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Drug-induced brain injury (DIBI) results from toxicity, interactions or misuse and
is increasingly linked to gut-microbiota dysbiosis operating via the gut—brain
axis. Disturbed microbial balance drives three core mechanisms—oxidative
stress, neuroinflammation and metabolic dysfunction—leading to blood-brain
barrier leakage, neuronal loss and cognitive impairment; antibiotics,
antineoplastics and psychoactive drugs further promote bacterial translocation
and systemic inflammation. Microbial metabolites and neurotransmitters also
mediate post-injury anxiety and depression. Restoring microbial equilibrium with
probiotics, prebiotics or microbiota transplantation attenuates these pathways
and offers a promising therapeutic strategy for DIBI.
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1 Introduction

Drug-induced diseases (DID) are abnormal physiological processes that arise during
disease prevention, diagnosis, and treatment due to drug use, drug interactions, and
the effects of the drugs themselves (Garnier et al., 2024). These medications can cause
structural, metabolic, and functional changes, manifesting as abnormal signs, symptoms,
and behaviors. It can result from various factors, including the drug itself, the patient’s
physical condition, and improper administration by medical personnel. If not promptly
identified, pharmacologically induced disorders can lead to permanent injury, including
death or permanent disability (Drug-Induced Liver, 2019). It also can affect multiple organ
systems, including the liver, kidneys, heart, lungs, and brain (Aggrawal, 2015). Further in-
depth research is essential to enhance our understanding and treatment of these conditions.

The severity of drug-induced brain injury is influenced by factors such as the type of
drug, dosage, duration of use, and individual patient differences (Baucom et al., 2024).
Commonly misused drugs, including inappropriate use of antibiotics (e.g., cephalosporins,
penicillins, aminoglycosides, and macrolides) (Ritter et al., 2024), long-term use of
antiepileptic medications, excessive consumption of sedative-hypnotics, and the use of
antineoplastic and antipsychotic drugs, can adversely affect the central nervous system
and contribute to drug-induced brain injury (Michaelis et al., 2024). This damage can
be persistent and irreversible, with the harm to the central nervous system potentially
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worsening even after discontinuation of the drug. In severe cases,
this can lead to brain failure, disability, or death (Jain, 2021).

Recent studies have indicated a correlation between gut
microbiota and drug-induced brain injury (Loh et al., 2024). The gut
microbiota, primarily residing in the large intestine, constitutes the
predominant microbial community in the human body and plays
a crucial role in maintaining health (N-Acetylcysteine Modulates,
2016). It is involved in digestion, absorption, immune regulation,
and metabolic processes and may also influence brain function
and health through the gut-brain axis (PMC, 2017). An imbalance
in the gut microbiota can alter the metabolism and excretion of
drugs, increasing toxicity to the central nervous system and the risk
of drug-induced brain injury (Mostafavi Abdolmaleky and Zhou,
2024). Therefore, maintaining the balance and stability of the gut
microbiota is vital for preventing drug-induced brain injury and
preserving overall health.

This paper aims to explore the interplay between drug-induced
brain injury and gut microbiota, which may help uncover the
pathogenesis of drug-induced brain injury. This research also holds
significant potential for advancing medical progress, enhancing
drug safety, and optimizing therapeutic efficacy.

2 The impact of intestinal dysbiosis on
brain injury

The gut microbiota interacts with the central nervous system
through the gut-brain axis, a bidirectional communication
network involving neural, endocrine, and immune pathways
(Schaible et al., 2025). Intestinal dysbiosis, defined as abnormalities
in the composition and function of the gut microbial community
(da Silva et al., 2025), is characterized by a reduction in beneficial
bacteria and an increase in harmful bacteria. This imbalance
disrupts the gut’s homeostasis, leading to impaired barrier function
and increased intestinal permeability. The resulting systemic
inflammation and metabolic dysfunction have been associated with
conditions like inflammatory bowel diseases, obesity, diabetes, and
autoimmune disorders (Psychiatry, 2014).

Recent studies have uncovered links between gut dysbiosis and
brain injuries, suggesting that targeting intestinal microecology
may offer novel therapeutic avenues for neurological disorders. The
specific mechanism is shown in Figure 1.

2.1 Inflammatory pathways

Dysbiosis triggers systemic inflammation through several
mechanisms. Beneficial gut bacteria produce anti-inflammatory
metabolites such as short-chain fatty acids (Intestinal Microbes,
2014), which maintain intestinal barrier integrity and modulate
immune responses. Although the activation of TLR-4 on the
intestinal epithelium by lipopolysaccharides from gut commensals
has been considered part of homeostatic processes for decades,
pathogenic bacteria can activate toll-like receptors (TLRs) on
intestinal epithelial cells and immune cells, initiating pro-
inflammatory signaling cascades (Xia et al, 2021). This leads
to increased production of pro-inflammatory cytokines like
TNF-a, IL-6, and IL-13, which can cross the blood-brain
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barrier (BBB) and exacerbate neuroinflammation (TNF-q,
2004). Neuroinflammation is a key contributor to various
brain injuries, including traumatic brain injury, stroke, and

neurodegenerative diseases (Liu et al., 2023).

2.2 Neuroendocrine regulation

The gut microbiota interacts with the central nervous system
through the gut-brain axis, a bidirectional communication
network involving neural, endocrine, and immune pathways
(Schaible et 2025). influence BBB
permeability by modulating the expression of tight junction
proteins such as claudin and occludin (Ma et al, 2022). They

al., Gut bacteria can

also produce and metabolize neurotransmitters like serotonin,
dopamine, and gamma-aminobutyric acid (GABA), which affect
cognitive function, mood, and behavior (Borrego-Ruiz and
Borrego, 2025). Dysbiosis alters this neuroendocrine regulation,
potentially leading to cognitive dysfunction, mood disorders,
and delayed recovery from brain injury (Ashique et al., 2024).
Studies have shown that probiotic intake may help maintain
the integrity of the gut and BBB, thereby improving these
neurodegenerative diseases (Neuroimmunology, 2003).

2.3 Behavioral and psychological effects

A balanced gut microbiota is essential for maintaining
mental health (Appleton, 2018). Brain injury can disrupt the gut
microbiota composition, leading to an overgrowth of harmful
bacteria and a reduction in beneficial species. This microbial
imbalance may contribute to psychological issues such as anxiety
and depression, which are common complications of brain injury
(Guha et al, 2023). These psychological factors can, in turn,
affect patient compliance with rehabilitation programs and overall
recovery outcomes (Zhang et al., 2025).

The interaction between gut microbiota dysbiosis and brain
injury represents a complex and dynamic relationship that warrants
further investigation. Future research should focus on elucidating
the specific microbial species and metabolic pathways involved
in these mechanisms. Additionally, clinical studies are needed
to evaluate the efficacy of interventions targeting intestinal
microecology, such as probiotics, prebiotics, fecal microbiota
transplantation, and dietary modifications, in promoting brain
injury recovery. Understanding these aspects may lead to the
development of innovative therapeutic strategies for neurological
injuries, offering new hope for patients suffering from these
conditions.

3 Mechanisms underlying
drug-induced brain injury and gut
microbiota
3.1 Oxidative stress

Drug metabolism generates free radicals, including reactive

oxygen species (ROS) such as superoxide anions and hydroxyl
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The Impact of Intestinal Dysbiosis on Brain Injury. Beneficial microbes strengthen tight-junction proteins and secrete short-chain fatty acids that
protect the blood-brain barrier, whereas harmful microbes and their cytokines (TNF-q, IL-6, IL-1p) disrupt these junctions, fueling gut and brain

radicals, which cause oxidative damage to cells. Cell membranes,
rich in polyunsaturated fatty acids, undergo lipid peroxidation when
exposed to free radicals. This disrupts membrane function and
impairs transport mechanisms. Free radicals also damage DNA,
causing strand breaks and base modifications, which can lead to cell
death if not repaired (Jakubczyk et al., 2020).

In the nervous system, nerves are particularly vulnerable
to oxidative stress due to their high metabolic activity and
limited regenerative capacity (Michaelis et al., 2024). Accumulated
free radicals can overwhelm neuronal antioxidant defenses,
causing dysfunction and death (Chandimali et al, 2025).
Chemotherapy drugs, for example, induce oxidative stress that
directly harms nerve cells, contributing to neuropathies and
cognitive impairments (Cauli, 2021).

Drugs can disrupt the gut microbiota balance, which alters
microbial metabolite production, reducing beneficial short-
chain fatty acids and increasing harmful substances (Garg and
Mohajeri, 2024). The resulting impaired gut barrier function allows
bacterial endotoxins into the bloodstream, activating immune cells
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and triggering inflammation, which further elevates ROS levels
(Microbiome, 2009). This inflammatory response can become
chronic, disrupting synaptic transmission and inducing neuronal
apoptosis, ultimately contributing to brain injury (Dash et al., 2025).

3.2 Metabolic disorder

Drugs have the potential to interfere with normal metabolic
processes in the body. This interference can lead to abnormalities
in various metabolites, including sugars, fats, and proteins (Bio-
Regulation, 2017). Experimental studies have demonstrated that
drug-induced gut microbiota dysbiosis can significantly alter the
host’s metabolite profile, thereby affecting central nervous system
(CNS) function. For instance, antibiotics (such as ciprofloxacin) and
immunosuppressants (such as tacrolimus) increase the abundance
of Clostridium spp. in the gut, leading to a 2.8-fold elevation in
serum concentrations of the neurotoxic metabolite indoxyl sulfate
(IS). IS can activate the microglial TLR4/ROS pathway, resulting in
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hippocampal neuronal apoptosis and a 35% decrease in cognitive
function scores in animal models (Kwart et al., 2019a). On the
other hand, antipsychotic drugs (such as olanzapine) cause a 40%
reduction in the phylum Bacteroidetes, leading to a 60% decrease
in the levels of neuroprotective short-chain fatty acids (SCFAs),
particularly butyrate. Supplementation with butyrate effectively
restores mitochondrial complex I activity and improves energy
metabolism in the prefrontal cortex (as indicated by a 22% increase
in glucose uptake on PET-CT) (Lu et al,, 2021).

However, there remains a significant gap in direct causal
evidence for DIBI in humans: prospective cohort studies confirming
the causal chain between microbiota metabolite changes and neural
injury are currently lacking, with existing evidence primarily derived
from animal models or correlational clinical studies (e.g., a positive
correlation between serum IS levels and white matter lesion volume
in stroke patients [r = 0.68]) (Wang et al, 2022). Based on
this, we propose a rate-limiting hypothesis—when CNS energy
supply is compromised (e.g., due to mitochondrial dysfunction)
and neurotoxic metabolites continue to accumulate, this may
synergistically trigger neurological dysfunction (Figure 2). This
hypothesis has received indirect support from preclinical models
of Alzheimer’s disease (where butyrate deficiency increases AP
deposition by 50% and IS infusion leads to a 30% decrease in
synaptic density) (Kwart et al.,, 2019b), but further experimental
validation is still needed in the context of DIBI.

Based on this rationale, it is further hypothesized that
drug-induced metabolic disturbances, which can exacerbate the
aforementioned shifts in metabolite profiles, may increase the
risk of DIBI by enhancing neural vulnerability. This heightened
vulnerability could render neurons more susceptible to the toxic
effects of drugs or their metabolites, thereby contributing to the
development or progression of brain injury. However, it is important
to emphasize that this hypothesis requires further validation
through rigorous experimental studies and clinical investigations
to fully elucidate the underlying mechanisms and to develop
effective therapeutic strategies (Microbiota in Neurological, 2015).
Understanding the complex relationship between drug-induced
metabolic disturbances and brain injury is essential for developing
strategies to prevent and mitigate these adverse effects.

3.3 Disruption of the blood-brain barrier

The BBB serves as a critical protective interface that prevents the
entry of exogenous substances and endogenous toxins into the brain
parenchyma (Alaqgel et al., 2025). However, certain medications,
such as antiviral and antituberculosis drugs, have been shown to
compromise BBB integrity by penetrating this protective barrier and
impairing its function (Hahn et al., 2017).

The gut microbiota plays a regulatory role in maintaining
BBB integrity (Ma et al, 2022). When drugs disrupt the gut
microbiota, it can lead to intestinal epithelium imbalance. This
disruption facilitates the release of toxic metabolites and pro-
inflammatory cytokines, which subsequently activate endothelial
cells and damage the BBB (IL-1[3, 2016).

Additionally, some drugs can interfere with the metabolic
process of tryptophan, an amino acid with important neurological
functions (Luo et al, 2024). This interference increases BBB

Frontiers in Cell and Developmental Biology

10.3389/fcell.2025.1604539

permeability, allowing the translocation of gut microbiota,
inflammatory factors, and neuroactive metabolites into the brain.
The resulting disruption of immune homeostasis creates a toxic
inflammatory environment that can alter brain morphology and
contribute to various neurological diseases (Targeting the blood-
brain, 2016; dysbiosis).

3.4 Autonomic nervous system

The autonomic nervous system regulates visceral organs,
smooth muscles, and cardiac muscles to maintain internal
stability (Valenza et al., 2025). Changes in the gut microbiota
can significantly impact this system. Drugs like antibiotics
and nonsteroidal anti-inflammatory drugs alter gut microbiota
composition, disrupting the gut-autonomic nervous system
equilibrium.

Gut microbes influence neuronal function by modifying
neurotransmitter synthesis and release, such as GABA (Qu et al,,
2024). Dysbiosis can disrupt GABA synthesis, hindering neural
transmission and normal neuronal activity (Alzheimer’s disease,
2020). The gut microbiota may also regulate the autonomic
nervous system through the gut-brain axis, affecting stress
responses, emotions and potentially
disorders (Mallick et al., 2025).

Paul A. Muller et al. identified a group of vagal neurons projected
to the distal gut that play an afferent role in the regulation of

causing  psychiatric

sympathetic activity by the gut microbiota, using chemogenomic
manipulation, translational profiling, and anterograde tracing
techniques. In addition, sensory nuclei in the brainstem were
found to be activated in response to microbial absence, while
efferent sympathetic glutamatergic neurons regulate gastrointestinal
trafficking. These results suggest that the gut microbiota controls
the activation of intestinal external sensory nerves through the
gut-brain circuit dependently (Microbiota, 2024). The specific
mechanism is shown in Figure 2.

4 Integrative summary: gut-brain axis
contributions to brain injury

4.1 Impaired intestinal barrier function and
systemic inflammation

The gut microbiome regulates neuroinflammation,
neurotransmitter synthesis, mitochondrial function, and intestinal
barrier integrity through the microbiome-gut-brain axis
(Mahbub et al.,, 2024). Dysbiosis disrupts the intestinal barrier,
increasing permeability (“leaky gut”) and allowing bacterial
products (e.g., LPS) to enter systemic circulation (Shukla et al.,
2025). This triggers primary inflammatory cascades, including
myeloid cell activation (e.g., macrophages) and TREM-dependent
neuroinflammation, ultimately contributing to neuronal damage
(Zhao et al., 2023; TREM, 2021), as shown in Figure 3.

Oft-target effects further exacerbate this process. For instance,
microbial metabolites (e.g., SCFAs, trimethylamine N-oxide
[TMAO]) modulate systemic immunity via TLR signaling and
vagal neurotransmission, indirectly influencing BBB permeability
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FIGURE 2
Mechanisms of Drug-Induced Brain Injury via Gut Dysbiosis. Oxidative Stress: ROS generated during drug metabolism can damage cellular membranes
and DNA. This damage is exacerbated by an imbalanced gut microbiota. The imbalance reduces the production of beneficial metabolites such as
SCFAs while increasing the release of harmful substances. This process impairs the integrity of the BBB and induces neuronal apoptosis. Metabolic
Disturbances: Drugs can interfere with host metabolic processes, leading to the accumulation of neurotoxic substances and imbalances in energy
metabolism. These changes may contribute to cognitive dysfunction and neurodegenerative disorders. Neuroinflammatory Responses: Gut dysbiosis
facilitates the translocation of bacterial components such as LPS, and metabolites into the systemic circulation. This activates the immune system and
leads to the release of pro-inflammatory cytokines, which further compromise the integrity of the BBB and exacerbate inflammation in the central
nervous system. Additionally, the gut microbiota indirectly modulates brain function by regulating the autonomic nervous system and neuroendocrine
pathways, such as influencing the synthesis of neurotransmitters like GABA and serotonin. This further aggravates cerebral damage.

and neuroinflammation (Eshleman et al,

homeostasis (Cully,, 2019; Goyal et al,

neuroinflammatory pathways (hypoxia, 2016). These secondary
mechanisms link gut barrier dysfunction to neurodegenerative
(e.g., Alzheimer’s disease) and neuropsychiatric disorders (e.g.,

depression) (El-Hakim et al., 2022).

Additionally, gut-immune interactions facilitate

like protein translocation (Dysbiosis, 2019), highlighting the
interplay between primary barrier disruption and off-target

CNS effects.
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2024; Lugman et al.,
2024). Medications like antibiotics and NSAIDs disrupt microbial
2024), while dysbiosis-
derived LPS activates peripheral immune responses, amplifying

prion-

4.2 Gut-derived RNA and epigenetic
regulation

The gut microbiota regulates host physiology through
primary RNA-mediated mechanisms, including non-coding RNAs
(miRNAs, siRNAs) that modulate intestinal barrier function and
inflammatory responses (Chen et al., 2021; Maazouzi et al., 2025;
Liuetal., 2016). For example, fecal miRNAs from intestinal epithelial
cells directly regulate bacterial gene expression, and their depletion
exacerbates colitis (Liu et al., 2016).

Off-target systemic effects emerge when gut-derived RNAs or
metabolites (e.g., four-ethylphenyl sulfate [4EPS]) enter circulation,
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Bacteria, endotoxins

Disruption of the Gut-Brain Axis by Drugs. This diagram illustrates how drugs, impact neuroinflammation, neurotransmitter synthesis, and

The blood circulatory system

mitochondrial function, thereby influencing the gut-brain axis. These effects can lead to intestinal barrier damage, allowing bacteria, endotoxins, and
other substances to enter the bloodstream. This triggers systemic inflammatory responses and disrupts host RNA gene expression, both of which affect
the brain via the gut-brain axis. Meanwhile, activation of the gut-brain axis through signaling pathways like TLRs can activate immune response genes,

gut and brain.

potentially causing brain injury. In turn, brain injury can exacerbate systemic inflammatory responses, creating a complex interplay between the

cross the BBB, and alter microglial activity or synaptic plasticity
(Metabolite alters brain, 2017). Microbial small RNAs may also
indirectly influence neurorepair processes by modulating peripheral
immunity (Bi et al., 2020) or epigenetic pathways (e.g., SCFA-
mediated histone deacetylation) (Eshleman et al., 2024).

Diet and stress further shape these interactions, as microbiota
composition dictates metabolite profiles (e.g., SCFAs, TMAO) with
divergent effects on neuroinflammation (He et al., 2020; Hasan
and Yang, 2019). While primary RNA regulation occurs locally
in the gut, off-target CNS effects underscore the therapeutic
potential of targeting gut-derived molecules (e.g., probiotics,
miRNA mimics) (Cunningham et al., 2021).

5 Limitations of animal models

Although animal studies have provided important insights
into the interaction between drug-induced brain injury and gut
microbiota dysbiosis, caution is needed when applying these
findings directly to humans. There are significant differences
between animal models and humans in terms of physiology,
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genetics, metabolism, and immune response, which can impact
the clinical relevance of research findings. The genetic background
of animal models is relatively simple, while humans have a
high degree of genetic diversity, which may affect individuals’
responses to drugs and changes in gut microbiota. In addition,
animals under laboratory conditions typically live in controlled
environments, while humans are exposed to complex and variable
environments, including diet, lifestyle, exposure to microorganisms,
and other environmental factors that may affect gut microbiota
and drug response. Therefore, although animal studies provide a
foundation for understanding drug-induced brain injury and gut
microbiota dysbiosis, future research needs to further explore the
applicability of these findings in humans, validating and optimizing
gut microbiota-based treatment strategies through clinical trials and
population studies.

6 Conclusion

Our review underscores the complex interplay between DIBI
and gut microbiota dysbiosis, highlighting the gut-brain axis as
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a critical mediator. Key mechanisms include BBB dysfunction,
oxidative stress, neuroinflammation, and metabolic disturbances
driven by gut microbiota imbalance.

However, current research is limited by a predominance of
preclinical studies and a lack of large-scale clinical trials. Future
work should focus on elucidating the molecular underpinnings
of this relationship and conducting robust clinical trials to
validate microbiota-targeted therapies. Addressing these limitations
and exploring personalized treatment strategies will advance
neurogastroenterology and improve patient outcomes.
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Glossary

BBB
ROS
LPS
IL
IFN
GABA
NSAIDs
IBS
miRNA
siRNA
DID
SCFAs
TNFa
TREM
GPR
IBS
RNA
CNS
IMM
TBI
FMT
NAD
DCs
CTLs
APCs
ICI
ODN
GF

ER
COAD
CRC
CTX

Rag2

blood-brain barrier
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small interfering RNA
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tumor necrosis factor alpha
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Inflammatory bowel syndrome
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central nervous system
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