1218351
https://doi.org/10.1038/s41556-024-01486-9
https://doi.org/10.1073/pnas.180169797
https://doi.org/10.1093/nar/gkaa666
https://doi.org/10.1101/gr.181883.114
https://doi.org/10.1038/s41467-024-46666-1
https://doi.org/10.1038/s41467-024-46666-1
https://doi.org/10.1016/j.molcel.2025.01.022
https://doi.org/10.1038/s41592-020-01018-x
https://doi.org/10.1038/s41592-020-01018-x
https://doi.org/10.1074/jbc.M610621200
https://doi.org/10.1016/j.ceb.2011.09.004
https://doi.org/10.1038/s41598-019-41870-2
https://doi.org/10.1126/science.1092472
https://doi.org/10.1101/gr.278631.123
https://doi.org/10.1038/s41587-024-02540-5
https://doi.org/10.1038/s41587-024-02540-5
https://doi.org/10.1038/nmeth.2794
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org

	1 Introduction
	2 Materials and methods
	2.1 Cell line
	2.2 Irradiation and treatments with chemotherapeutics
	2.3 Live-cell time lapse microscopy
	2.4 Automated tracking of cells and analysis of p53 dynamics
	2.5 Single molecule FISH
	2.6 Analysis of smFISH data in FISH-Quant
	2.7 The likelihood factors from bayesian inference
	2.8 Configuration of the MCMC
	2.9 Chromatin immunoprecipitation
	2.10 Quantitative real-time PCR (RT-qPCR)
	2.11 Western blot
	2.12 Labelling of cells with EdU

	3 Results
	3.1 P53 dynamics are stimulus- and dose-dependent
	3.2 Expression of p53 targets show stimulus and gene-specific pattern
	3.3 Identification of regulation patterns of promoter activity through bayesian inference
	3.4 p53 post-translational modifications contribute to the regulation of promoter activity

	4 Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Author disclaimer
	Supplementary material
	References

