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Purpose: To develop a machine learning model to predict anatomical response
to anti-VEGF therapy in patients with diabetic macular edema (DME).

Methods: This retrospective study included patients with DME who underwent
intravitreal anti-VEGF treatment between January 2023 and February 2025.
Baseline data included optical coherence tomography (OCT) features and
blood-based metabolic and hematologic markers. The primary outcome was
defined as a ≥20% reduction in central retinal thickness (CRT) post-treatment.
Feature selection was performed using univariate logistic regression and LASSO
regression. Five machine learning algorithms—logistic regression, decision tree,
multilayer perceptron, random forest, and support vector machine—were
trained and validated. Model performance was evaluated using accuracy,
sensitivity, specificity, Area Under the Receiver Operating Characteristic Curve
(AUC), and decision curve analysis. The best-performing model was further
interpreted using SHAP analysis, and a nomogram was constructed for clinical
application.

Results: Among the 37 baseline variables, five key predictors were identified:
preoperative CRT >400 μm, presence of retinal edema, presence of subretinal
fluid (SRF), disorganization of the inner retinal layers (DRIL), and ellipsoid zone
(EZ) integrity. The logistic regression model achieved the best performance with
an accuracy of 0.83, sensitivity of 0.85, specificity of 0.79, and an AUC of 0.90
(95% CI: 0.81–0.99). SHAP analysis revealed that preoperative retinal edema,
DRIL, SRF, and CRT had the strongest positive contributions, while intact EZ was
a negative predictor of CRT reduction. A nomogram was developed to facilitate
individualized clinical decision-making.

Conclusion: We successfully developed a predictive model for anatomical
response to anti-VEGF therapy in DME patients. The model identified
key features associated with treatment outcomes, providing a valuable
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tool for personalized therapeutic planning. Further validation in multicenter
cohorts is warranted to confirm generalizability and enhance model robustness.
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1 Introduction

Diabetic macular edema (DME) is the most common vision-
threatening complication arising from diabetic retinopathy
(DR).Globally, approximately 5.5% of individuals with diabetes
are affected by DME (Im et al., 2022).Intravitreal injection of
anti-vascular endothelial growth factor (anti-VEGF) agents has
become the first-line treatment for DME owing to their potent
anti-permeability and anti-angiogenic effects (Ehlers et al., 2022).
However, clinical practice reveals significant inter-individual
variability in response to anti-VEGF therapy. Approximately
30%–40% of patients continue to exhibit persistent edema
or suboptimal visual improvement despite regular treatment
(Zhang et al., 2022; Hussain and Ciulla, 2016). These patients
often require additional therapeutic interventions such as laser
photocoagulation, corticosteroid injections, or even surgical
treatment (Hussain and Ciulla, 2016; Hatamnejad et al., 2024).
Therefore, early identification of high-risk individuals who are
likely to have poor treatment responses and the development
of individualized intervention strategies have become critical
challenges in current DME management.

In recent years, artificial intelligence (AI) has shown great
promise in the management of chronic ocular conditions, including
dry eye disease (Li et al., 2024; Wei et al., 2024), myopia
(Xiao et al., 2024), and age-related macular degeneration (AMD)
(Waldstein et al., 2020; Gong et al., 2024; Wan et al., 2025).
In the field of DR, AI applications have primarily focused on
early screening and diagnosis. AI systems have demonstrated
high efficiency and accuracy in DR screening, enabling automated
analysis of fundus images without human intervention to detect
referable DR and DME. These systems have achieved sensitivity
and specificity comparable to, or even exceeding, those of human
graders in certain settings (Bellemo et al., 2019; Farahat et al., 2024;
Yuan, 2019; Guo et al., 2023). However, compared to screening and
diagnosis, the application of AI in predicting treatment response to
anti-VEGF therapy inDME remains in its early stages of exploration.

Based on this, this study aims to develop a predictive model
by collecting pre-treatment ocular parameters and blood-based
biomarkers as predictor variables, with post-treatment resolution
of macular edema as the outcome variable. This model is expected
to assist clinicians in identifying potential non-responders at the
initial stage of diagnosis and treatment planning, allowing for more
targeted and personalized intervention strategies.

To our knowledge, this is the first study to integrate
pre-treatment structural OCT features with a comprehensive
panel of systemic blood biomarkers to predict response to
anti-VEGF therapy in DME patients. This approach extends
beyond previous models that relied solely on imaging data by
capturing systemic factors that may influence treatment outcomes
(Meng et al., 2024; Mao et al., 2022). In addition, by incorporating

SHAP analysis and nomogram visualization, our model offers
enhanced interpretability for the prediction of treatment response,
providing insights into the contribution of each feature and
distinguishing our approach from prior black-box machine
learning methods.

2 Methods

2.1 Study population and data collection

This study was conducted at Fujian Provincial Hospital from
January 2023 to February 2025. Patients diagnosed with DME
and initial intravitreal with anti-VEGF were consecutively enrolled.
All included patients had complete preoperative optical coherence
tomography (OCT) results and blood biochemical data. Baseline
center involved DME (SD-OCT central subfield thickness [CST],
≥250 μm). Exclusion criteria included: prior history of anti-VEGF
treatment, presence of severe ocular conditions that could affect
retinal thickness evaluation, cataract surgerywithin 6 months before
baseline, comorbid systemic diseases that might interfere with study
variables, or incomplete clinical data for any reason. All patients
received intravitreal anti-VEGF injections administered by the same
experienced ophthalmologist to ensure consistency in treatment
protocol.The study was approved by the Ethics Committee of Fujian
Provincial Hospital (K2025-03-064) and strictly adhered to the
principles of the Declaration of Helsinki. Written informed consent
was obtained from all participants.

To assess whether the available sample size was adequate for
developing a reliable prediction model, we performed a minimum
sample size calculation using the pmsampsize package (Ensor et al.,
2019). Assuming a binary outcome with an expected prevalence
of 30%, a target c-statistic of 0.80, and five predictor parameters,
the required sample size was estimated to be 172 participants with
approximately 52 events, based on Criterion 1 (which ensures a
shrinkage factor ≥0.90 to reduce overfitting).

Collected demographic and clinical information included
sex, age, baseline best-corrected visual acuity (BCVA), history
of hypertension, diabetes duration (>10 years or not), and
whether insulin therapy was being used. A 1-mm-wide area
centered on the foveal depression was analyzed for each B-scan
using a standard template. OCT imaging parameters included
baseline retinal edema thickness >400 μm (yes/no), central retinal
thickness (CRT), presence of subretinal fluid, integrity of the
external limiting membrane (ELM), ellipsoid zone (EZ), and
retinal pigment epithelium (RPE), as well as disorganization of
the inner layers (DRIL) and outer retinal layers. These specific
OCT features were selected due to their reported relevance
in predicting DME treatment outcomes, as they reflect key
aspects of retinal structure and edema known to affect prognosis
(Sen et al., 2025; Nakano et al., 2019).
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FIGURE 1
Workflow for predicting anatomical response to Anti-VEGF therapy in DME.

Blood biochemical markers included: total bilirubin,
triglycerides, total cholesterol, high-density lipoprotein (HDL),
low-density lipoprotein (LDL), apolipoprotein A, fasting blood
glucose, urea, creatinine, uric acid, calcium, and magnesium.
Hematological parameters included: white blood cell count,
neutrophil count, lymphocyte count, red blood cell count,
hemoglobin, platelet count, mean platelet volume (MPV), and
platelet distribution width (PDW).Diabetes-related markers
included: glycated hemoglobin in mmol/L (HbA1c) and percentage
(HbA1c, %). These systemic biomarkers were chosen to represent
metabolic control, renal function, and inflammatory status, factors
that are implicated in diabetic microvascular complications like
DME (Sen et al., 2025; Zhou et al., 2022).

The primary outcome variable was defined as a ≥20%
reduction in central retinal thickness post-treatment, based
on OCT measurements, to evaluate the short-term anatomical
response to anti-VEGF therapy. The overall study workflow is
illustrated in Figure 1.

2.2 Feature selection

To identify candidate variables for the predictive model,
univariate logistic regression analysis was performed to screen
for potential factors associated with post-treatment central retinal
thickness reduction. To further eliminate redundant variables and
identify those with the greatest predictive influence, we employed
Least Absolute Shrinkage and Selection Operator (LASSO)
regression with L1 regularization for feature selection.

LASSO applies a penalty to regression coefficients, shrinking
some to zero and thereby retaining only themost relevant predictors.
We used 10-fold cross-validated LASSO (via the cv.glmnet function)
to select the optimal regularization parameter (λ). The final λ value
was determined using the 1-standard error (1-SE) rule (lambda.1se),
and variables corresponding to non-zero coefficients were selected
as candidate predictors. The final features included in the machine
learning models were determined by combining variables identified
by both univariate logistic regression and LASSO regression.

2.3 Model development and evaluation

Several machine learning algorithms were used to build
predictive models, including decision tree (DT), logistic regression,
multilayer perceptron (MLP), random forest (RF), and support
vector machine (SVM). The dataset was randomly split into a
training cohort (80%) and an internal validation cohort (20%).

During model training, each algorithm underwent
hyperparameter optimization using 10-fold cross-validation and
grid search to enhance performance. To evaluate the effectiveness
of each model in predicting macular edema resolution after anti-
VEGF treatment, we compared their performance on the validation
set using the following metrics: Accuracy, Sensitivity, Specificity,
Receiver Operating Characteristic (ROC) curves, Decision Curve
Analysis (DCA).

The model with the best overall performance was selected
for further analysis. Based on this optimal model, we developed
a prediction tool, and conducted feature importance analysis
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and Shapley Additive Explanations (SHAP) to enhance model
interpretability and transparency.

2.4 Statistical analysis

All continuous variables were first tested for normality using
the Shapiro–Wilk test. As the test results indicated that all variables
had P values less than 0.05 (Supplementary Table S1), the data
were considered non-normally distributed. Therefore, continuous
variables were summarized using medians with interquartile ranges
(IQR: P25, P75), and intergroup comparisons were performed using
the Mann–Whitney U test. Categorical variables were presented
as frequencies and percentages (%), and compared using the chi-
square test.

All 37 candidate features had a missing rate of 0%, and therefore
no imputation was required. Outlier detection did not reveal any
observations that needed to be excluded.

Several continuous variables were converted into categorical
variables based on clinically established thresholds from previous
literature and guidelines (e.g., CRT >400 μm, HbA1c ≥ 8%). This
step helped reduce scale discrepancies while preserving clinical
interpretability. All binary features were encoded as 0 and 1.

Model construction was carried out using the following
functions and engines from the tidymodels framework. To enhance
the interpretability of the model, SHAP values were computed
to quantify the contribution of each feature to the prediction
outcome. SHAP analysis was performed using the shapviz package.
A higher SHAP value indicates a greater influence of that feature
on the prediction, while positive and negative values represent
positive or negative impacts, respectively. SHAP summary plots and
dependence plots were generated to identify the most influential
variables.

To improve the clinical applicability of the model, a nomogram
was developed based on the logistic regression model. The
nomogram was constructed using the nomogram () function in
the rms package. A logistic regression model was fitted using lrm
(), and the significant variables were then visualized to generate
individualized risk scores, providing a practical tool for personalized
prediction in clinical settings. All statistical analyses were conducted
using R software version 4.4.1.

3 Results

3.1 Patient characteristics

Significant differences in baseline characteristics were observed
between patients who experienced postoperative central retinal
thickness reduction and those who did not (Table 1). Among
patients with a reduction in retinal thickness, the proportion
of individuals with preoperative retinal edema >400 μm and the
presence of subretinal fluid was significantly higher (p < 0.001).
Regarding retinal structure, the integrity of the ELM and the EZ was
significantly more common in patients who showed a reduction in
retinal thickness (p < 0.001).

In terms of biochemical indicators, patients with central retinal
thickness reduction showed significantly higher levels of low-density

lipoprotein (p = 0.031), blood urea nitrogen (p = 0.021), and serum
creatinine (p = 0.012). Additionally, red blood cell count (p = 0.025),
hemoglobin (p = 0.029), and mean platelet volume (p = 0.042) were
significantly lower in these patients.

3.2 Feature selection

Among the 37 collected variables, a total of 16 predictors were
identified as independent factors associated with central retinal
thickness reduction following anti-VEGF treatment. Specifically,
preoperative visual acuity, intact ELM, intact EZ, total bilirubin,
serum calcium, red blood cell count, mean platelet volume, and
platelet distribution width were identified as negative predictors
(i.e., protective factors). In contrast, preoperative CRT >400 μm,
presence of preoperative retinal edema, subretinal fluid, inner retinal
structure disorder, outer retinal structure disorder, LDL, blood urea,
and serum creatinine were identified as positive predictors of central
retinal thickness reduction (Figure 2).

To further control for potential confounding, LASSO regression
was applied for refined feature selection. Among the 37 initial
candidate variables, five predictors were selected via LASSO:
Preoperative CRT >400 μm, Presence of preoperative retinal edema,
Presence of subretinal fluid, Integrity of the EZ and Inner retinal
structure disorder.

Multicollinearity analysis of these five variables showed that all
VIF valueswere below2.5, indicating no significantmulticollinearity
among the selected features (Figure 3; Table 2).

3.3 Model comparison and evaluation

Based on the selected variables, five machine learning models
were developed: DT, Logistic Regression, MLP, RF, and SVM.
Among these, the Logistic Regression model demonstrated the best
performance in the internal validation cohort (Figures 4A, C, D).

The Logistic model achieved an accuracy of 0.83, sensitivity of
0.85, specificity of 0.79, F1-score of 0.87, and AUC of 0.90 (95% CI:
0.81–0.99). The Youden index was 0.64.

The DCA curve showed that across a threshold range of 0–0.78,
the logistic model provided greater net clinical benefit compared to
“treat all” or “treat none” strategies. Detailed performance metrics
for all models are shown in Table 3; Figure 4B.

3.4 Model interpretability and clinical
application

The calibration curve was used to compare predicted
probabilities with observed event rates. The calibration curve of
the logistic regression model closely followed the ideal diagonal line
(perfect calibration), indicating good agreement between predicted
and observed outcomes. Although slight deviation was observed
in the mid-probability range, the model overall demonstrated
satisfactory calibration (Figure 5A).

The SHAP analysis revealed the influence of individual features
on model output. In the SHAP summary plot (Figure 5B), each
dot represents one patient; colour encodes the raw feature value
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TABLE 1 Comparison of baseline characteristics between patients with and without retinal thickness decrease.

Variable Non ≥20% CRT reduction N = 133a ≥20% CRT reduction N = 71a p-valueb

Gender 0.6

 Male 77 (58%) 44 (62%)

 Female 56 (42%) 27 (38%)

Hypertension >0.9

 Not 80 (60%) 43 (61%)

 Yes 53 (40%) 28 (39%)

Diabetes for more than 10 years 0.093

 Not 101 (76%) 61 (86%)

 Yes 32 (24%) 10 (14%)

Insulin Use 0.4

 Not 98 (74%) 56 (79%)

 Yes 35 (26%) 15 (21%)

Preoperative Retinal Edema <0.001

 Not 109 (82%) 7 (9.9%)

 Yes 24 (18%) 64 (90%)

Subretinal Fluid <0.001

 Not 114 (86%) 22 (31%)

 Yes 19 (14%) 49 (69%)

Intact ELM <0.001

 Yes 20 (15%) 28 (39%)

 Not 113 (85%) 43 (61%)

Intact EZ <0.001

 Yes 43 (32%) 62 (87%)

 Not 90 (68%) 9 (13%)

Intact RPE 0.2

 Yes 23 (17%) 18 (25%)

 Not 110 (83%) 53 (75%)

Inner Retinal Structure Disorder <0.001

 Not 122 (92%) 29 (41%)

 Yes 11 (8.3%) 42 (59%)

Outer Retinal Structure Disorder <0.001

(Continued on the following page)
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TABLE 1 (Continued) Comparison of baseline characteristics between patients with and without retinal thickness decrease.

Variable Non ≥20% CRT reduction N = 133a ≥20% CRT reduction N = 71a p-valueb

 Not 81 (61%) 7 (9.9%)

 Yes 52 (39%) 64 (90%)

Age 62 (55, 69) 63 (57, 69) 0.8

Preoperative Vision 0.25 (0.15, 0.40) 0.25 (0.12, 0.30) 0.029

Preoperative CRT 327 (288, 385) 492 (444, 577) <0.001

Total Bilirubin 8.0 (5.5, 11.0) 7.0 (4.6, 9.0) 0.072

Triglycerides 1.27 (0.94, 2.29) 1.55 (1.13, 2.34) 0.3

Total Cholesterol 4.56 (3.62, 5.62) 4.66 (4.23, 5.67) 0.2

High Density Lipoprotein 1.09 (0.95, 1.34) 1.15 (0.90, 1.38) >0.9

Low Density Lipoprotein 2.67 (1.84, 3.41) 3.03 (2.39, 4.00) 0.031

Apolipoprotein A 1.36 (1.20, 1.49) 1.33 (1.13, 1.58) >0.9

Fasting Blood Glucose 7.01 (5.85, 10.00) 6.59 (5.06, 9.04) 0.10

Blood Urea 6.50 (5.36, 7.99) 7.20 (5.51, 8.63) 0.021

Serum Creatinine 76 (61, 91) 84 (67, 125) 0.012

Uric Acid 346 (283, 415) 359 (313, 437) 0.2

Calcium 2.38 (2.33, 2.43) 2.33 (2.20, 2.43) 0.005

Magnesium 0.89 (0.84, 0.93) 0.90 (0.81, 0.95) 0.7

White Blood Cell Count 6.70 (5.50, 7.60) 6.80 (5.80, 8.30) 0.2

Neutrophil Count 3.90 (2.80, 4.90) 4.20 (3.30, 5.30) 0.12

Lymphocyte Count 2.10 (1.60, 2.40) 2.00 (1.60, 2.40) 0.8

Red Blood Cell Count 4.45 (3.97, 4.83) 4.28 (3.64, 4.71) 0.025

Hemoglobin 130 (119, 146) 120 (106, 142) 0.029

Platelet Count 223 (197, 272) 248 (203, 302) 0.14

Mean Platelet Volume 10.20 (9.50, 10.80) 9.90 (9.40, 10.40) 0.042

Platelet Distribution Width 11.30 (10.00, 12.80) 10.90 (9.90, 11.70) 0.050

Glycated Hemoglobin concentration 66 (55, 83) 64 (51, 76) 0.2

Glycated Hemoglobin percent 8.20 (7.20, 9.70) 8.20 (6.60, 9.30) 0.2

Glycation 0.40 (0.30, 0.60) 0.40 (0.40, 0.50) 0.7

an (%); Median (Q1, Q3).
bPearson’s Chi-squared test; Wilcoxon rank sum test.

and the x-axis indicates the marginal contribution (SHAP value)
to the log-odds of achieving ≥20% CRT reduction. Pre-operative
retinal oedema emerged as the strongest positive driver of treatment
response, followed in descending order by the inner retinal layers

disorder, presence of subretinal fluid, disruption of the EZ, and
baseline CRT (Figure 5C). Importantly, EZ integrity exerted a
negative influence—eyes with an intact EZ were less likely to exhibit
a large anatomical response (Figure 5C).
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FIGURE 2
Forest plot of univariate logistic regression for predicting anatomical response to anti-VEGF therapy.

To further understand the model’s decision-making process, we
selected a representative individual and explained their prediction
using a SHAP force plot (Figure 5D). The individual had a
preoperative CRT of 516 μm, which contributed +0.0482 to the
prediction. EZ disruption contributed +0.0518, retinal edema
+0.175, and inner retinal structure disorder +0.163. In contrast,
absence of subretinal fluid contributed negatively (−0.0454) to the
predicted probability of central retinal thickness reduction.

In a post hoc evaluation of potential two-way interactions, we
generated pair-wise SHAP-dependence plots for all combinations of

the five final predictors (Supplementary Figure S1). In each panel
the colour bands remained essentially parallel and no “fan-out” or
crossover pattern was observed, indicating that the marginal effect
of any predictor was not materially modified by the level of a second
predictor.

A nomogram was developed based on the logistic regression
model to provide clinicians with an intuitive tool for individualized
prediction (Figure 6). By translating patient-specific clinical features
into point scores, clinicians can calculate a total score and estimate
the probability of central retinal thickness reduction after anti-VEGF
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FIGURE 3
Feature selection using LASSO regression. (A) LASSO coefficient profiles of the 37 candidate predictors. (B) Ten-fold cross-validation for selecting the
optimal lambda in LASSO regression.

TABLE 2 Variance inflation factor (VIF) method checks the
multicollinearity of the independent variable.

Variable VIF OR value for logistic regreesion

Preoperative CRT 2.18 1.014 (1.010,1.019)

Preoperative Retinal
Edema

2.46 41.52 (16.93,101.80)

Subretinal Fluid 2.09 13.36 (6.64,26.89)

Intact EZ 1.95 0.069 (0.032,0.15)

Inner Retinal
Structure Disorder

1.48 16.06 (7.38,34.96)

therapy. The nomogram allows for rapid bedside risk stratification
and personalized treatment planning.

4 Discussion

Anti-VEGF therapy is currently the first-line treatment for
DME. However, its efficacy varies widely among individuals.
Predicting treatment response is critical for optimizing therapeutic
strategies and achieving personalized care in DME management
(Rasti et al., 2020). Previous studies have developed machine
learning models using imaging biomarkers alone to predict
anti-VEGF treatment outcomes in DME (Allingham et al.,
2017; Leng et al., 2024). We expanded on these approaches by
incorporating systemic metabolic and hematologic markers, which
may account for additional variability in treatment response.
As a result, our integrated model achieved robust predictive
performance while considering both ocular and systemic factors.

For context, prior OCT-only models for DME have reported AUC
values around 0.76–0.83 (Gallardo et al., 2021; Shah et al., 2017),
whereas our multi-modal model achieved a higher AUC of 0.90 in
the present study. Notably, an OCT-based deep learning model
recently attained an AUC 0.99 on a small dataset (Song et al.,
2025); our approach achieves comparable accuracy while offering
greater interpretability. Unlike priormodels that functioned as black
boxes, the interpretability of our model—achieved through SHAP
values and a nomogram—provides clinicians with clear insights
into individual risk factors, an advantage that facilitates clinical
decision-making. Among various algorithms tested, the logistic
regression model demonstrated the best predictive performance
and interpretability. Our findings identified several key predictors
of post-treatment central retinal thickness reduction, including
preoperative retinal edema >400 μm, DRIL, subretinal fluid, EZ
integrity, and baseline CRT.

In this study, we compared the performance of five commonly
used machine learning algorithms for predicting anatomical
response to anti-VEGF therapy in patients with diabetic macular
edema. Although nonlinear models such as MLP and RF also
demonstrated favorable performance, we ultimately selected the
logistic regression model as the preferred approach. This decision
was based on its superior overall performance in the internal
validation cohort (AUC = 0.90), along with consistently high
sensitivity, specificity, and F1 score. Moreover, logistic regression
offers a simpler andmore interpretable structure, allowing for direct
extraction of feature coefficients and facilitating the development of
user-friendly clinical tools such as nomograms. Given the relatively
limited sample size, logistic regression is also less prone to overfitting
and tends to exhibit better generalizability.Therefore, we considered
logistic regression to be the most appropriate choice in balancing
predictive accuracy with clinical applicability in this context.

The association between baseline CRT and the anatomical
response to anti-VEGF therapy has been widely established in
previous clinical trials. Studies such as RESTORE and RIDE/RISE
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TABLE 3 Different model metrics evaluation of retinal thickness decrease prediction.

Model Accuracy AUC(95% Cl) Sensitivy Specificity Youden index F1 score

Logistic Regression 0.83 0.90(0.81–0.99) 0.85 0.79 0.64 0.87

DT 0.80 0.85 (0.74,0.96) 0.81 0.79 0.60 0.85

MLP 0.80 0.89 (0.79,0.99) 0.85 0.71 0.57 0.85

RF 0.83 0.89 (0.79,0.99) 0.85 0.79 0.64 0.87

SVM 0.83 0.89 (0.79,0.99) 0.85 0.79 0.64 0.87

Note: Bold values highlight the best result observed for each metric across the five predictive models.

FIGURE 4
Performance comparison of five machine learning models in predicting anatomical response to anti-VEGF therapy. (A) ROC curves of five models (B)
DCA curves of five models (C) Bar plot comparing model performance across six metrics (D) Forest plot of AUC values and 95% confidence intervals
for each model.

have demonstrated that eyes with greater initial CRT experience
more substantial reductions in macular thickness and greater
visual improvements following ranibizumab treatment (Wells et al.,
2016; Pieramici et al., 2016). Real-world data similarly support
this finding, with patients having CRT >400 µm showing
greater anatomical improvement than those with thinner retinas
(Mushtaq et al., 2014). Notably, the UK National Institute for
Health and Care Excellence (NICE) guidelines recommend CRT
>400 µm as a threshold for initiating anti-VEGF therapy, given

the superior efficacy of ranibizumab over laser treatment in
this subgroup (Amoaku et al., 2020). Our study aligns with
this evidence, suggesting that eyes with more severe edema at
baseline (CRT >400 µm) are more likely to exhibit pronounced
anatomical responses. This may be attributed to increased
VEGF levels and severe blood-retinal barrier disruption in these
patients, resulting in greater responsiveness to anti-VEGF agents
that effectively neutralize VEGF and reduce vascular leakage
(Funatsu et al., 2002; Gurung et al., 2023).Nevertheless, baseline
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FIGURE 5
Interpretability and explainability of the optimal prediction model using SHAP analysis. (A) Calibration curve of the logistic regression model. (B) SHAP
summary plot (C) SHAP bar plot ranking the average absolute impact of each feature (D) SHAP force plot illustrating the individualized prediction
explanation for a representative case.

FIGURE 6
Nomogram for predicting anatomical response to anti-VEGF therapy in DME.

CRT alone cannot fully predict treatment outcomes, which
also depend on factors such as baseline visual acuity and OCT
morphologic features.

DRIL is an OCT biomarker reflecting the loss of distinct retinal
inner layer boundarieswithin the central 1 mmzone. It is considered
a negative prognostic indicator of visual function in DME. Sun
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et al. first reported that greater baseline DRIL extent was associated
with poorer visual acuity, and that early changes in DRIL correlated
with subsequent visual outcomes (Das et al., 2018; Sun et al.,
2014). Further studies have suggested that DRIL reflects chronic
edema- or ischemia-related damage to Müller and bipolar cell
axons, potentially hindering rapid resolution of edema after therapy
(Munk et al., 2022; Midena et al., 2023; Lai et al., 2023). Our model
also indicated that severe baseline DRIL was associated with a lower
likelihood of central retinal thickness reduction. We hypothesize
that DRIL may reflect underlying neurodegeneration and capillary
nonperfusion, limiting the capacity for structural recovery even after
VEGF suppression.

Subretinal fluid is a distinct OCT feature in DME, and several
studies have shown its presence to be associated with better response
to anti-VEGF therapy (Sophie et al., 2015; Hwang et al., 2019;
Kwon et al., 2021). For instance, subgroup analyses from the
RIDE/RISE trials revealed that patients with baseline subretinal
fluid had a higher probability of achieving complete macular
dryness (CFT ≤250 µm) after ranibizumab treatment (Sophie et al.,
2015). Another prospective study similarly reported that eyes
with subretinal fluid exhibited greater CRT reductions and better
visual outcomes after anti-VEGF therapy (Huang et al., 2022).
Our findings are consistent with these reports and suggest that
subretinal fluid is a positive predictor of anatomical improvement.
The underlying mechanism may relate to the highly VEGF-driven
nature of subretinal fluid-DME, where severe outer blood-retinal
barrier disruption leads to fluid accumulation in the subretinal
space. In such cases, VEGF blockade can promptly reduce leakage
and resolve subretinal fluid (Kwon et al., 2021; Sonoda et al., 2013).

Interestingly, our study found that EZ integrity was a negative
predictor of central retinal thickness reduction after anti-VEGF
treatment. Although many previous studies have identified intact
EZ as a favorable prognostic factor for visual acuity recovery
(Hsieh et al., 2023), its role in anatomical improvement is
less clear and remains underexplored. EZ continuity generally
reflects relatively mild, early-stage disease, with less structural
disorganization and lower VEGF levels. Therefore, while these eyes
have better preserved photoreceptor function and potential for
visual improvement, their baseline macular thickness is often closer
to normal, leaving limited room for further reduction. In contrast,
disrupted EZ often implies chronic, VEGF-driven damage, greater
edema, and worse baseline anatomy, which may respond more
dramatically to anti-VEGF therapy in terms of CRT reduction.
This inverse relationship has been supported by several real-world
studies showing that eyes with greater baseline CRT and structural
disruption—often including EZ loss—achieve more pronounced
CRT reductions, whereas structurally intact eyes exhibit minimal
changes post-treatment (Chaturvedi et al., 2025; Saxena et al., 2022).
This suggests that intact EZ may reflect a lower disease burden
and lower VEGF expression, making edema less responsive to
anti-VEGF therapy in terms of structural reversal. In these cases,
although CRT reduction is limited, visual function may still be
preserved or improved. Therefore, EZ integrity appears to serve
as a dual indicator—predicting better functional outcomes but less
dramatic anatomical responses.

To enhance clinical applicability, we transformed the final
logistic regression equation into a user-friendly nomogram that
allows rapid bedside risk stratification. Clinicians can plot the

five baseline predictors—pre-treatment CRT >400 μm, pre-operative
retinal edema, presence of subretinal fluid, disorganization of the
inner retinal layers, and intactness of the ellipsoid zone—assign the
corresponding points, and sum them to obtain a Total Points score.
This score can then be vertically projected onto the bottom scale to
estimatetheprobabilityofachievinga≥20%reductionincentralretinal
thickness after anti-VEGF therapy. Internal validation demonstrated
excellent calibration and discrimination of the nomogram (AUC
= 0.90). In practice, patients with a high predicted probability
can proceed with standard anti-VEGF regimens; those with an
intermediate probability should be monitored more closely and
considered for early adjunctive therapy; and those with a low
probability may benefit from prompt evaluation of alternative or
combinedtreatments.Thetransparencyandinterpretabilityof this tool
provide an intuitive quantitative basis for individualizedmanagement
of DME. Moreover, explainable AI methods such as SHAP improve
model transparency by revealing how each variable contributes to the
prediction, thereby enhancing clinical interpretability and decision-
making. Pair-wise SHAP-dependence results indicate that the effects
of baseline CRT, retinal oedema, sub-retinal fluid, DRIL and EZ
integrity act largely additively in our cohort, implying that the logistic
model’s behaviour is dominated by main effects. This additivity not
only enhances interpretability but also supports the construction of a
straightforward main-effect nomogram for clinical use.

This study has several limitations. First, it was conducted at
a single center with a limited sample size, which may introduce
selection bias. External validation in larger, multicenter cohorts is
needed to improve generalizability. Second, the study focused on
anatomical response (≥20% CRT reduction) and did not include
visual acuity outcomes or neuro electrophysiological monitoring,
which limits the comprehensiveness of treatment assessment
(Scott et al., 2024; Kremers and Huchzermeyer, 2024). Third,
the follow-up period was relatively short, and the model’s ability
to predict long-term outcomes remains untested. Finally, while
systemic metabolic variables were included, important biological
markers such as VEGF and inflammatory cytokines were not
measured. Future studies should incorporate these factors to
enhance model performance.

5 Conclusion

In this study, we developed and validated a machine learning
model with good predictive value for assessing anatomical response
to anti-VEGF therapy in patients with DME. Preoperative retinal
edema >400 μm,DRIL, presence of subretinal fluid, and EZ integrity
were identified as key factors influencing the likelihood of central
retinal thickness reduction following treatment. Future research
involving larger, multicenter cohorts and incorporation of more
comprehensive biological and clinical markers is warranted to
further refine and optimize the model.
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