
TYPE Review
PUBLISHED 13 June 2025
DOI 10.3389/fcell.2025.1604320

OPEN ACCESS

EDITED BY

Rajan Singh,
Charles R. Drew University of Medicine and
Science, United States

REVIEWED BY

Satyesh K. Sinha,
University of California, Los Angeles,
United States
Manmohan Kumar,
The University of Texas Health Science Center
at San Antonio, United States

*CORRESPONDENCE

Jiachen Peng,
13511885288@139.com

Tao Zhang,
oceanzt@163.com

†These authors share first authorship

RECEIVED 03 April 2025
ACCEPTED 29 May 2025
PUBLISHED 13 June 2025

CITATION

Li J, Zhang L, Peng J, Zhao C, Li W, Yu Y,
Huang X, Yang F, Deng X, Yang X, Zhang T and
Peng J (2025) Mitochondrial metabolic
regulation of macrophage polarization in
osteomyelitis and other orthopedic disorders:
mechanisms and therapeutic opportunities.
Front. Cell Dev. Biol. 13:1604320.
doi: 10.3389/fcell.2025.1604320

COPYRIGHT

© 2025 Li, Zhang, Peng, Zhao, Li, Yu, Huang,
Yang, Deng, Yang, Zhang and Peng. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Mitochondrial metabolic
regulation of macrophage
polarization in osteomyelitis and
other orthopedic disorders:
mechanisms and therapeutic
opportunities

Jinglin Li1†, Lin Zhang1†, Jiaze Peng1, Chuntao Zhao2,
Wenguang Li3, Yang Yu1, Xianpeng Huang1, Fuyin Yang1,
Xuan Deng1, Xuxu Yang1, Tao Zhang4* and Jiachen Peng1,5*
1Department of Orthopedics, Affiliated Hospital of Zunyi Medical University, Zunyi, China, 2Department
of Orthopedic Surgery, 920th Hospital of Joint Logistics Support Force, Kunming, China, 3Zhejiang
Provincial People’s Hospital Bijie Hospital, Bijie, China, 4Key Laboratory of Cell Engineering of Guizhou
Province, Affiliated Hospital of Zunyi Medical University, Zunyi, China, 5Joint Orthopaedic Research
Center of Zunyi Medical University, University of Rochester Medical Center, Zunyi, China

Osteomyelitis is a complex infectious bone disease involving pathogen invasion,
host immune responses, and dysregulation of the local microenvironment.
As a critical component of the innate immune system, macrophages
play a pivotal role in inflammatory responses and tissue repair. Their
polarization states (M1/M2) directly influence disease progression, while
mitochondrial metabolism, as the central hub of cellular energy metabolism,
has recently been shown to play a key role in macrophage polarization
and functional regulation. However, how mitochondrial metabolism
regulates macrophage polarization to affect the pathological mechanisms
of osteomyelitis, and how to develop novel therapeutic strategies based
on this mechanism, remain critical scientific questions to be addressed.
This review systematically summarizes the molecular mechanisms by which
mitochondrial metabolism regulates macrophage polarization and its role
in osteomyelitis, with a focus on the impact of mitochondrial dynamics
(fission/fusion), metabolic reprogramming, and reactive oxygen species (ROS)
generation on macrophage polarization. Additionally, potential therapeutic
strategies targeting mitochondrial metabolism are analyzed. For the first
time, this review integrates the interplay between mitochondrial metabolism
and macrophage polarization in osteomyelitis, revealing how mitochondrial
dysfunction exacerbates inflammation and bone destruction through metabolic
reprogramming. Based on these findings, we propose novel therapeutic
strategies targeting mitochondrial metabolism, offering new perspectives
and directions for understanding the pathogenesis and clinical treatment of
osteomyelitis.
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1 Introduction

Osteomyelitis is a chronic inflammatory disease caused by
pathogenic microbial invasion, characterized by the destruction
of bone and surrounding soft tissues. The infection may be
confined to a single bone or extend to multiple structures,
including the bone marrow, cortical bone, periosteum, and adjacent
soft tissues (Lew and Waldvogel, 2004). Among the primary
pathogens, Staphylococcus aureus and Staphylococcus epidermidis
are the most common (Kavanagh et al., 2018). S. aureus invades
host tissues through intracellular infection, small colony variants
(SCVs), biofilm formation, and abscess development. It also secretes
various toxins that trigger local inflammatory responses, activating
keratinocytes, T-helper cells, macrophages, neutrophils, and other
immune cells (Masters et al., 2022; Chen H. et al., 2022). Globally,
the incidence of osteomyelitis varies significantly by region. In
the United States, the annual incidence is approximately 22 per
100,000 individuals (Kremers et al., 2015), with 10%–30% of
acute cases progressing to chronic osteomyelitis (Wang X. et al.,
2023).The rising incidence and emergence of antibiotic-resistant
strains pose significant challenges to antibiotic therapy and surgical
interventions, increasing clinical burden and healthcare costs.

Macrophages, as key components of the innate immune system,
play a crucial role in immune responses during osteomyelitis
by participating in tissue repair and homeostasis maintenance
(Pidwill et al., 2020). These cells exhibit phagocytic and bactericidal
functions and can polarize into pro-inflammatory M1 or anti-
inflammatory M2 phenotypes in response to the infection
microenvironment. M1 macrophages dominate the early phase of
infectionbyrecognizingpathogens, initiatinginflammatoryresponses,
secreting pro-inflammatory cytokines, activating endothelial cells,
and recruiting immune cells such as neutrophils to the infection
site. In contrast, M2 macrophages facilitate the resolution of
inflammation in later stages by engulfing apoptotic cells, depositing
collagen, and releasing anti-inflammatory mediators to promote
tissue repair (Mills, 2015). Moreover, in the bone microenvironment,
M1 macrophages serve as precursors for osteoclasts, differentiating
into mature bone-resorbing cells, whereas M2 macrophages secrete
osteogenic factors that stimulate mesenchymal stem cells to
differentiate into osteoblasts (Hu et al., 2023), thereby facilitating
boneregeneration.TheimbalanceofM1/M2macrophagepolarization
in osteomyelitis not only exacerbates local inflammation but also
disrupts bone homeostasis (Mouton et al., 2020). Due to the distinct
pathological mechanisms of osteomyelitis, macrophages exhibit
different functional statesduring the acute andchronicphases, leading
to diverse clinical outcomes.

Mitochondria serve as central hubs for metabolic regulation in
inflammatory and cellular stress responses, influencing macrophage
polarization through mechanisms such as signal transduction,
chromatin remodeling, and gene transcription regulation (Wang et al.,
2021). The dynamic modulation of macrophage polarization and
function by mitochondrial metabolism is critically involved in the
pathogenesisofosteomyelitis (Donget al., 2022).Previous studieshave
largely focused on the independent role of macrophage polarization
or the isolated regulatory effects of mitochondrial metabolism in
bone infections. However, the direct interplay betweenmitochondrial
metabolism and macrophage polarization—and its impact on
osteomyelitis progression—remains insufficiently explored. Given

the challenges in osteomyelitis treatment, a deeper understanding
of immune cell functional regulation is essential. This review
integrates the cross-disciplinary mechanisms of mitochondrial
metabolism and macrophage polarization for the first time,
highlighting their synergistic roles in osteomyelitis. By elucidating
the mitochondrial metabolic regulation of macrophage polarization,
this work provides new insights and potential therapeutic strategies
for osteomyelitis management.

2 Molecular mechanisms of
mitochondrial metabolism in
regulating Macrophage polarization

2.1 Metabolic characteristics of M1/M2
macrophage polarization

Macrophages, as key components of the immune system, play
a crucial regulatory role in infection and inflammatory responses
(Voll et al., 1997; Fadok et al., 1998; Ley et al., 2007).Upon stimulation
by the infectious microenvironment, macrophages can polarize into
either the pro-inflammatoryM1 phenotype or the anti-inflammatory
M2 phenotype (Wang et al., 2019; Xia et al., 2023).M1 macrophages
exhibit a distinct “metabolic shift,” characterized by enhanced
glycolysis, where hypoxia-inducible factor-1α (HIF-1α) upregulates
glucose transporter 1 (GLUT1)and hexokinase 2 (HK2), driving
rapid ATP and lactate production (Viola et al., 2019).Dysregulated
tricarboxylicacid(TCA)cycleactivity leads toabnormalaccumulation
of succinate and itaconate, directly influencing the pro-inflammatory
function of M1 macrophages (Liu and Ho, 2018).Succinate stabilizes
HIF-1α and promotes reactive oxygen species (ROS) production,
formingapositive feedback loopthatamplifiesglycolysisandenhances
pro-inflammatory gene expression (Van den Bossche et al., 2016;
Tannahill et al., 2013). In contrast, M2 macrophages maintain an
intact TCA cycle and rely primarily on oxidative phosphorylation
(OXPHOS) for energy metabolism. Fatty acid oxidation (FAO)
and glutamine metabolism serve as major ATP sources, supporting
anti-inflammatory gene expression (Gobert and Wilson, 2012).
Glutamine enhances M2 polarization by activating pyruvate
dehydrogenase (PDH) (Zhu et al., 2022).Additionally, elevated FAO
levels synergistically enhance lipid metabolism, further driving M2
phenotype formation (Li J. et al., 2024). Notably, a reduction in
FAO activity may promote M1 polarization (Soliman et al., 2020).
M1 activation suppresses mitochondrial OXPHOS while increasing
nitric oxide (NO) production, effectively blocking the repolarization
toward the M2 phenotype (Saxena et al., 2018).Moreover, hypoxic
microenvironments induce HIF-1α accumulation, leading to
mitochondrial protein lactylation modifications that significantly
impair OXPHOS functionality, ultimately reducing M2 polarization
efficiency (Mao et al., 2024).

2.2 M1/M2 Macrophage metabolic
reprogramming and osteoclast
differentiation

Osteoclasts arise from monocyte–macrophage precursors
under the influence of receptor activator of nuclear factor κB
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ligand (RANKL) and macrophage colony-stimulating factor
(M-CSF) (Qin et al., 2024). The distinct metabolic programs
of M1 and M2 macrophages—through their differential
regulation of energy pathways, signaling activity, and metabolite
production—profoundly shape osteoclastogenesis and osteoclast
function. M1 Macrophages rely predominantly on glycolysis,
driven by HIF-1α signaling, and produce high levels of lactate
and succinate (Viola et al., 2019; Liu and Ho, 2018). RANKL
stimulation activates lactate dehydrogenase A (LDHA), further
enhancing glycolysis and lactate output, which promotes osteoclast
differentiation (Nishioku et al., 2023). Succinate also activates
NF-κB inmacrophages, amplifying both osteoclastogenesis and pro-
inflammatory cytokine release (Guo et al., 2017). In a rheumatoid
arthritismodel, quercetin-laden nanoparticles inhibit the ERK/HIF-
1α/GLUT1 axis, reduce M1 glycolysis, and skew macrophages
toward an M2 phenotype—thereby curbing pro-inflammatory
cytokines and restraining osteoclast overactivation (Jia et al.,
2023). Moreover, M1-derived cytokines (e.g., TNF-α, IL-6) directly
potentiate osteoclast activity. Pseudolaric acid B promotes M1→M2
repolarization and suppresses IL-1β, TNF-α, and IL-6 synthesis,
while inhibiting RANKL-driven osteoclastogenesis via NF-κB and
ERK pathway blockade (Liu L. et al., 2024). M2 Macrophages, by
contrast, depend on OXPHOS and FAO. Activation of AMPK
and PPARγ signaling in M2 cells inhibits osteoclast formation.
For example, PPARγ dephosphorylation drives lipid synthesis and
M2c polarization, leading to IL-10 secretion and tissue repair
(Zuo et al., 2024). A lithographically fabricated forest-like silicon
substrate has been shown to increase M2 markers, decrease
inflammatory cytokines, and downregulate RANKL expression,
thus restoring the balance between bone resorption and formation
(Sun G. et al., 2024). Metabolic reprogramming can also be targeted
to impede osteoclastogenesis: co-delivery of quercetin and catalase
nanoparticles promotes M2 polarization, alleviates hypoxia, and
suppresses osteoclast activity (Sun et al., 2025). Furthermore,
mechanical cues—such as uniaxial compression applied via 3D-
printed scaffolds—enhance M2 polarization, inhibit osteoclast
formation, and accelerate bone repair (Kontogianni et al., 2025).
In summary, M1/M2 macrophage metabolic reprogramming—via
distinct energy pathways and associated signaling—modulates
key metabolites and cytokine release to regulate osteoclast
differentiation and function. Targeting macrophage polarization
thus offers a promising strategy to suppress excessive bone
resorption and restore bone homeostasis in inflammatory bone
diseases (Table 1).

2.3 Key signaling pathways mediating
metabolic regulation

2.3.1 HIF-1α-mediated pathway: driving M1
glycolysis and inflammation

As a key regulatory molecule, hypoxia-inducible factor-1α
(HIF-1α) orchestrates the metabolic reprogramming of glycolysis
and the secretion of inflammatory factors, playing a pivotal
role in M1 macrophage polarization. It is particularly crucial in
infections, hypoxia, and chronic inflammatory diseases (Soto-
Heredero et al., 2020). Under hypoxic or inflammatory stimuli
(such as LPS and TNF-α), HIF-1α stability increases, driving

the transcription of glycolysis-related genes (PKM2, HK2). This
promotes aerobic glycolysis (the Warburg effect) while inhibiting
OXPHOS, meeting the rapid energy demands of M1 macrophages
(Viola et al., 2019).Notably, the upregulation of pyruvate
dehydrogenase kinase1(PDK1)suppresses pyruvate dehydrogenase
(PDH), preventing pyruvate entry into the tricarboxylic acid
(TCA) cycle and further reinforcing the Warburg effect.Studies
have shown that in M1-polarized macrophages, key glycolytic
enzymes (GLUT1,HK2, LDHA, PKM2) and signaling proteins (Akt,
HIF-1α, mTOR) are downregulated in mitochondria. Restoring
OXPHOS function can facilitate macrophage repolarization from
the M1 to the M2 phenotype (Fan et al., 2022). Moreover,
TCA cycle disruption in M1 macrophages leads to succinate
accumulation, which enhances inflammation through two
mechanisms: stabilizing HIF-1α to upregulate pro-inflammatory
cytokines such as IL-1β and TNF-α, and promoting mitochondrial
reactive oxygen species (mtROS) production, which activates
the NLRP3 inflammasome (Tannahill et al., 2013). Additionally,
HIF-1α can form a positive feedback loop with the NF-κB
signaling pathway, further amplifying pro-inflammatory cytokine
expression and exacerbating chronic inflammation (Xu et al., 2022)
(Figure 1).

2.3.2 PGC-1α-mediated pathway: promoting M2
oxidative phosphorylation and tissue repair

Peroxisome proliferator-activated receptor gamma coactivator-
1 alpha (PGC-1α) is a central regulator of OXPHOS and tissue
repair inM2macrophages. As a transcriptional coactivator, PGC-1α
interacts with transcription factors such as peroxisome proliferator-
activated receptor gamma (PPARγ) to activate downstream
gene expression networks (Qian et al., 2024).Together, they
upregulate carnitine palmitoyltransferase1A (CPT1A),facilitating
the mitochondrial transport and β-oxidation of long-chain
fatty acids, thereby promoting tissue repair. Conditional gene
knockout mouse models and siRNA-mediated gene knockdown
experiments shows that activation of the PGC-1α signaling pathway
in alveolar macrophages significantly enhances mitochondrial
OXPHOS activity, maintaining M2 immune phenotype stability.
In contrast, PGC-1α deficiency weakens M2 functionality and
delays the tissue repair process (Feng Z. et al., 2023). Notably,
a hyperglycemic microenvironment inhibits PGC-1α expression,
significantly impairing M2 polarization and tissue repair capacity
(Zhao et al., 2023).Interventional studies suggest that PGC-1α
overexpression can effectively mitigate inflammation and accelerate
tissue regeneration (Chatsirisupachai et al., 2024). Mechanistically,
PGC-1α sustains an anti-inflammatory microenvironment through
dual pathways: it inhibits NF-κB signaling, reducing the secretion
of M1-associated cytokines such as TNF-α and IL-6, while
also activating STAT6/STAT3 signaling cascades to upregulate
M2-associated markers (Yang et al., 2017). Importantly, the
energy metabolism of M2 macrophages relies primarily on
OXPHOS. Enhanced OXPHOS is accompanied by increased
NAD+/NADH ratio and ATP levels. Changes in the intracellular
NAD+/NADH ratio significantly affect the activity of SIRT1;
elevated NAD+ enhances SIRT1 activity, which in turn regulates
cellularmetabolism and stress responses (Cerutti et al., 2014). SIRT1
can deacetylate and activate PGC-1α, contributing to the clearance
of reactive oxygen species (ROS) induced by oxidative stress and

Frontiers in Cell and Developmental Biology 03 frontiersin.org

https://doi.org/10.3389/fcell.2025.1604320
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Li et al. 10.3389/fcell.2025.1604320

FIGURE 1
Key Signaling Pathways Linking Mitochondrial Metabolism, Macrophage Polarization, and Osteomyelitis Progression. Under infectious and
inflammatory conditions, M1 macrophages primarily rely on glycolysis. Enhanced glycolysis leads to succinate accumulation, which promotes ROS
production and further amplifies glycolysis through positive feedback and stabilizes HIF-1α and NF-κB signaling. This stabilization induces the secretion
of pro-inflammatory cytokines such as TNF-α and IL-6, activating osteoclasts and exacerbating bone resorption. Meanwhile, mTORC1 promotes the
upregulation of glycolysis-related genes by activating HIF-1α, reinforcing the pro-inflammatory feedback loop, whereas AMPK inhibits mTORC1 activity
via phosphorylation. IL-6 activates the JAK1-STAT3 axis to enhance M1 polarization, whereas IL-4 promotes M2 polarization through the JAK1-STAT6
axis. Additionally, the JAK1/STAT3/6 pathway suppresses NF-κB signaling. M2-type macrophages primarily rely on oxidative phosphorylation (OXPHOS)
for their energy metabolism. Enhanced OXPHOS activity increases the activity of SIRT1, which in turn activates PGC-1α. PGC-1α further enhances
OXPHOS activity and regulates PPARγ activity, thereby promoting the secretion of anti-inflammatory cytokines such as IL-10 and TGF-β, ultimately
facilitating osteogenesis and tissue repair. At the same time, Nrf2 activates the HO-1/GPX4 axis to reduce ROS levels and inhibit NF-κB signaling,
thereby constraining M1 polarization, while simultaneously activating PPARγ to promote M2 polarization. These interconnected pathways orchestrate
mitochondrial metabolism and macrophage polarization in osteomyelitis, ultimately dictating the balance between inflammatory bone destruction and
reparative bone formation.

alleviating oxidative damage (Wu QJ. et al., 2022). Paradoxically,
recent studies indicate that PGC-1α may also suppress the IL-
6/JAK2/STAT3 pathway, thereby limiting M2 polarization and
attenuating fibrosis following hepatic ischemia-reperfusion injury
(Zhang et al., 2023a).

2.3.3 AMPK/mTORC1 axis: balancing M1-M2
metabolic transition

The AMP-activated protein kinase (AMPK) and mammalian
target of rapamycin complex 1 (mTORC1) form a key metabolic-
immunological regulatory axis, dynamically counterbalancing
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each other to coordinate macrophage polarization (Cheng et al.,
2023). Specifically, during M1 polarization, mTORC1 promotes
the transcription of glycolysis-related genes by activating hypoxia-
inducible factor-1 alpha (HIF-1α), thereby driving the expression
of pro-inflammatory cytokines (Wu et al., 2021).Conversely, AMPK
inhibits mTORC1 activity via phosphorylation, reducing HIF-
1α stability and disrupting glycolysis-dependent metabolism,
ultimately suppressing M1 polarization and controlling
inflammation (Cheng et al., 2023). Notably, low-molecular-weight
fucoidan (LMWF), a natural product with anti-MRSA activity,
has also been shown to induce macrophage polarization toward
the M2 phenotype by activating the AMPK signaling pathway,
significantly reducing the levels of inflammatory mediators such as
IL-6 and TNF-α (Chen M. et al., 2025).Mechanistic studies indicate
that the AMPK/mTORC1 axis regulates mitochondrial metabolic
homeostasis to bidirectionally modulate macrophage polarization:
AMPK activation favors the M2 reparative phenotype, whereas
mTORC1 signaling promotes the M1 pro-inflammatory state.

2.3.4 JAK-STAT pathway: cytokine-directed
metabolic regulation

The Janus kinase (JAK)-signal transducer and activator
of transcription (STAT) pathway serves as a central signaling
hub for cellular responses to cytokines such as IL-6, IFN-γ,
and IL-4. By integrating extracellular signals with nuclear gene
expression programs, this pathway precisely regulates energy
metabolism, immune responses, and tissue homeostasis (Xin et al.,
2020). In psoriasis research, the research by Gao et al. found
that ergothioneine (EGT) modulates macrophage polarization
and ameliorates psoriasis by regulating the NF-κB/JAK-STAT3
signaling pathway: EGT downregulates the M1 marker CD86 and
upregulates the M2 marker CD206 (Li A. et al., 2025).Metabolomic
studies reveal that fructose, a typical ketohexose, suppresses
STAT1 activation and blocks M1 macrophage polarization by
reducing cytoplasmic and mitochondrial Ca2+ levels through
a non-canonical metabolic pathway (Yan et al., 2024). IL-4,
a key immunomodulatory cytokine, plays a crucial role in
macrophage phenotype switching. Guo et al. found that IL-4
activates the JAK1/STAT6 phosphorylation cascade, downregulates
pro-inflammatory cytokine expression, and significantly enhances
M2 macrophage polarization (Guo et al., 2024). Under hypoxic
conditions, metabolic reprogramming leads to succinate
accumulation, which stabilizesHIF-1α and enhances STAT3 activity,
thereby promoting anti-inflammatory cytokine expression. Targeted
inhibition of the JAK1/STAT3/HIF-1α signaling axis effectively
regulates energy metabolism, reduces pro-inflammatory mediator
release, and ultimately mitigates bone and joint destruction
(Zhang F. et al., 2024).

Notably, the JAK-STAT pathway exhibits pleiotropic regulatory
characteristics in macrophage polarization. Previous studies on
succinate dehydrogenase (SDH) have primarily focused on its
role in promoting M1 polarization through ROS production.
However, He et al. found that inhibition of SDH activity using
dimethyl malonate (DMM) significantly upregulated the expression
of M2 marker genes, including arginase-1 (Arg1) and chitinase-
like protein 3 (Ym1), while simultaneously decreasing IL-1β
levels and increasing IL-10 levels. This regulatory effect was

mediated by STAT6 activation, ultimately promoting tissue repair
(He et al., 2025) (Figure 1).

2.3.5 Nrf2 pathway: antioxidant defense and M2
support

Nuclear factor erythroid 2-related factor 2 (Nrf2) serves as a
key regulatory hub in oxidative stress defense, playing a critical role
in balancing pro-inflammatory cytokine expression and reactive
oxygen species (ROS) metabolism (Luchkova et al., 2024). Li et al.
demonstrated that Nrf2 effectively suppresses M1 macrophage
polarization and maintains redox homeostasis through a triple
regulatory mechanism: reducing ROS levels, inhibiting IL-6/IL-
1β transcriptional activity, and blocking the NF-κB activation
pathway (Li Y. et al., 2025). Under pathological conditions, excessive
ROS production and mitochondrial damage create a vicious cycle
that exacerbates inflammatory cascades. Studies have shown that
the mitochondria-targeted antioxidant mitoquinone (MitoQ)
significantly reduces TNF-α and IL-6 levels by co-activating the
Nrf2 signaling pathway and improving mitochondrial autophagy
defects and dysfunction via the Nrf2/PINK1 axis (Cen et al., 2021).
At the molecular level, Nrf2 directly regulates the expression of anti-
inflammatory genes in M2 macrophages, and its specific activation
has been confirmed to drive macrophages toward an M2 phenotype
(Sha et al., 2023). Notably, Nrf2 knockout models revealed that
the loss of this regulatory factor promotes M1 macrophage
polarization through abnormal activation of the NF-κB/PPARγ
signaling axis and disruption of autophagic flux (Luo et al.,
2022). In the osteomyelitis microenvironment, Nrf2 exhibits dual
regulatory functions: on one hand, it promotes M2 macrophage
polarization to exert anti-inflammatory effects; on the other, it
enhances ROS-scavenging enzyme activity to counteract RANKL-
induced oxidative stress, thereby inhibiting osteoclast differentiation
and facilitating bone repair. When Nrf2 function is impaired,
excessive ROS accumulation activates the RANKL signaling
pathway, accelerating osteoclastogenesis and bone resorption
(Feng X. et al., 2023). Pathological cascade studies indicate that
excessive oxidative stress directly leads to bone loss and structural
damage. A recent study by Huang et al. (Huang L. et al., 2024)found
that the natural compound picein not only improves the immune
microenvironment by promoting M2 macrophage polarization
but also enhances the osteogenic differentiation capacity of bone
marrow mesenchymal stem cells (BMSCs) via the Nrf2/HO-
1/GPX4 axis, significantly improving bone defect repair efficiency
(Figure 1).

2.4 Mitochondrial metabolic dysfunction
and its association with osteomyelitis
pathology

2.4.1 Mitophagy
During the progression of osteomyelitis, pathogen infection,

oxidative stress, and chronic inflammation collectively disrupt
mitophagy homeostasis, exacerbating immune-metabolic
dysregulation and bone tissue destruction. As a critical
quality control mechanism for selectively eliminating damaged
mitochondria, mitophagy plays a pivotal role in maintaining
mitochondrial network integrity, thereby modulating cellular
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metabolism and immune responses (Fu et al., 2020). Molecular
studies have identified the PINK1/PARKIN signaling pathway
as a central mediator of mitophagy. In osteomyelitis, S. aureus
suppresses HDAC11 to upregulate IL-10 expression, thereby
activating PINK1/Parkin-dependent mitophagy and clearing
mitochondrial ROS to sustain its intracellular survival. This
mechanism impairs macrophage bactericidal function, leading to
persistent infection (Liu et al., 2022; Yang et al., 2025).Notably,
macrophages serve as primary host cells for S. aureus, and their
mitophagy levels directly influence reactive oxygen species (ROS)-
mediated bactericidal activity, which is crucial for pathogen
control (Li K. et al., 2023; Nan et al., 2024). Specifically, mitophagy
mitigates mitochondrial ROS (mtROS) accumulation by removing
damaged mitochondria, thereby impairing host antimicrobial
efficacy (Li K. et al., 2023). Mechanistic studies have demonstrated
that S.aureus infection significantly upregulates the expression
of the anti-inflammatory cytokine interleukin-10 (IL-10), which,
by promoting mitophagy and mtROS clearance, markedly
enhances intracellular pathogen survival (Yang et al., 2025).
Osteoclast resorption assays combined with tartrate-resistant
acid phosphatase (TRAP) staining experiments revealed further
suggests that modulating the AMPK/BNIP3/PINK1/PARKIN
signaling axis to enhance mitophagy and reduce ROS accumulation
effectively suppresses macrophage M1 polarization and osteoclast
differentiation, ultimately alleviating bone loss (Wang W. et al.,
2024). Therefore, in osteomyelitis, the primary pathogen
S. aureus can enhance mitophagy to weaken macrophage
bactericidal and anti-inflammatory functions, enabling
immune evasion, escaping macrophage-mediated clearance,
prolonging the course of infection, and contributing to chronic,
refractory osteomyelitis.

2.4.2 The bidirectional regulatory network of ROS
During infection, cellular antioxidant homeostasis is disrupted,

leading to the abnormal accumulation of reactive oxygen species
(ROS). As key byproducts of mitochondrial metabolism, ROS exert
a dual regulatory effect on macrophage polarization: physiological
levels promote pro-inflammatory M1 macrophage polarization,
whereas excessive ROS induce cellular damage and functional
impairments (Dong et al., 2022; Gu et al., 2017; Qing et al., 2020). In
osteomyelitis pathogenesis, mitochondrial fission abnormalities and
dysfunction collectively contribute to ROS accumulation, ultimately
triggering infection-induced osteocyte death (Mendelsohn et al.,
2023). Recent studies have uncovered that hyperactivation of
the EGFR–MEK1/2 cascade downregulates mitochondrial ROS
(mtROS) in macrophages by suppressing Chek2 expression, thereby
impairing their bactericidal capacity; conversely, inhibition of this
pathway markedly enhances S.aureus clearance and improves bone
microarchitecture in vivo (Jin et al., 2024). It has also been shown
that S.aureus suppresses HDAC11 to boost IL-10 production, which
in turn promotes mitophagy and mtROS clearance, facilitating
bacterial survival within macrophages (Yang et al., 2025). Another
investigation demonstrated that PD-1/PD-L1 signaling activates
mitophagy to reduce mtROS levels, thereby inhibiting macrophage
antimicrobial function. Treatment with PD-1/PD-L1 neutralizing
antibodies significantly decreases mitophagy in bone marrow
macrophages, enhances bacterial eradication in bone tissue and
implants, and reduces bone destruction in mice (Li K. et al.,

2023).Precise modulation of ROS production has been shown to
effectively control macrophage inflammatory responses and NLRP3
activation, providing a novel strategy for macrophage phenotype
reprogramming (Wu X. et al., 2025). Collectively, these findings
underscore the central role of ROS homeostasis in macrophage
polarization regulation.

3 The pathological role of the
mitochondrial
metabolism–macrophage polarization
axis in osteomyelitis

3.1 Dynamic changes in mitochondrial
dynamics and macrophage polarization
during osteomyelitis progression

During osteomyelitis progression, macrophages exhibit distinct
immune functions through M1/M2 phenotypic switching. In
the acute infection phase, pathogen invasion triggers rapid
mitochondrial fission—mediated primarily by Drp1—resulting in
a fragmented mitochondrial network (Susser et al., 2023). This
fission event initiates an “immune defense program,” in which
resting (M0) macrophages polarize to the M1 phenotype. M1
macrophages rapidly activate via the NF-κB pathway and upregulate
HIF-1α signaling, driving the release of pro-inflammatory cytokines
such as TNF-α and IL-1β to establish a multifaceted immune
barrier. This process not only enhances the inflammatory response
but also facilitates the recruitment of neutrophils, T cells, and
other immune cells, forming a pathogen clearance network
(Xu et al., 2022). However, excessive M1 polarization amplifies
inflammatory cascades, with mitochondrial ROS release activating
the NLRP3 inflammasome in a positive feedback loop. This not
only suppresses the osteogenic differentiation capacity of bone
marrow mesenchymal stem cells (BMSCs) but also exacerbates
structural damage to bone tissue through sustained inflammation
(Zhao et al., 2024). Molecular studies have shown that activating
mitophagy via the PINK1/PARKIN pathway effectively inhibits
NLRP3 activation, thereby promoting macrophage M2 polarization
and alleviating inflammation (Liu et al., 2025). During the chronic
inflammatory phase, macrophage mitochondria transition from
a fragmented to a fused state, characterized by mitochondrial
elongation and network formation driven by upregulation of
fusion proteins Mfn1 and Mfn2. This morphological shift supports
M2 polarization, which is dominated by FAO and OXPHOS
(Kawano et al., 2023), and promotes inflammation resolution and
bone regeneration through the secretion of anti-inflammatory
cytokines such as IL-10 and other tissue repair–associated factors
(Chen et al., 2023). Notably, S.aureus–induced osteomyelitis exhibits
a unique pathology: the acute inflammatory response fails to fully
clear the pathogen, and the comparatively weaker phagocytic
capacity of M2 macrophages allows biofilm formation and
sustained toxin release, ultimately leading to chronic, recalcitrant
infection foci (Masters et al., 2022; Muthukrishnan et al., 2019)
(Figure 2) (Table 2)
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FIGURE 2
Macrophage Polarization and Pathological Progression in S.aureus-Induced Osteomyelitis. Upon Staphylococcus aureus invasion, macrophages engulf
the pathogen, triggering Drp1-mediated mitochondrial fission and driving their polarization toward the pro-inflammatory M1 phenotype. As the
infection progresses, upregulation of the fusion proteins Mfn1/2 shifts mitochondrial morphology from fragmented to fused, facilitating a transition to
the reparative M2 phenotype. This M2 polarization promotes osteogenesis, dampens inflammation, and guides the lesion toward healing. However,
biofilm formation encapsulates Staphylococcus aureus, enabling persistent bacterial survival and continuous toxin release. The result is necrotic bone,
renewed mitochondrial fission, and heightened osteoclast activity. With bone resorption and formation occurring simultaneously, the lesion ultimately
advances to chronic osteomyelitis.

3.2 Mitochondrial dynamics imbalance
drives inflammation and bone destruction

3.2.1 Metabolic crosstalk between macrophages
and osteoclasts

In osteomyelitis, the metabolic interplay between macrophages
and osteoclasts is a dynamic process driven by metabolic
reprogramming, inflammatory signaling, and microenvironmental
cues. Early in infection, M1 macrophages rely on glycolysis to
rapidly produce ATP and secrete pro-inflammatory cytokines
that positively regulate osteoclast differentiation and bone
resorption. However, prolonged inflammation induces osteoclast

apoptosis via upregulation of pro-apoptotic genes such as
Bax and Bak (Wu CS. et al., 2025). During S.aureus infection,
macrophages suppress HDAC11 to upregulate IL-10, which
triggers PINK1/Parkin-dependent mitophagy, clears mtROS,
and enables bacterial immune evasion—thereby indirectly
disrupting bone remodeling (Yang et al., 2025). Inflammatory
cytokines, notably IL-1β, released by macrophages further promote
osteoclast differentiation and maturation (Wu YL. et al., 2022).
Cyclooxygenase-2 (COX-2) is also upregulated in osteomyelitis;
its inhibitor celecoxib mitigates bone loss by modulating
immune cell populations (e.g., reducing MDSCs) and inhibiting
osteoclastogenesis (Chen Y. et al., 2025).
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TABLE 2 Comparison of metabolic remodeling in acute and chronic osteomyelitis.

Characteristic Acute osteomyelitis Chronic osteomyelitis

Metabolic Pathway Predominantly glycolysis, reduced oxidative
phosphorylation

Primarily oxidative phosphorylation, partial
restoration

Mitochondrial Function High ROS production, increased mitochondrial fission Decreased mitochondrial bioenergetics, mitochondrial
damage

Macrophage Polarization M1-dominated, pronounced pro-inflammatory
features

M2-dominated, limited reparative capacity

Signaling Regulation HIF-1α and mTOR activation drive pro-inflammatory
metabolism

AMPK and PGC-1α mediate metabolic adaptation

Inflammatory Microenvironment Highly inflammatory, prioritizing pathogen clearance Low-grade inflammation, coexistence of fibrosis and
residual pathogens

Tissue Repair Destructive inflammation leads to bone loss Impaired repair, resulting in fibrosis and failed bone
remodeling

Impaired bone healing in diabetic models has been traced
to aberrant macrophage–BMSC communication: macrophage-
derived exosomal miR-144-5p targets Smad1 to inhibit osteogenic
differentiation, whereas blockade of this miRNA reverses the
repair defect (Zhang et al., 2021). Excessive activation of the
EGFR–MEK1/2 cascade by S.aureus lowers mtROS in macrophages,
impairing their bactericidal function; MEK1/2 inhibition in
murine osteomyelitis reduces bacterial load and alleviates bone
destruction (Jin et al., 2024).

Finally, mitochondrial complex I dysfunction, modeled by
Ndufs4 deletion, shifts metabolism from FAO to glycolysis.
This enhances macrophage activation and inflammation while
impairing osteoclast formation and bone resorption, highlighting
the importance of intact mitochondrial respiration for balanced
bone remodeling (Jin et al., 2014).

3.2.2 Mitochondrial dynamics modulating the
metabolic axis

Mitochondrial fission refers to the structural separation of
damaged mitochondria from healthy ones, whereas mitochondrial
fusion involves the reorganization of membrane structures and
mixing of contents between depolarized mitochondria (Liu J. et al.,
2024). This dynamic process is regulated by key proteins including
mitofusin 1/2 (MFN1/2) and OPA1 for fusion, and dynamin-
related protein 1 (DRP1, encoded by DNM1L) and fission protein
1 (FIS1) for fission. DRP1, a GTPase, is the principal executor of
mitochondrial fission.When the fission–fusion balance is disrupted,
mitochondrial quality control collapses, leading to dysfunction, cell
death, and tissue damage (Liu J. et al., 2024).

In osteomyelitis models, imbalanced fission and fusion result in
abnormally elevatedmtROS inmacrophages, significantly inhibiting
osteoclast differentiation (Jin et al., 2014). Mechanistically,
DRP1 overexpression causes mitochondrial membrane potential
collapse and structural fragmentation, impairing osteoblast
function; conversely, DRP1 inhibition effectively alleviates
oxidative stress–induced osteogenic defects (Zhang et al., 2017).

Notably, DRP1 promotes osteoclast differentiation via the c-
Fos–NFATc1 signaling axis, and its suppression blocks LPS-induced
osteoclastogenesis (Jeong et al., 2021). MFN2-mediated remodeling
of endoplasmic reticulum–mitochondria contacts regulates
mitochondrial Ca2+ uptake and induces cytosolic Ca2+ oscillations
that further drive osteoclastogenesis (Ballard et al., 2020).Clinical
studies have shown that the extent of mitochondrial damage in
osteoblasts from osteomyelitis patients correlates with an increased
RANKL/OPG ratio, which directly determines the balance between
bone resorption and formation (Granata et al., 2022; Ferver et al.,
2021). Moreover, resveratrol enhances macrophage mitophagy
via the SIRT1–PGC-1α pathway, upregulates MFN2 expression
to promote mitochondrial fusion (Wu SK. et al., 2024), and
boosts PINK1/Parkin-mediated mitophagy to accelerate damaged
mitochondrial clearance and reduce mtROS accumulation, thereby
driving macrophages toward an anti-inflammatory M2 phenotype.
These effects optimize mitochondrial dynamics and energy
metabolism in the osteomyelitis microenvironment, ultimately
influencing osteoclast differentiation (Jin et al., 2014). Recent work
has also identified the Sigma-1 receptor at mitochondria-associated
membranes (MAM) as a negative regulator of osteoclastogenesis,
suggesting that targeting ER–mitochondria interactions may offer
novel therapeutic avenues for osteomyelitis (Ballard et al., 2020).

3.3 Interaction between pathogen evasion
and aberrant Macrophage polarization

Many pathogens employ diverse mechanisms to suppress
M1 macrophage polarization, thereby weakening host immune
defenses. For example, mycobacteria can inhibit the IFN-γ signaling
pathway, maintaining macrophages in an M2-like state that favors
intracellular survival. This inhibition is thought to occur via
intracellular signaling modulation—such as suppressing STAT1
activation—to reduce the expression of M1 markers. Certain
pathogens actively induce M2 polarization to create an immune
microenvironment conducive to their survival and evasion. For
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instance, the mannose-capped lipoarabinomannan (ManLAM) of
Mycobacterium tuberculosis stimulates TGF-β production, driving
macrophage conversion from M1 to M2. This shift benefits the
pathogen by exploiting the relatively weak bactericidal capacity and
anti-inflammatory, tissue-repairingmetabolism ofM2macrophages
(Ren et al., 2017).In chronic osteomyelitis, pathogens can persist
within overly polarized M2 macrophages, escaping immune
clearance and antibiotic treatment. Emerging therapies therefore
focus on macrophage phenotype reprogramming—shifting M2
back to M1 to enhance bactericidal activity (Tian et al., 2023).
Mechanistic studies show that inhibiting MAP3K1 and NF-κB
signaling can promote M1-to-M2 repolarization, thereby reducing
inflammation in osteomyelitis (Dai et al., 2024). Additionally,
SETD2 regulates HIF-1α expression to modulate glycolysis in
osteomyelitis-associated macrophages, influencing their function
and polarization (Zhu D. et al., 2024).As key players in innate
immunity, macrophages both clear pathogens and orchestrate
inflammation resolution and tissue repair. Macrophage-deficient
models exhibit markedly reduced bone density, underscoring
their central role in bone homeostasis (Kang et al., 2020). Under
physiological conditions, M2 macrophages support bone formation
by promoting MSC-to-osteoblast differentiation (Mi et al., 2022),
whereas M1 macrophages serve as osteoclast precursors in bone
resorption (Hu et al., 2023). In osteomyelitis, an imbalance in
M1/M2 polarization disrupts the equilibrium between osteogenesis
and osteoclastogenesis, establishing a vicious “inflammation–bone
destruction” cycle. Therefore, precisely modulating macrophage
polarization homeostasis represents a critical therapeutic target for
improving clinical outcomes.

4 Targeting mitochondrial metabolism
for osteomyelitis treatment

4.1 Metabolic interventions for regulating
macrophage polarization

Reactive oxygen species (ROS) play a central role in innate
immune responses and inflammation. Elevated mitochondrial ROS
levels lead to loss of mitochondrial membrane potential (MMP),
triggering mitochondrial dysfunction and reduced cell viability
(Soliman et al., 2024). Moreover, the combined effect of increased
ROS and decreased MMP significantly decreases cell survival and
induces apoptosis (Chen et al., 2022b).In osteomyelitis, excessive
ROS production exacerbates inflammation through mitochondrial
damage mechanisms (Andrieux et al., 2021). Chronic osteomyelitis
patients often exhibit mitochondrial pathology, including swelling,
cristae loss, and decreased matrix density. These alterations not only
impair macrophage phagocytic and bactericidal functions but also
promote inflammation by releasing damage-associated molecular
patterns (DAMPs) (Mendelsohn et al., 2023).CRISPR/Cas9‐mediated
gene knockout studies and metabolic flux analyses have shown
that N-acetyl-L-cysteine (NAC) exerts tissue‐protective effects
by scavenging cytosolic and mitochondrial ROS, preventing
macrophage cytoplasmic swelling and membrane rupture, and
thereby reducing the expression of pyroptosis‐associated proteins and
pro‐inflammatory cytokines while upregulating anti‐inflammatory
mediators (Zhang et al., 2024b; Zhang D. et al., 2020). Mitochondrial
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metabolic dysfunction influences immune cell function through
multiple pathways. AMP-activated protein kinase (AMPK), a key
regulator of mitochondrial energy homeostasis, has been shown to
suppress NLRP3 inflammasome activation, restore mitochondrial
function, and reduce oxidative stress (Yang et al., 2023). Additionally,
AMPK activation induces metabolic reprogramming, enhancing
mitochondrial OXPHOS to inhibit inflammation progression
(Jin et al., 2020). In acute suppurative osteomyelitis, staphylococcal
proteinAalleviatesdiseaseprogressionbyinhibitingSETD2-mediated
upregulation of glycolysis, thereby suppressing hBMSC osteogenic
differentiation andM1macrophage polarization (Zhu D. et al., 2024).
During the subacute phase of S.aureus osteomyelitis, PD-1/PD-L1
signaling enhances mitophagy, reduces mtROS levels, and impairs
macrophage bactericidal activity; PD-1/PD-L1 blockade restores
macrophage polarization and bacterial clearance in osteomyelitis
(Li K. et al., 2023).Notably, mitochondrial fission is significantly
increased during osteomyelitis. The resulting mitochondrial
fragments promote autophagy, alleviating oxidative stress-induced
mitochondrial dysfunction and preserving macrophage function
(He et al., 2019). Resveratrol has been found to enhance mitophagy,
reduce ROS levels, and inhibit NLRP3 inflammasome activation,
consequently decreasing pro-inflammatory cytokine expression and
alleviating inflammation (Liu et al., 2025).Similarly, activation of the
Nrf2 signaling pathway has been shown to maintain mitochondrial
homeostasis in alveolar macrophages by promoting mitophagy,
thereby preventing NLRP3 inflammasome activation and limiting
inflammation (Dong et al., 2021).Moreover, succinate dehydrogenase
(SDH), a key enzyme in mitochondrial metabolism, plays a crucial
role in the electron transport chain. SDH deficiency in macrophages
reduces hypoxia-inducible factor-1α (HIF-1α) stability, leading to
sustainedIL-1βexpressionandprolonged inflammation(Gobelli etal.,
2023; Fuhrmann et al., 2019). Inhibiting mitochondrial SDH
activity disrupts HIF-1α-mediated glycolysis, deactivates the NLRP3
inflammasome, and attenuates inflammation (Zhu XX. et al., 2024).
Not only have numerous in vitro and animal studies elucidated the
roles of mitochondrial fission–fusion dynamics, ROS generation,
and metabolite signaling in macrophage polarization, but clinical
observations also provide compelling evidence. For example, septic
patients exhibit significantly elevated levels of circulating cell-
free mtDNA in plasma, which correlate positively with SOFA
scores and mortality (Scozzi et al., 2021), suggesting its potential
diagnostic and prognostic value during systemic inflammation
complicating osteomyelitis. Furthermore, electron microscopy and
immunohistochemical analyses of bone tissue from patients with
chronic suppurative osteoarticular infections revealed increased
Drp1 expression and pronounced mitochondrial fragmentation in
infiltrating macrophages, underscoring the clinical relevance of
mitochondrial dynamics regulation (Mendelsohn et al., 2023).These
findings suggest that targeting mitochondrial metabolism is an
emerging therapeutic strategy for osteomyelitis (Figure 3).

4.2 Nanomaterials and drug delivery
systems

The dynamic changes in macrophage polarization play distinct
regulatory roles at different pathological stages of osteomyelitis.
Within the infectious microenvironment, macrophage phenotype

transition, characterized by the secretion of pro-inflammatory
factors such as macrophage inflammatory protein-1α (MIP-
1α) and the promotion of osteoclastogenesis, exacerbates
inflammation and bone destruction (Trouillet-Assant et al.,
2015; Dapunt et al., 2014). Recent studies have focused on
developing various materials and drugs to modulate mitochondrial
metabolism, thereby regulating macrophage polarization and
improving clinical outcomes in osteomyelitis. Studies have
demonstrated that drugs such as celecoxib suppress the NF-κB
pathway, reducing M1 macrophage activity while promoting M2
polarization, ultimately alleviating inflammatory bone damage
(Weber et al., 2021; Wang W. et al., 2022). Strontium ions (Sr2+)
activate the PI3K/AKT/mTOR signaling pathway, enhancing
mitochondrial function in macrophages and inducing their
transition to the M2 phenotype, thereby creating an immune
microenvironment conducive to tissue repair (Qiu et al., 2024).
Gold nanoparticles exert a dual inhibitory effect on the NF-κB
and MAPK signaling pathways, significantly driving macrophage
polarization toward the anti-inflammatory M2 phenotype
and effectively counteracting LPS-induced inflammation. This
immunomodulatory action further promotes the osteogenic
differentiation of bone marrowmesenchymal stem cells (BMSCs) in
vitro. Mechanistically, gold nanoparticles specifically upregulate
the expression of the macrophage surface receptor TREM2,
enhancing phagocytic activity against S.aureus. Concurrently,
TREM2 signaling accelerates autophagosome–lysosome fusion,
facilitating intracellular pathogen degradation and establishing an
antibacterial “recognition–phagocytosis–clearance” loop. In models
of osteomyelitis and infected skin wounds, gold nanoparticles
achieve dual therapeutic benefits by both controlling infection—via
modulation of the inflammatory microenvironment—and
activating bone regeneration pathways (Peilin et al., 2023;
Fu et al., 2021). In recent years, advancements in nanomaterial
design have further expanded therapeutic strategies. Biomimetic
piezoelectric nanocomposites leverage both reactive oxygen
species (ROS)-mediated antibacterial effects and piezoelectric
properties to reprogram macrophages toward the M2 phenotype
while activating calcium ion channels to promote mesenchymal
stem cell osteogenic differentiation, significantly accelerating
bone regeneration (Roy et al., 2025). Additionally, an emodin-
based multifunctional nanoplatform facilitates ROS-dependent
bacterial membrane disruption and regulates M1 polarization
via the cAMP/cGMP-PKG pathway. After pathogen clearance,
it shifts toward M2 polarization, fostering osteogenic repair
(Li Z. et al., 2025). For drug-resistant bacterial infections,
metal ion-antibiotic co-loaded nanoplatforms effectively disrupt
methicillin-resistant S.aureus (MRSA) membrane structures,
inhibit glycolysis, and interfere with energy metabolism through
multiple mechanisms, significantly reducing both intracellular and
extracellular bacterial burden while restoring antibiotic sensitivity
(Lv et al., 2025). Beyond nanomaterials, exosome-based therapies
have emerged as a promising approach to modulate macrophage
M2 polarization in inflammatory lesions, thereby suppressing
pro-inflammatory cytokine release and promoting tissue repair
(Chen Y. et al., 2024). Recent studies have also highlighted that
specifically functionalized hydrogels can reverse macrophage
polarization from M2 to M1, enabling intracellular bacterial
clearance, thus offering a novel strategy for osteomyelitis treatment.
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FIGURE 3
Targeting mitochondrial metabolism for osteomyelitis Treatment. (A) Metabolic interventions for regulating Macrophage Polarization. (B)
Nanomaterials and drug delivery Systems. (C) Combination therapy Strategies.

These innovative delivery systems hold significant potential
for immune microenvironment modulation and drug-resistant
pathogen eradication (Figure 3).

4.3 Combination therapy strategies

Macrophage polarization is a central regulator of the immune
microenvironment inosteomyelitis, and itsmetabolic reprogramming
has emerged as a key target for combination therapy. Studies have
confirmed that succinate dehydrogenase (SDH) and its metabolic
product, succinate, play a crucial regulatory role in macrophage
phenotype transitions. SDH inhibitors effectively suppress the
glycolytic pathway andHIF-1α expression through adualmechanism,
leading to the inactivation of the NLRP3 inflammasome. This
process attenuates M1 macrophage-mediated inflammation while
promoting M2 polarization (Sun HJ. et al., 2024). During persistent
infections, pathogens may evade immune surveillance by inducing
programmed death-ligand 1 (PD-L1) expression. The use of PD-
L1/PD-1 inhibitors, such as PD-L1 monoclonal antibodies, can
block this immunosuppressive signal, restore interferon-γ (IFN-γ)
levels, and enhance macrophage bactericidal activity (Wang et al.,
2024b). IFN-γ further activates the JAK-STAT signaling pathway
to promote nitric oxide synthesis, stimulating the p38 MAPK and
Runx2 signaling cascades, which ultimately enhance osteogenic
differentiation (Wang H. et al., 2023).The development of advanced
delivery systems provides technological support for combination
therapies. In a post-traumatic osteomyelitis (PTO) model, Wenting
Zhang’s team developed a ROS-responsive hydrogel co-loaded
with quorum-sensing (QS) inhibitors and antimicrobial peptides,
which effectively eradicated nearly all bacteria while significantly
promoting bone regeneration (Zhang W. et al., 2024).Such “hydrogel

+ antibiotics + metabolic regulators” triple-combination strategies
exhibit great potential for clinical translation. Future research may
focus ondeveloping similar nanomaterials or hydrogel-based targeted
therapies. Building on the bone regeneration platform developed by
XuZhengjiang’s team,anordered5–20 nmmesoporousbioactiveglass
(MBG) shell was deposited onto hydroxyapatite (HAp) nanoparticles
via sol–gel and self-assembly techniques. This design increased
vancomycin loading over threefold compared to conventional 58S
glass and yielded a sustained, controlled release profile. Si4+ ions
released from the MBG shell not only mitigate drug toxicity to
osteoblasts but also upregulate osteogenic genes (e.g., ALP, Runx2),
enhancingcellproliferationanddifferentiation.TheHApcoreprovides
a biomimetic osteoconductive scaffold that further promotes cell
adhesion andmineralization. In a chronic osteomyelitis ratmodel, this
carrier achieved a synergistic “anti-infection and pro-regeneration”
effect, combining potent antibacterial activity with accelerated bone
defect repair (Xu et al., 2021). Localized delivery platforms, including
degradable hydrogels, MBG bone cement, and nanomaterials co-
loaded with antibiotics or metabolic regulators, hold significant
promise for the future treatment of osteomyelitis (Figure 3) (Table 3).

5 Potential applications of
mitochondrial metabolic regulation in
other orthopedic diseases

5.1 Inflammatory joint diseases:
osteoarthritis and rheumatoid arthritis

Osteoarthritis (OA), the most prevalent degenerative joint
disease, is a major cause of joint dysfunction and chronic pain in
adults (Chen et al., 2017). Its pathogenesis involves the interplay
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TABLE 3 Summary Table of potential therapeutic targets for mitochondrial metabolism regulation.

Target/Mechanism Function Drugs/Regulatory
strategies

Potential clinical
prospects

References

AMPK Activates mitochondrial
energy metabolism, inhibits
oxidative stress, promotes
oxidative phosphorylation

metformin Inflammation control in
osteomyelitis

(Yang et al., 2023; Jin et al.,
2020)

mTOR Regulates autophagy and
protein synthesis, influences
macrophage polarization

Rapamycin, Sr2+ Immune dysregulation and
repair in osteomyelitis

(Fan et al., 2022; Zhao et al.,
2023; Qiu et al., 2024)

HIF-1α Promotes glycolytic
metabolism, regulates

pro-inflammatory responses in
M1 macrophages

HIF-1α inhibitors (e.g., YC-1) Inflammatory response control
in osteomyelitis

(Van den Bossche et al., 2016;
Zhu et al., 2024a)

PGC-1α Enhances mitochondrial
biogenesis, promotes

anti-inflammatory properties
of M2 macrophages

PGC-1α activator (e.g.,
Ckip-1)

Repair in osteomyelitis (Feng et al., 2023a;
Huang et al., 2024b)

SDH Regulates mitochondrial
oxidative phosphorylation

SDH inhibitors (e.g., DMM) Inflammation control in
osteomyelitis

(Gobelli et al., 2023;
Fuhrmann et al., 2019;

Zhu et al., 2024b)

Mitophagy Clears damaged mitochondria,
reduces ROS production

Parkin activators, Nrf2
activators

Inflammation control in
osteomyelitis

(He et al., 2019; Dong et al.,
2021; Song et al., 2023)

ROS Promotes oxidative stress and
pro-inflammatory cytokine

expression

NAC Inflammation control in
osteomyelitis

(Zhang et al., 2024b;
Zhang et al., 2020a)

FAO Provides energy for M2
macrophage polarization

CPT1A activator Inflammation control and
reparative effects in

osteomyelitis

(Li et al., 2024a; Soliman et al.,
2020)

MMP Maintains mitochondrial
function, regulates

macrophage polarization,
supports oxidative
phosphorylation

JC-1-labeled drugs Macrophage function
regulation in osteomyelitis

(Chen et al., 2022b)

TCA Cycle Modulates mitochondrial
metabolic flux, influences
macrophage polarization

balance

TCA cycle-related metabolic
regulators

regulation of inflammation
and metabolic disorders in

osteomyelitis

Liu and Ho (2018)

between inflammatory cascades and metabolic homeostasis
imbalance. Studies have demonstrated that mitochondrial
metabolism directly influences inflammation and cartilage
degradation in OA by regulating macrophage polarization between
the M1 and M2 phenotypes (Qing et al., 2020). At the molecular
level, M1 macrophages exhibit a glycolysis-dominant metabolic
profile, characterized by reactive oxygen species (ROS) bursts
and succinate accumulation. This process leads to the secretion
of pro-inflammatory cytokines such as IL-1β and TNF-α, which
activate matrix metalloproteinases, ultimately driving cartilage
matrix degradation and chondrocyte apoptosis. Conversely, M2
macrophages primarily rely on FAO and OXPHOS to exert anti-
inflammatory and tissue-repair functions through the release
of IL-10 and TGF-β(131). In OA, mitochondrial metabolic
dysregulation exacerbates inflammation. Excessive ROS production

not only directly damages chondrocytes but also activates the
NLRP3 inflammasome, reinforcing M1 polarization and forming
a positive feedback loop of synovial inflammation (Zhang Z. et al.,
2023).Persistent inflammation-induced glycolytic reprogramming
andmitochondrial dysfunction contribute to immune dysregulation
and impaired bone regeneration. Notably, defective mitophagy
leads to the accumulation of damaged mitochondria, further
amplifying oxidative stress and metabolic imbalance (Li X. et al.,
2023). Targeting mitochondrial metabolism offers a promising
therapeutic strategy for OA. Restoring macrophage polarization
balance (inhibiting M1 and promoting M2 phenotypes) can
effectively enhance cartilage repair and mitigate joint inflammation.
Studies have demonstrated that songorine can induce metabolic
reprogramming by suppressing glycolysis and enhancing OXPHOS,
thereby shifting M1 macrophages towards an M2 phenotype,
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reducing cartilage damage, and alleviating synovitis (He et al.,
2024). PGAM5, a serine/threonine phosphatase located on
the mitochondrial membrane, has been found to promote M1
polarization via the AKT-mTOR/p38/ERK pathway while inhibiting
M2 polarization through the STAT6-PPARγ pathway; its genetic
knockout significantly improves OA pathology (Liu Y. et al.,
2024). Furthermore, MAGL inhibitors restore mitophagy levels,
facilitating the transition of M1 to M2 macrophages, effectively
reducing synovial inflammation scores and pain thresholds in
murine models (Gu et al., 2023). Additionally, SIRT3 deficiency
has been shown to accelerate M1 polarization and cartilage
degeneration, whereas its activation, along with honokiol
treatment, significantly delays OA progression (Zhang et al.,
2023c). Functionalized extracellular matrix (ECM) hydrogels
restore mitochondrial morphology and markedly enhance the
membrane potential of damaged mitochondria, thereby inhibiting
mtROS accumulation and improving mitochondrial function to
promote M2 polarization. This effect concurrently suppresses
inflammatory cytokine expression and reduces cartilage matrix
degradation (Chen Z. et al., 2024).Collectively, these studies
highlight the dual role of mitochondrial metabolism in OA: it serves
as both a key regulator of macrophage polarization balance and a
central mediator of the inflammation–repair dynamic transition.

Rheumatoid arthritis (RA), a chronic autoimmune disorder
characterized by persistent synovial inflammation and progressive
joint destruction, is also closely associated with imbalances
in macrophage polarization, where mitochondrial metabolism
plays a critical regulatory role (Zheng et al., 2024). As described
above, M1 macrophages exacerbate synovial inflammation and
bone erosion by secreting pro-inflammatory cytokines that
activate the NLRP3 inflammasome (Zhang Z. et al., 2023). In
contrast, M2 macrophages secrete anti-inflammatory factors that
facilitate inflammation resolution and tissue regeneration (Mills,
2015; Gobert and Wilson, 2012; Zhang and Ji, 2023).However,
RA synovial macrophages exhibit characteristic mitochondrial
dysfunction, including enhanced mitochondrial fission, excessive
ROS production, and impaired autophagy, which collectively
reinforce M1 polarization and sustain inflammatory cascades
(Clayton et al., 2021; Cutolo et al., 2022). Metabolic reprogramming
of macrophages has thus emerged as a promising therapeutic
approach for RA. Experimental studies indicate that a low-protein
diet can activate the NRF2/SIRT3/SOD2 signaling axis, effectively
suppressing M1 polarization in synovial macrophages, reducing
mitochondrial ROS levels, and alleviating synovial inflammation
and joint damage in RA models (Fu et al., 2024). Furthermore,
plant-derived bioactive compounds such as punicalagin have been
shown to regulate macrophage polarization by downregulating M1
markerswhile upregulatingM2markers, demonstrating potent anti-
arthritis effects in vivo (Ge et al., 2022).Traditional herbal extracts,
including Gentiana lutea ethyl acetate extract and Ermiao San,
have been reported to suppress NLRP3 inflammasome activation,
thereby inhibitingM1 polarization and improving the inflammatory
microenvironment in RA synovium (Liu et al., 2023; Zhang et al.,
2024d).Notably, peroxisome proliferator-activated receptor gamma
(PPARG) has been implicated in enhancing mitophagy-mediated
ROS clearance, thus restoring macrophage polarization balance and
representing a novel therapeutic target for RA (Geng et al., 2024).

Given the shared mitochondrial metabolic mechanisms
underlying OA and RA, future therapeutic strategies could focus on
the following directions: 1)Developing small-molecule compounds
that target glycolysis/OXPHOS balance. 2)Utilizing metabolic
intermediates to regulate TCA cycle activity and counteract M1/M2
polarization imbalance. 3)Constructing biomimetic nanocarriers
or functionalized hydrogels to achieve targeted delivery of ROS
scavengers and SIRT1/3 activators, thereby restoring mitochondrial
function in infected bone tissue macrophages. 4)Combining
autophagy activators with NLRP3 inflammasome inhibitors to
collaboratively disrupt the inflammation–metabolism vicious cycle.
Through these precise regulatory strategies, it may be possible to
achieve controlled intervention ofmacrophage polarization, thereby
optimizing therapeutic outcomes in inflammatory joint diseases.
Despite their promise, these strategies face several critical challenges
and limitations. First, developing small‐molecule modulators
of glycolysis/OXPHOS balance (e.g., songorine analogs) must
overcome poor delivery efficiency and targeting within bone tissue:
its dense structure and unique microenvironment can impede drug
penetration, while complex in vivo distribution, metabolism, and
excretion may compromise efficacy (Zhang M. et al., 2024). Second,
using metabolic intermediates (e.g., citrate, carnitine) to regulate
the TCA cycle risks broad perturbation of cellular metabolism
and may itself induce metabolic imbalance due to the complexity
of in vivo homeostasis (Wen et al., 2025). Third, biomimetic
nanocarriers and functionalized hydrogels must demonstrate
biocompatibility, stability, and the ability to selectively target
macrophages within infected bone.Moreover, combining autophagy
activators (e.g., icariin) with NLRP3 inflammasome inhibitors (e.g.,
PPARγ agonists) might trigger unintended cellular responses, as
their interactions and effects on non–macrophage cell types remain
unclear and could lead to off‐target toxicity (Wen et al., 2025).
The heterogeneity of bone‐resident macrophage subsets—each
with distinct functions and metabolic profiles at different disease
stages—may also render a given intervention effective for some
subsets but ineffective or harmful for others (Zhang M. et al.,
2024). Finally, the complex bonemicroenvironment, which includes
osteoblasts, osteoclasts, chondrocytes, and multiple intercellular
signaling networks, can modulate macrophage behavior and
influence the outcome of metabolic interventions (Zhang M. et al.,
2024). In summary, although grounded in sound scientific rationale
and offering considerable potential, these approaches require further
investigation and optimization to ensure their safety and efficacy in
treating orthopedic diseases.

5.2 Disorders of bone metabolic
imbalance: osteoporosis and intervertebral
disc degeneration

Osteoporosis (OP) is a systemic bone metabolic disorder
characterized by decreased bonemineral density and impaired bone
microstructure, leading to increased pathological bone fragility.
This condition is closely associated with immune dysregulation,
particularly the imbalance of macrophage polarization, which plays
a pivotal role in its pathogenesis (Muñoz et al., 2020). Studies have
demonstrated that M1 macrophages exacerbate bone resorption
through two primary mechanisms (Lew and Waldvogel, 2004):

Frontiers in Cell and Developmental Biology 13 frontiersin.org

https://doi.org/10.3389/fcell.2025.1604320
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org


Li et al. 10.3389/fcell.2025.1604320

secreting pro-inflammatory cytokines such as TNF-α and IL-6
and (Kavanagh et al., 2018) differentiating into mature osteoclasts,
thereby directly enhancing osteoclastic activity. Conversely, M2
macrophages promote osteogenesis by releasing osteogenic factors
such as bone morphogenetic protein-2 (BMP-2) and insulin-
like growth factor-1 (IGF-1), which facilitate the differentiation
of mesenchymal stem cells (MSCs) into osteoblasts, ultimately
enhancing bone mineralization (Hu et al., 2023; Muñoz et al., 2020).
The central regulatory mechanism underlying this process involves
mitochondrial metabolism, which finely modulates macrophage
polarization and function. As previously described, excessive pro-
inflammatory cytokines secreted by M1 macrophages significantly
enhance osteoclast activity via RANKL signaling, accelerating bone
loss (Liu and Ho, 2018; Van den Bossche et al., 2016; Vannella
and Wynn, 2017). This metabolic–inflammatory cascade forms
a vicious cycle: excess ROS not only directly damages bone cells
but also amplifies inflammatory signaling through the NF-κB
pathway. In contrast, M2 macrophages secrete anti-inflammatory
mediators that promote osteogenic differentiation and bone matrix
mineralization (Gobert and Wilson, 2012). OP patients typically
exhibit an imbalance in theM1/M2macrophage ratio, characterized
by an abnormal increase in M1 macrophages and a reduction
in M2 macrophages, accompanied by impaired mitophagy and
the accumulation of damaged mitochondria. This metabolic
disruption is intertwined with alterations in the bone marrow
microenvironment, where an increased proportion of senescent
bone marrow mesenchymal stem cells (BMSCs) and macrophages
leads to a dominance of the pro-inflammatory M1 phenotype
and a deficiency in the reparative M2 phenotype, establishing
a state of chronic low-grade inflammation. Recent studies
have highlighted potential therapeutic strategies targeting these
mechanisms. Icariin (ICA) has been shown to reverse osteogenic
dysfunction in senescent BMSCs by activating the autophagy
pathway, significantly mitigating bone loss in osteoporotic mouse
models (Bai et al., 2023). Astragaloside IV (AS-IV) exerts dual
effects by inhibiting M1 polarization-associated mitochondrial
dysfunction while simultaneously promoting M2 polarization
and delaying macrophage senescence, thereby enhancing the
osteogenic differentiation potential of BMSCs (Li M. et al., 2024).
Additionally, key metabolic regulators offer promising therapeutic
perspectives for OP treatment:1)Carnitine deficiency exacerbates
oxidative stress and promotes excessive osteoclast activation,
while its supplementation effectively suppresses M1 polarization
and osteoclast differentiation (Yang T. et al., 2024).2) Citrate,
by inhibiting key glycolytic enzymes, reprograms macrophage
metabolism toward an M2-dominant OXPHOS phenotype, thereby
maintaining bone metabolic homeostasis (Wu X. et al., 2024).
Collectively, these findings suggest that targeting mitochondrial
metabolism-driven macrophage polarization reprogramming may
represent an innovative strategy to counteract OP pathogenesis.

Intervertebral disc degeneration (IDD) is a degenerative
spinal disorder characterized by structural deterioration of the
intervertebral disc, loss of function, and neuropathic pain. Its
pathological progression is closely linked to chronic inflammation
andmacrophage polarization imbalance (Li et al., 2022; Koroth et al.,
2023). Studies indicate that macrophage polarization exhibits
a dual role in the IDD microenvironment: M1 macrophages
aggravate ECM degradation and inhibit nucleus pulposus (NP) cell

proliferation through the secretion of pro-inflammatory cytokines
such as TNF-α and IL-1β, whereas M2 macrophages mitigate disc
degeneration by releasing anti-inflammatory cytokines and growth
factors (Li et al., 2022; Zhang H. et al., 2020). Recent research
has uncovered mitochondrial metabolic reprogramming as a key
mechanism linking macrophage polarization to IDD progression,
influencing disease outcomes bymodulating the energy metabolism
networks of both intervertebral disc cells (NP and annulus fibrosus
cells) and immune cells (Viola et al., 2019; Qing et al., 2020;
Chen et al., 2024c). On amolecular level, mitochondrial dysfunction
within the degenerative IDD microenvironment establishes
a pathological feedback loop that perpetuates inflammation:
1)Mitochondrial dysfunction in intervertebral disc cells, particularly
NP and annulus fibrosus cells, along with macrophages, directly
affects inflammation, tissue repair, and the progression of disc
degeneration (Koroth et al., 2023). 2)In degenerated NP cells,
abnormally high expression of hypoxia-inducible factor-1α (HIF-
1α) exacerbates tissue damage by driving pro-inflammatory
signaling, whereas exosomes derived from BMSCs can restore
NP homeostasis by downregulating HIF-1α and inflammatory
cytokines (Su et al., 2024).3)During polarization, M1 macrophages
exhibit a compensatory increase in OXPHOS activity, generating
excessive ATP and ROS to sustain their pro-inflammatory
phenotype. This metabolic feature provides a theoretical basis for
utilizing nanoparticles to selectively eliminate ROS and block M1
polarization (Li et al., 2022; Wang DK. et al., 2022; Yang W. et al.,
2024). Therapeutic strategies targeting these mechanisms have
yielded promising results. The limonoid compound Nimbolide
has been found to activate the SIRT1 signaling axis, thereby
modulating cholesterol metabolism and inflammatory pathways in
a dual manner—suppressing M1 polarization while promoting M2
polarization, ultimately fostering a regenerative microenvironment
conducive to ECM synthesis (Teng et al., 2023). Additionally,
melatonin has been shown to inhibit M1 polarization and alleviate
disc degeneration by upregulating SIRT1 expression andmodulating
the SIRT1/Notch pathway (Dou et al., 2023). These findings suggest
that targeting the mitochondrial metabolism-immune regulation
network may offer a novel therapeutic approach for IDD.

Given the shared mechanisms underlying OP and IDD, future
research in osteomyelitis treatment should focus on the following
aspects:1)deciphering the intricate interplay between macrophage
polarization and mitochondrial metabolism; 2)developing novel
therapies targeting metabolic-immune interaction nodes, such
as SIRT agonists combined with ROS scavengers; 3)optimizing
biomimetic delivery systems to enable precise interventions at the
lesion site. These strategies hold promise for innovative approaches
to counteract the progression of bone metabolic disorders.

6 Discussion and perspectives

6.1 Mechanistic insights and technological
integration: from static descriptions to
dynamic modulation

The hypoxic characteristics of the osteomyelitis pathological
microenvironment, along with biofilm formation, serve as
key drivers of metabolic imbalance, profoundly impacting
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mitochondrialmetabolic homeostasis and exacerbatingmacrophage
polarization imbalance. Specifically, local hypoxia stabilizes
hypoxia-inducible factor-1α (HIF-1α), shifting macrophage
metabolism toward glycolysis while simultaneously impairing
OXPHOS through mitochondrial protein lactylation, leading to the
accumulation of pro-inflammatory lactate (Chen W. et al., 2022).
Moreover, S.aureus lipoproteins induce a glycolytic shift andmtROS
burst in human monocyte-derived macrophages, characterized
by reduced oxygen consumption, lactate accumulation, and a
decrease in pH. This metabolic reprogramming disrupts cellular
homeostasis in bone, cartilage, and other infected tissues, and
mediates lipoprotein‐driven bone erosion (Nguyen et al., 2023).In
infectious or inflammatory microenvironments, macrophages
can adopt a “metabolic hybrid” phenotype characterized by
concurrent glycolysis andOXPHOS.This hybrid statemay be driven
by local metabolite gradients—such as the succinate/itaconate
ratio—suggesting that these metabolites dynamically regulate
macrophage polarization. Recent advances have transformed our
“static” view of macrophage mitochondrial fission–fusion into a
dynamic, high-resolution understanding. First, in humanized bone
samples, hypoxia-induced lactate accumulation in osteomyelitis
lesions was shown to regulate inflammatory gene expression
via histone H3K18 lactylation (Zhang et al., 2019). Second,
spatial metabolomics now enables high-resolution mapping
of metabolite distributions in tumors and bone marrow,
linking succinate/itaconate gradients to macrophage polarization
zones (Kriegsmann et al., 2015). Third, metabolic imaging
techniques—such as NADH/FAD fluorescence lifetime imaging
(FLIM)—can monitor the ratio of reduced to oxidized cofactors in
vivo or in tissue sections, allowing real-time discrimination of M1
versusM2macrophage phenotypes (Blacker et al., 2014).Integrating
these technologies not only reveals the spatiotemporal dynamics
of mitochondrial metabolic reprogramming but also offers
new avenues for precisely targeting macrophage function and
developing tailored therapies. Future research should focus on
metabolic-microenvironment interventions that dynamically
reprogram macrophage polarization, disrupt the interplay between
pathological features and metabolic dysregulation, and identify
novel immunometabolic targets for osteomyelitis treatment.

6.2 Targeted therapeutic strategies: from
single-pathway interventions to
metabolic-immune synergistic modulation

Although therapeutic strategies targeting mitochondrial
metabolism have shown promise in preclinical models, their clinical
translation remains challenging due to insufficient specificity
and pathogen immune evasion. For instance, while metformin
promotes M2 polarization via the AMPK/mTOR pathway, systemic
administration may disrupt normal immune surveillance, further
complicating pathogen clearance in chronic osteomyelitis. In
contrast, nanocarrier-based local drug delivery offers a novel
direction for osteomyelitis treatment by achieving a “metabolic
regulation–antimicrobial–osteogenic” synergistic effect through
sustained release and immune microenvironment remodeling.
Recent studies have introduced the concept of “metabolic
immune checkpoints,” highlighting how pathogens hijack the

host succinate-HIF-1α axis to suppress mitophagy and maintain
a pro-inflammatory milieu. During persistent infections, pathogens
may also evade immune attack by inducing PD-L1 expression.
This raises intriguing questions about whether the combined use
of SDH inhibitors and PD-1 blockers could enhance antibiotic
efficacy in osteomyelitis treatment—an avenue that warrants
further exploration. Additionally, spatiotemporally controlled drug
delivery systems, such as ROS/pH dual-responsive hydrogels, may
offer precise targeting while overcoming the immune tolerance
barriers associated with chronic infections. In the osteomyelitis
microenvironment, macrophage mitochondrial dynamics are
regulated not only by intrinsic metabolic cues but also by signals
from other cell types. During early infection, neutrophil‐derived
extracellular traps (NETs) and elastase trigger mtROS bursts that
activate the NLRP3 inflammasome in macrophages, reinforcing M1
polarization (Singh et al., 2023). Simultaneously, IFN-γ secreted by
Th1cells promotesmacrophageOXPHOSandmtROSproduction to
sustain bactericidal M1 functions, whereas IL-4 and IL-10 fromTh2
and regulatory T cells activate the STAT6/SIRT1 pathway to enhance
mitochondrial biogenesis and drive an M2 reparative phenotype
(Viola et al., 2019; Tall andWesterterp, 2019). Additionally, RANKL
released by osteoblasts and IL-6 and TGF-β from bone marrow
mesenchymal stem cells modulate macrophage mitochondrial
metabolism and polarization, thereby influencing the balance
between inflammation and repair. The integration of metabolic
interventions with cell-based therapies also presents a promising
strategy to reprogram the osteomyelitis microenvironment and
enhance therapeutic outcomes. Further investigations into these
metabolic-immune co-regulation strategies may pave the way for
innovative and more effective osteomyelitis treatments.

6.3 Clinical translation and biomarkers:
from basic research to precision medicine

The successful clinical translation of metabolic regulation
strategies for osteomyelitis hinges on addressing two key
challenges: 1)Patient Stratification Systems: Mitochondrial
metabolic biomarkers—such as plasma succinate levels and
mitochondrial DNA copy number—hold potential as indicators
for osteomyelitis classification and prognosis. For instance, chronic
inflammation patients often exhibit significantly elevated serum
succinate levels compared to acute-phase patients, with a positive
correlation to the M1/M2 macrophage ratio. New evidence
indicates that mitochondrial dysfunction leaves measurable
signatures in biological fluids, which may aid in the diagnosis
and prognosis of osteomyelitis. Circulating cell-free mitochondrial
DNA (ccf-mtDNA)—a damage-associated molecular pattern
released from injured cells—is elevated in inflammatory bone
diseases; although not yet reported in osteomyelitis patients,
plasma ccf-mtDNA is similarly increased in osteoarthritis
and correlates with disease severity (Wu YL. et al., 2024). In
osteomyelitis patient samples, oxidative stress markers such as
malondialdehyde (MDA) and 8-hydroxy-2′-deoxyguanosine (8-
OHdG) are significantly elevated, reflecting excessive mtROS
production and DNA damage (Özkan et al., 2021). Tricarboxylic
acid (TCA) cycle metabolites—particularly succinate and two-
oxoglutarate—show altered serum levels in mouse models of
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osteomyelitis and associate with bacterial burden (Isogai et al.,
2020). Together, these biomarkers—ccf-mtDNA, ROS adducts,
and mitochondrial metabolites—offer a non-invasive window
into mitochondrial health and hold promise as diagnostic or
prognostic indicators in osteomyelitis. Notably, acute and chronic
osteomyelitis patients display distinct macrophage polarization
states and metabolic profiles, posing substantial challenges for
both fundamental research and clinical treatment. Therefore, it
is crucial to establish individualized research strategies tailored
to different osteomyelitis stages. 2)Model Development: Given
the complexity of bone metabolism, long study durations,
and technical difficulties, modeling osteomyelitis remains a
significant challenge. While existing animal models—such as
the murine tibial drill-hole infection model—effectively simulate
acute infections, they fail to fully recapitulate the metabolic
remodeling characteristics of chronic osteomyelitis. 3D Emerging
technologies like 3D bioprinting offer promising applications
in preclinical research by enabling functional tissue models
for drug screening and disease modeling (Ma et al., 2018).
Although several studies have utilized 3D-printed models
to construct bone infection environments, they often lack
in-depth representation of the immune microenvironment.
Organoids, engineered using tissue engineering principles to
mimic complex biological functions in vitro, could serve as an
advanced platform for studying osteomyelitis pathophysiology
(Chen et al., 2022d). Combining bone organoid technology with
3D-printed infected bone models may allow for a more precise
simulation of the intricate pathological microenvironment of
osteomyelitis. Moreover, next-generation multi-omics and imaging
technologies offer unprecedented spatial and cellular resolution
for dissecting macrophage function and mitochondrial dynamics
in the osteomyelitis microenvironment. Single-cell multi-omics
can simultaneously profile the transcriptome, epigenome, and
mitochondrial genotype at single-cell resolution, revealing how
metabolic gene expression and mtDNA variations in distinct
macrophage subsets influence their polarization (Lareau et al.,
2023). Spatial transcriptomics preserves tissue architecture,
enabling the localization of macrophage clusters expressing
mitochondrial biogenesis and OXPHOS genes within bone lesions
and elucidating their spatial interactions with osteoblasts and
stromal cells (Feng Y. et al., 2023). High-resolution metabolic
imaging—such as FLIM of lactate/NADH autofluorescence and
two-photon MitoSOX microscopy—can monitor mitochondrial
fusion/fission events and ROS dynamics in real time in vivo or
in tissue sections, providing direct visual evidence of energy
metabolism shifts during macrophage polarization (Hu et al.,
2025). The integrated application of these technologies will deepen
our understanding of the immunometabolic networks governing
macrophage behavior in osteomyelitis and inform the development
of precision interventions. Notably, several metabolism‐modulating
agents that are already clinically approved or in trials directly target
mitochondrial pathways and hold promise for osteomyelitis therapy.
Metformin, an AMPK activator and mitochondrial complex I
inhibitor widely used in type 2 diabetes, also improves arthritis
by activating AMPK and suppressing inflammatory cytokines
(Kim et al., 2022; Chen et al., 2020). In sepsis models and
clinical observations, metformin reduces macrophage TNF-α
and IL-6 secretion and alleviates immunosuppression‐associated

dysfunction, highlighting its potential in acute inflammation
regulation (Wang et al., 2024c; Ismail Hassan et al., 2020). Dimethyl
fumarate (Tecfidera) activates Nrf2-dependent antioxidant
programs, promoting mitochondrial biogenesis and inhibiting
pro‐inflammatory cytokine release, and is under investigation for
inflammatory bone diseases (Gao et al., 2022; Hayashi et al., 2017).
The mitochondria‐targeted antioxidant MitoQ was well tolerated in
a Phase II trial in chronic hepatitis C patients, significantly lowering
ALT levels and reducing necroinflammatory liver damage, likely
via mtROS scavenging (Murray et al., 2022; Gane et al., 2010).
Additionally, the peptide elamipretide (SS-31), in a randomized
crossover Phase II trial for primary mitochondrial myopathy,
improved 6-min walk distance after 5 days of dosing without
serious adverse events, suggesting enhancedmitochondrial function
and cellular bioenergetics (Karaa et al., 2023; Karaa et al., 2018).
Integrating these mitochondrial modulators into osteomyelitis
regimens could recalibrate macrophage energy metabolism,
optimize the immune–repair balance, and ultimately improve
clinical outcomes. Moving forward, fostering interdisciplinary
collaborations among metabolic biology, bioengineering, and
clinical medicine will be essential for establishing a comprehensive
research paradigm—spanning mechanistic investigation, target
identification, and clinical validation—to ultimately achieve
personalized metabolic-immune therapy for osteomyelitis.

7 Conclusion

In this systematic review, we have comprehensively explored
the molecular mechanisms by which mitochondrial metabolism
regulates macrophage polarization and, for the first time,
systematically elucidated its critical role in the pathogenesis and
progression of osteomyelitis. Additionally, we have examined the
broader implications ofmitochondrial metabolic regulation in other
orthopedic diseases and their underlying mechanisms.

Our findings highlight the significant potential ofmitochondrial
metabolism in modulating inflammation and promoting bone
healing in osteomyelitis, providing a strong theoretical foundation
for the development of novel therapeutic strategies targeting
mitochondrial metabolism. Notably, targeting mitochondrial
metabolism to modulate macrophage polarization may represent
a promising avenue for osteomyelitis treatment. This discovery not
only deepens our understanding of osteomyelitis pathogenesis but
also offers valuable insights for the future development of precision
and personalized therapies for this challenging condition.
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Glossary

AMP adenosine monophosphate

AMPK AMP-activated protein kinase

Arg1 arginase-1

ATP adenosine triphosphate

BMP-2 bone morphogenetic protein-2

BMSCs bone marrow mesenchymal stem cells

cAMP cyclic adenosine monophosphate

cGAS cyclic GMP-AMP synthase

cGMP cyclic guanosine monophosphate

CHI3L1 chitinase 3-like protein 1

Cmpk2 cytidine monophosphate kinase 2

CPT1A carnitine palmitoyltransferase1A

CTSK cathepsin K

DAMPs damage-associated molecular patterns

DRP1 dynamin-related protein 1

ECM extracellular matrix

ERK extracellular regulated protein kinases

FAO fatty acid oxidation

FIS1 fission protein 1

GLUT1 glucose transporter 1

GPX4 glutathione peroxidase 4

GTP guanosine triphosphate

HK2 hexokinase 2

HIF-1α hypoxia-inducible factor-1α

HO-1 heme oxygenase 1

IDD intervertebral disc degeneration

IFN-γ interferon gamma

IGF-1 insulin-like growth factor-1

IL-1β interleukin-1beta

IL-4 interleukin-4

IL-6 interleukin-6

IL-10 interleukin-10

iNOS inducible nitric oxide synthase

JAK Janus kinase

LDHA lactate dehydrogenas

LMWF low-molecular-weight fucoidan

LPS lipopolysaccharide

MAP3K1 mitogen-activated protein kinase kinase kinase 1

MFN1 mitofusin 1

MFN2 mitofusin 2

MIP-1α macrophage inflammatory protein-1α

MMP mitochondrial membrane potential

MRSA methicillin-resistant Staphylococcus aureus

mTOR mammalian target of rapamycin

mTORC1 mammalian target of rapamycin complex 1

mtROS mitochondrial reactive oxygen species

NAC N-acetyl-L-cysteine

NF-κB nuclear factor kappa-B

NLRP3 NOD-like receptor family pyrin domain containing 3

NOD Nucleotide-binding oligomerization domain

NP nucleus pulposus

Nrf2 nuclear factor erythroid 2-related factor 2

NO nitric oxide

OA osteoarthritis

OP osteoporosis

OPG osteoprotegerin

OXPHOS oxidative phosphorylation

PDH pyruvate dehydrogenase

PDK1 pyruvate dehydrogenase kinase 1

PD-1/PD-L1 programmed death 1/programmed cell death ligand 1

PGC-1α peroxisome proliferator-activated receptor gamma coactivator-

1 alpha

PINK1 PTEN induced putative kinase 1

PKG protein kinase G

PPARγ peroxisome proliferator-activated receptor gamma

PTEN phosphatase and tensin homolog deleted on chromosome ten

PTO post-traumatic osteomyelitis

RA rheumatoid arthritis

ROS reactive oxygen species

S.aureus Staphylococcus aureus

SCVs small colony variants

SDH succinate dehydrogenase

SIRT3 sirtuin-3

SOD2 superoxide dismutase 2

STAT signal transducer and activator of transcription

STING stimulator of interferon genes

TCA tricarboxylic acid

TNF-α tumour necrosis factor-alpha

TRAP tartrate-resistant acid phosphatase
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