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Background: Neovascular glaucoma (NVG) is one of the most severe
complications of proliferative diabetic retinopathy (PDR), carrying a high risk of
blindness. Establishing an effective risk prediction model can assist clinicians
in early identification of high-risk patients and implementing personalized
interventions to reduce the incidence of vision impairment. This study aimed
to develop and evaluate a risk prediction model for NVG in PDR patients based
on the Boruta feature selectionmethod and random forest algorithm to improve
clinical predictive performance.

Methods: This retrospective study included 365 PDR patients treated at
Shenzhen Eye Hospital between January 2019 and December 2024, comprising
269 controls (non-NVG) and 96 cases (NVG). The Boruta feature selection
method was employed to identify key features associated with NVG
development in PDR. A risk prediction model was then constructed using the
random forest algorithm. Model performance was evaluated based on accuracy,
sensitivity, specificity, and area under the curve (AUC). Additionally, calibration
curves and decision curve analysis (DCA) were used to assess clinical utility. All
data analyses and modeling were performed in R (version 4.2.3).

Results: The Boruta algorithm selected 12 significant predictive features.
The random forest-based model achieved an accuracy of 90.74%, sensitivity
of 82.14%, specificity of 93.75%, and an AUC of 0.87, demonstrating
strong predictive performance. Calibration curves indicated reliable prediction
probabilities within the 0.4–0.8 range. Decision curve analysis revealed
substantial clinical net benefit across threshold probabilities of 0.2–0.8.
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Conclusion: The Boruta-guided random forest model developed in this study
exhibits excellent predictive performance and clinical applicability for assessing
NVG risk in PDR patients.

KEYWORDS

diabetic retinopathy, random forest, Boruta feature selection, neovascular glaucoma,
risk prediction model

1 Introduction

Diabetes mellitus (DM) is a globally prevalent metabolic
disorder characterized by chronic hyperglycemia, which can lead
to various chronic complications, including cardiovascular disease,
nephropathy, neuropathy, and retinopathy (Kharroubi andDarwish,
2015). Diabetic retinopathy (DR), one of the most common
microvascular complications of diabetes, is also a leading cause of
preventable blindness in adults worldwide. Epidemiological studies
indicate that approximately 30%–40% of diabetic patients develop
DR (Yau et al., 2012; Ruta et al., 2013).The risk of DR increases with
the duration of diabetes, and poor glycemic control, hypertension,
and dyslipidemia can accelerate its progression (Yau et al., 2012;
Cheung et al., 2010; Lin et al., 2021). It is estimated that about one-
third of diabetic patients suffer from DR, with some progressing to
severe retinopathy (Yau et al., 2012; Cheung et al., 2010; Klein et al.,
2008; Teo et al., 2021). Furthermore, epidemiological projections
suggest that the global burden of DR is not only increasing
but also shifting from high-income countries to middle-income
regions, which may lead to a rise in other ocular complications
associated with DR (Tan and Wong, 2022).

DR can be classified based on disease severity into non-
proliferative diabetic retinopathy (NPDR) and proliferative diabetic
retinopathy (PDR) (Yeh et al., 2003; Yang et al., 2022). NPDR is
primarily characterized by increased retinal capillary permeability,
leading to manifestations such as microaneurysms and hard
exudates. In contrast, PDR results from retinal ischemia and
hypoxia, stimulating neovascularization, which increases the risk
of vitreous hemorrhage, tractional retinal detachment, and macular
edema (Cheung et al., 2010; Kollias and Ulbig, 2010; Simo-
Servat et al., 2019). Additionally, abnormal neovascularization may
extend to the anterior chamber angle, obstructing aqueous humor
outflow and potentially leading to neovascular glaucoma (NVG)
(Tang et al., 2023; Senthil et al., 2021; Calu et al., 2022).

NVG is one of the severe late-stage complications of DR,
arising from retinal ischemia-induced abnormal expression of
pro-angiogenic factors such as vascular endothelial growth factor
(VEGF). This leads to pathological neovascularization of the iris
and anterior chamber angle, ultimately causing angle closure and
refractory intraocular hypertension (Tang et al., 2023; Senthil et al.,
2021). NVG is characterized by insidious onset, rapid progression,
difficulty in controlling intraocular pressure, and a high blindness
rate. Without timely intervention, it can result in irreversible optic
nerve damage and eventual vision loss. According to reports, within
5 years of initial diagnosis of type 2 diabetes, 1.74% (1,249 out of
71,817 patients) developed PDR, 0.25% developed tractional retinal
detachment (TRD), and 0.14% developed NVG (Gange et al., 2021).
Therefore, early identification of NVG risk in PDR patients and

effective intervention are crucial for improving visual prognosis and
reducing the risk of blindness.

Currently, the clinical prediction of NVG primarily relies
on ophthalmologists’ empirical judgment and certain clinical
risk factors, such as severe PDR, vitreous hemorrhage, retinal
vein occlusion, prolonged diabetes duration, and poor glycemic
control. However, traditional methods often struggle to accurately
quantify individualized risk and fail to fully account for the
complex interactions among multiple factors, resulting in limited
predictive accuracy.

In recent years, with advancements in artificial intelligence
and machine learning technologies, machine learning models have
been increasingly applied in the medical field. These models
demonstrate superior performance, particularly in disease risk
prediction, diagnosis, and personalized treatment decision-making.
In the field of ophthalmology, followingYangWeihua et al.’s proposal
of “Intelligent Ophthalmology” (IO) has flourished remarkably in
this domain. IO aims to utilize advanced smart technologies to
enhance comprehensive management of all aspects of eye health
throughout the entire life cycle.This approach is designed to provide
patients with superior healthcare experiences and enhanced health
protection (Gong et al., 2024).

In the current era of proliferating modeling approaches, while
logistic regression models maintain advantages including structural
simplicity, strong interpretability, and the ability to provide explicit
coefficient-based explanations for variable effects, their reliance on
linear assumptions and feature engineering fundamentally limits
their performance when handling data with complex nonlinear
relationships. Neural network models demonstrate powerful fitting
capabilities when processing high-dimensional data (e.g., images or
text), yet they demand substantial data volumes and computational
resources.Their black-box nature also limits applications in domains
requiring explicit interpretation, such as healthcare. In contrast,
the Cox proportional hazards model offers unique advantages in
survival analysis by effectively handling time-to-event data, though
it relies on the proportional hazards assumption and exhibits weaker
adaptability to nonlinear relationships.

Among these methods, Random Forest (RF)—an ensemble
learning approach based on decision trees—has significantly
reduced preprocessing burdens in modeling due to its notable
advantages including strong nonlinear modeling capacity, robust
resistance to overfitting, and capability to handle high-dimensional
data (Degenhardt et al., 2019; Jin, 2024). Furthermore, its ensemble
mechanism effectively mitigates overfitting risks through voting or
averaging across multiple decision trees, thereby enhancing model
generalizability. These characteristics have led to its widespread
application in medical prediction modeling (Hu and Szymczak,
2023; Gelbard et al., 2023; Lilhore et al., 2023; Shi et al., 2023).
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Meanwhile, in practical modeling processes, the selection of
feature variables is crucial for the predictive performance of the
model. High-dimensional data may contain numerous redundant or
irrelevant variables and directly inputting all variables can lead to
increased model complexity, higher computational costs, and even
reduced generalization ability. Therefore, efficient feature selection
methods are essential for improving both the performance and
interpretability of predictive models. Boruta, a feature selection
algorithm based on random forests, is named after the Slavic Forest
deity and was developed to identify all relevant variables within a
classification framework (Kursa and Rudnicki, 2010). By introducing
“shadow features” and performing multiple rounds of random
forest computations, it effectively identifies significant variables while
excluding irrelevant or redundant ones. In each iteration, thepredictor
set is doubled by adding a shuffled copy of each original variable.
These shadow features are generated by permuting the original values
across observations, thereby disrupting their relationship with the
outcome. This method has been widely applied in biomedical data
analysis, enhancing model stability, reducing dimensionality, and
improving interpretability. In contrast, the Boruta feature selection
method combinedwith theRandomForestmodel achieves a balanced
performance across multiple dimensions.

Therefore, this study aims to employ the Boruta feature selection
algorithm combined with a random forest model to construct a
machine learning-based risk prediction model for NVG in patients
with PDR. The objective is to develop a stable, efficient, and
highly interpretable NVG prediction model to assist clinicians
in earlier identification of high-risk patients, enable personalized
management, reduce blindness risk associated with NVG, and
improve visual prognosis in diabetic patients.

2 Materials and methods

2.1 Study design

This study adopted a retrospective design, enrolling a total
of 365 PDR patients treated at Shenzhen Eye Hospital between
January 2019 and December 2024. Based on NVG comorbidity
status, patients were divided into two groups: the control group
(non-NVG patients, n = 269) and the case group (NVG patients,
n = 96). The study aims to identify clinically significant feature
variables closely associated with NVG development by analyzing
clinical data, medical history, and metabolic-related parameters,
ultimately constructing a machine learning-based risk prediction
model for NVG occurrence in PDR patients. The overall workflow
of this study is illustrated in Figure 1.

The detailed sample selection criteria were as follows: Inclusion
criteria, 1) male and female patients aged 18 years or older, 2)
patients clinically diagnosed with diabetic retinopathy (including all
DR types) within the past 3 years, 3) patients with detailed disease
course records and complete clinical data including biomarker
profiles. Exclusion criteria, 1) presence of severe congenital eye
diseases or other ocular pathologies that could interfere with
assessment, such as severe dry eye syndrome or corneal disorders,
2) patients with insufficient clinical data or incomplete medical
records, 3) patients suffering from severe systemic diseases including
end-stage renal disease or cardiac conditions.

This study strictly adhered to the principles of the Declaration
of Helsinki and relevant ethical requirements. As it did not involve
direct patient intervention or treatment, all patient privacy and data
security were ensured. The research protocol was approved by the
Ethics Committee of Shenzhen Eye Hospital (Ethics Approval No.
2025KYPJ008).

2.2 Data collection

This study retrospectively collected multiple clinical data
from PDR patients, including basic patient information, medical
history, ophthalmic surgical history, and relevant metabolic and
biochemical indicators. The basic information included patient
name, hospitalization number, age, gender, eye laterality (right/left
eye), and best-corrected visual acuity (BCVA). Regarding medical
history, data on hypertension history, diabetes duration, coronary
heart disease history, diabetic nephropathy history, and stroke
history were collected. Ophthalmic surgical history included
records of intravitreal anti-VEGF drug therapy, retinal laser
photocoagulation surgery, and pars plana vitrectomy (PPV) surgery.
Metabolic and biochemical indicators involved body mass index
(BMI), blood glucose (GLU), urinary glucose (UG), urinary
protein (UP), Alanine Aminotransferase (ALT) and Aspartate
Aminotransferase (AST), and serum creatinine (CREA) and
uric acid (UA). For the collected categorical variables (e.g.,
gender, eye laterality, and medical history), specific numerical
coding was applied, with detailed variable assignment schemes
presented in Table 1.

2.3 Data processing

Missing values were imputed using the Predictive Mean
Matching (PMM)method tominimize data bias and enhancemodel
stability. After handling missing data, the dataset was randomly
split into training and validation sets at a 7:3 ratio. The training set
was used for feature selection and model development, while the
validation set was reserved for model evaluation.

2.4 Boruta feature selection

The Boruta algorithm was implemented in the training set
using NVG status (Outcome) as the dependent variable and all
other variables as independent variables. Through the creation of
randomized shadow features and iterative computation of variable
importance, Boruta identified statistically significant predictors
influencing NVG development risk. These selected features were
subsequently used for model construction.

2.5 Random forest modeling and
evaluation

RF algorithmwas employed as the coremodeling approach, with
cross-validation used for hyperparameter optimization to enhance
model generalizability. Model performance was then evaluated on
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FIGURE 1
Flowchart depicting a clinical database split into a seventy percent training set and thirty percent validation set. The training set undergoes feature
selection via Boruta, leading to the construction of a random forest model. Both sets contribute to model assessment. The outcomes include variable
importance analysis, ROC curve and AUC, confusion matrix, calibration curve analysis, and decision curve analysis.

the validation set using metrics including the area under the curve
(AUC), sensitivity, specificity, and F1-score. A confusionmatrix was
generated to visualize the classification results, demonstrating the
alignment between predicted and true outcomes. Furthermore, a
calibration curve was utilized to assess the accuracy of predicted
probabilities, while decision curve analysis (DCA) was performed
to evaluate the model’s clinical utility, thereby validating its practical
applicability in clinical settings.

2.6 Statistical software

All data analysis and modeling procedures were conducted
using R language (version 4.2.3). The following R packages were
specifically employed: The Boruta package for random forest-
based feature selection. The random Forest package for model
construction and hyperparameter tuning. The pROC package for
ROC curve analysis and AUC calculation. The caret package
for cross-validation and model evaluation. The mice package
implementing PMM for missing value imputation. The ggplot2
package for generating calibration curves, decision curves, and
confusion matrix visualizations. The complete analytical workflow
was executedwithin the R environment to ensure scientific rigor and
result accuracy.

3 Result

3.1 Baseline characteristics

The unit of analysis in this study was the individual eye (rather
than the patient), with each eligible eye independently included for

statistical analysis. Based on the predefined inclusion and exclusion
criteria, the final cohort comprised 258 patients (365 qualifying
eyes). The specific group distribution was as follows: the DR group
included 179 patients (269 eyes total), while the NVG group
consisted of 79 patients (96 eyes total).

In terms of age, patients in the DR group were 58.56 ±
10.34 years old while NVG patients were 58.39 ± 13.08 years
old, indicating an elderly patient population overall. For
gender distribution, the DR group showed significant disparity
between male patients (195 eyes) and female patients (74 eyes),
demonstrating male predominance. Similarly, in the NVG group,
male patients (71 eyes) substantially outnumbered female patients
(25 eyes), also exhibitingmale dominance.The distribution between
right and left eyes was relatively balanced across all groups. The
baseline characteristics of each group are described in Table 2.

3.2 Boruta feature selection results

TheBoruta algorithm identified the following variables as having
significant predictive value: Age, BCVA, Diabetes Duration, RLP,
PPV, Lens Removal, IOL, BMI, ALT, BUN, CREA, and UA. These
key features demonstrate important clinical predictive value for
DR patients and were subsequently used for risk prediction model
construction and optimization.

3.3 Model performance comparison and
algorithm selection

In this study, we conducted a systematic analysis of the training
dataset using multiple classical machine learning algorithms
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TABLE 1 Detailed variable assignment schemes.

Full Variable Name Variable Abbreviation Assignment Description

Outcome Outcome 0 = non-NVG; 1 = NVG

Name Name Text variable

Hospitalization ID ID Text variable

Age Age Numerical variable

Gender Gender 1 = Male; 2 = Female

Eye Laterality Laterality 1 = Right eye; 2 = Left eye

LogMAR Visual Acuity BCVA Numerical variable

Systolic Blood Pressure SBP Numerical variable

Diastolic Blood Pressure DBP Numerical variable

Hypertension History HBP 0 = No; 1 = Yes

Diabetes Duration Diabetes Duration 1 = ≤5 years; 2 = 5–10 years; 3 = 10–15 years; 4 = ≥15 years

Coronary Heart Disease History CHD 0 = No; 1 = Yes

Diabetic Nephropathy History DN 0 = No; 1 = Yes

Stroke History Stroke 0 = No; 1 = Yes

Diabetes-Related Amputation History Amputation 0 = No; 1 = Yes

Intravitreal Anti-VEGFTherapy History Anti-VEGF 0 = No; 1 = Yes

Family History of Glaucoma Family History 0 = No; 1 = Yes

Retinal Laser Photocoagulation History RLP 0 = No; 1 = Yes

Pars Plana Vitrectomy History PPV 0 = No; 1 = Yes

Lens Removal Surgery History Lens Removal 0 = No; 1 = Yes

Intraocular Lens Implantation History IOL 0 = No; 1 = Yes

Body Mass Index BMI Numerical variable

Alanine Aminotransferase ALT Numerical variable

Aspartate Aminotransferase AST Numerical variable

Blood Urea Nitrogen BUN Numerical variable

Serum Creatinine CREA Numerical variable

Uric Acid UA Numerical variable

Blood Glucose GLU Numerical variable

Urinary Glucose UG 0 = Negative; 1 = Positive or Suspiciously Positive

Urinary Protein UP 0 = Negative; 1 = Positive or Suspiciously Positive
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TABLE 2 Baseline characteristics of study groups.

Parameter DR Group NVG Group

Number of patients 179 79

Age (years) 58.56 ± 10.34 58.39 ± 13.08

Gender (Male/Female) 133/46 58/21

Sample size (eyes) 269 96

Laterality (Right/Left) 142/127 46/50

to evaluate their performance in the target classification task.
Specifically, we compared the classification efficacy of Naïve Bayes,
Decision Tree, K-Nearest Neighbors (KNN), Logistic Regression,
and Random Forest, with quantitative assessment based on
the Area Under the Curve (AUC) of the Receiver Operating
Characteristic (Figure 2).

The experimental results revealed significant differences in
AUC values across the algorithms: Naïve Bayes (AUC = 0.91)
demonstrated strong probabilistic modeling capabilities, while
Decision Tree (AUC = 0.89) exhibited robust feature partitioning
performance. In contrast, KNN (AUC = 0.76) showed limited
performance, potentially due to sensitivity to data dimensionality or
noise. Logistic Regression (AUC = 0.93) achieved excellent results
owing to its linear separability advantages. Remarkably, Random
Forest (AUC=1.00) attained perfect classification through ensemble
learningmechanisms (Bootstrap Aggregating and random subspace
feature selection), with its generalization capability and anti-
overfitting properties significantly outperforming other models.

This comprehensive comparison highlights Random Forest as
the optimal choice for the given classification task, supported by its
superior predictive accuracy and robustness.

3.4 Random forest model performance

Based on the Boruta feature selection results, this study
successfully constructed a risk prediction model for NVG
development in PDR patients using the random forest algorithm.
To comprehensively evaluate model performance, we calculated
the ROC curve and AUC value on an independent validation
set, supplemented by confusion matrix analysis, calibration curve
assessment, and DCA. Furthermore, variable importance analysis
was conducted to interpret the model’s decision-making logic.

3.4.1 ROC curve and AUC
The model’s discriminative ability was evaluated on the

validation set. Results demonstrated that the random forest model
exhibited strong discriminatory performance, with an AUC value of
0.87, indicating high predictive accuracy for identifyingNVG risk in
PDR patients (Figure 3).

3.4.2 Predictive performance and confusion
matrix

In the validation set, the random forest model achieved
a classification accuracy of 90.74% (95% CI: 83.63%–95.47%).

The confusion matrix (Figure 4) demonstrated a sensitivity of
82.14% and specificity of 93.75%, indicating robust performance
in discriminating between PDR patients with and without NVG.
Additionally, the Kappa coefficient of 0.7589 confirmed strong
agreement between model predictions and true classifications,
significantly reducing the influence of random chance.

3.4.3 Calibration curve analysis
The calibration curve (Figure 5) demonstrated that the model

achieved a mean absolute error of 0.042 and mean squared error
of 0.00484 between predicted and observed probabilities, indicating
high predictive accuracy across different probability thresholds.
Particularly within the 0.4–0.8 probability range, the calibration
curve closely approximated the ideal reference line (45° diagonal),
confirming excellent calibration performance in this critical clinical
decision-making range.

3.4.4 Decision curve analysis
The DCA (Figure 6) showed that across the 0.2–0.8 decision

threshold range, the random forest model’s net benefit consistently
exceeded both the treat-all and treat-none baseline strategies,
demonstrating superior clinical decision-making utility within this
threshold range.

3.4.5 Variable importance analysis
To enhance model interpretability, this study calculated feature

importance based on Gini index.The variables were ranked by their
mean decrease inGini index (Figure 7). Results showedBCVA, BMI,
UA, BUN,Age, CRE,ALT, andDiabetesDurationwere key decision-
making variables, likely playing important roles in disease prediction
and clinical assessment. In contrast, PPV, RLP, Lens Removal and
IOL showed relatively lower contributions, having limited impact on
predictions in the current model.

4 Discussion

4.1 Main findings

This study aimed to develop a risk prediction model for
NVG in PDR patients using Boruta feature selection and random
forest algorithms. Through retrospective analysis of clinical data
from PDR patients combined with Boruta feature selection,
we successfully identified multiple clinically relevant variables
significantly associated with NVG development. Twelve key factors
were found to substantially influence NVG occurrence: Age, BCVA,
Diabetes Duration, RLP, PPV, Lens Removal, IOL, BMI, ALT, BUN,
CREA, and UA.

The RF model, serving as the core predictive tool in this study,
demonstrated superior predictive performance on the test dataset
with an accuracy of 90.74%, sensitivity of 82.14%, specificity of
93.75%, and AUC of 0.87. These metrics indicate its excellent
discriminative ability and accuracy in predicting NVG risk among
PDR patients. Furthermore, calibration curve analysis revealed high
consistency between predicted probabilities and actual observations
across various probability thresholds, confirming the model’s
reliability at different risk levels. Decision curve analysis showed
that within the 0.2–0.8 decision threshold range, the random
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FIGURE 2
ROC curve chart for various models on a training set, showing Naive Bayes (AUC = 0.91), Decision Tree (AUC = 0.89), KNN (AUC = 0.78), Logistic
Regression (AUC = 0.93), and Random Forest (AUC = 1). Sensitivity is plotted against 1-Specificity. Random Forest shows the highest performance.

forest model provided significantly higher clinical net benefit,
demonstrating not only outstanding statistical performance but also
superior predictive utility for clinical decision-making. In summary,
our risk prediction model exhibits strong potential for clinical
application, offering an effective tool for early screening of NVG and
personalized treatment strategies in diabetic patients.

4.2 Advantages and limitations compared
to previous studies

DR, as one of the most prevalent microvascular complications
of diabetes, demonstrates a continuously rising global prevalence,
particularly among patients with poor glycemic control and
prolonged disease duration. Epidemiological studies indicate that
the incidence of DR exhibits an upward trend parallel to the
increasing prevalence of diabetes, with PDR patients facing
substantially higher risks of vision loss (Kour et al., 2024). Current
research on DR-induced NVG primarily focuses on three key

aspects: epidemiological characteristics, pathogenic mechanisms,
and advanced therapeutic strategies (Lin et al., 2021; Liu and Wu,
2021). NVG, as a severe complication of PDR, is characterized
by high blindness rates and challenging treatment, making early
identification of high-risk patients crucial. The development of
NVG is closely associated with VEGF overexpression secondary
to retinal ischemia. Current treatment strategies include anti-
VEGF agents, panretinal photocoagulation, and glaucoma surgeries.
However, therapeutic outcomes vary significantly, with some
patients still experiencing irreversible optic nerve damage due to
angle closure and refractory intraocular pressure elevation despite
standardized treatment. While existing studies predominantly focus
on comparing NVG treatment modalities (Lin et al., 2025; Lin et al.,
2022), such as anti-VEGF combinedwith trabeculectomy or analysis
of efficacy for intravitreal anti-VEGF combined with Ahmed
glaucoma valve implantation, few have addressed early prediction
of NVG onset.

This study identified significant associations between NVG risk
and clinical characteristics of PDR patients, including BCVA and
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FIGURE 3
ROC curve for a Random Forest model on a validation set. The curve shows a blue line with an Area Under the Curve (AUC) of 0.87, indicating strong
model performance. Sensitivity is plotted on the y-axis and specificity on the x-axis.

hepatic/renal function indicators, providing clinicians with more
comprehensive risk assessment criteria. These findings facilitate
targeted interventions prior to NVG onset and enable early-stage
risk stratification, thereby addressing limitations of conventional
screeningmethods. Future work will compare different intervention
approaches to determine the optimal strategy for minimizing
complication risks, ultimately generating evidence-based clinical
recommendations. Compared with previous studies that primarily
focused on the diagnosis and treatment of single diseases, analysis
of influencing factors for individual diseases (Gong et al., 2023), or
explored the potential of AI in disease assessment (Jiang et al., 2024),
this study specifically addresses the risk prediction of complications,
which holds significant clinical implications.

4.3 Analysis of significant features

This study identified 12 key features (including age, BCVA,
diabetes duration, BMI, etc.) through Boruta algorithm screening.

Below we briefly analyze the potential relationships between these
indicators and disease pathogenesis:

BCVA emerged as the most predictive variable in our model.
Poor BCVA typically indicates severe retinal pathology, including
but not limited to macular edema, vitreous hemorrhage, or
tractional retinal detachment. Although visual deterioration may
serve as an early warning sign for NVG, clinical observations
revealed two high-risk phenomena: first, PDR patients often fail
to perceive secondary pathological changes due to gradual vision
decline; second, low vision status reduces follow-up compliance,
consequently leading to treatment delays.

BMI serves as a simple and rapid clinical indicator for assessing
health status. Among different types of diabetic patients, BMI
levels may vary significantly. In the diabetic population, elevated
BMI (obesity) is closely associated with insulin resistance - a well-
established risk factor for DR progression. Furthermore, patients
with high BMI frequently develop leptin resistance, and chronically
elevated leptin levels may induce endothelial dysfunction, thereby
exacerbating microvascular disease risk (Wu et al., 2023).
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FIGURE 4
Confusion matrix for a Random Forest model on a validation set. The actual versus predicted comparison shows: True Positives: 5, False Positives: 23,
False Negatives: 75, and True Negatives: 5. A blue color gradient represents frequency, with darker shades indicating higher values.

Hyperuricemia is associated with oxidative stress and
endothelial damage (Gherghina et al., 2022), potentially directly
stimulating VEGF expression. UA can also activate inflammatory
pathways (e.g., the NLRP3 inflammasome) (Wan et al., 2016),
and activation of these inflammatory bodies may exacerbate
the progression of retinal complications (McCurry et al., 2024).
However, whether UA acts as an independent risk factor or merely
reflects the overall state of metabolic dysregulation requires further
validation.

Blood Urea Nitrogen, as one of the end products of protein
metabolism, is primarily synthesized in the liver (via the urea
cycle) and excreted by the kidneys. Its serum levels reflect both
renal excretory function and protein metabolic status. Elevated
BUN indicates impaired renal function, and patients with diabetic
nephropathy often present with more severe DR. Renal dysfunction
may lead to the accumulation of uremic toxins that damage vascular
endothelial function and exacerbate retinal hypoxia through
associated anemia (Tonelli et al., 2016). Additionally, DN patients
frequently demonstrate poorer blood pressure control, which may
further increase NVG risk.

Advanced age demonstrates a significant correlation with the
development of diabetic microvascular complications. Elderly
PDR patients typically exhibit longer disease duration, and
prolonged hyperglycemic states may accelerate retinal ischemia
and VEGF overexpression, thereby promoting iris and angle
neovascularization. Furthermore, age-related systemic vascular
pathologies commonly coexist, exacerbating ocular ischemic-
hypoxic conditions and elevating NVG risk. However, age may

also influence treatment adherence, as geriatric patients often
show suboptimal disease awareness and therapeutic compliance,
potentially contributing to disease progression.

CREA serves as a key renal function parameter, with its levels
inversely correlating with glomerular filtration rate. Impaired renal
function may reduce VEGF clearance, leading to its intraocular
accumulation. Furthermore, the uremic milieu promotes oxidative
stress and endothelial dysfunction, potentially accelerating PDR
progression to NVG (Tonelli et al., 2016). The CREA-NVG
association may also involve multiple metabolic pathways.

Elevated ALT levels serve as a sensitive marker for hepatocyte
injury. In diabetic patients, increased ALT may indicate non-
alcoholic fatty liver disease (NAFLD) - a condition closely associated
with microvascular complications. The systemic inflammation
in NAFLD patients could exacerbate retinal ischemia through
oxidative stress mechanisms (Younossi, 2019; Pouwels et al., 2022).
Furthermore, impaired hepatic function may disrupt the clearance
or metabolism of pro-angiogenic factors like VEGF, thereby
potentiating ocular neovascularization.

Duration of DM represents an independent risk factor for
DR progression. Chronic hyperglycemia induces retinal capillary
pericyte loss and basement membrane thickening, ultimately
leading to ischemic changes. Epidemiological data indicate patients
with disease duration exceeding 10 years demonstrate higher
susceptibility to DR development (Chamard et al., 2021), with
the severity of ischemia directly correlating with NVG risk.
Furthermore, long-standing diabetes frequently coincides with
other microvascular complications (e.g., nephropathy), which
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FIGURE 5
Calibration curve of a Random Forest model on a validation set, showing observed probability versus predicted probability. The dashed line indicates
apparent predictions, while the solid line represents bias-corrected predictions. The curve shows good predictive alignment with a mean absolute error
of 0.042, based on 108 samples, repeated 1,000 times.

may exacerbate ocular pathology through systemic inflammatory
responses.

Vitrectomy is commonly employed for PDR treatment,
yet intraoperative manipulations may induce retinal damage,
exacerbating ischemia and consequently elevating VEGF production
(Wakabayashietal.,2012;Wakabayashietal.,2017).Additionally,post-
vitrectomy inflammatory responses could promote anterior chamber
angle neovascularization (Takayama et al., 2019). Earlier studies
reported that cataract surgery might accelerate DR progression (Shah
and Chen, 2010), potentially through disruption of the blood-
aqueous barrier with subsequent increases in inflammatory and
VEGF factor release. Furthermore, aphakia may facilitate greater
VEGF diffusion into the anterior chamber. Conversely, intraocular
lens implantation might reduce anterior VEGF diffusion, though
combined with posterior capsule rupture, it could still elevate NVG
risk - suggesting IOL statusmay represent a confounding factor rather
than an independent predictor.

Retinal photocoagulation remains a cornerstone of PDR
management. However, inadequate or delayed treatment may
perpetuate ischemic conditions, paradoxically promoting NVG.
Conversely, extensive photocoagulation could compromise
retinal perfusion, exacerbating peripheral ischemia and even
inducing anterior segment neovascularization. Thus, the
photocoagulation-NVG relationship appears bidirectional,
requiring comprehensive evaluation of treatment timing
and extent.

4.4 Clinical significance of the prediction
model

The PDR-related NVG risk prediction model developed
in this study, based on Boruta feature selection and random
forest algorithm, demonstrates high accuracy, sensitivity, and
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FIGURE 6
A decision curve analysis graph shows standardized net benefit versus high-risk threshold. Three lines are depicted: “Random Forest” in bold blue, “All”
in light gray, and “None” in black. The x-axis represents high-risk thresholds from 0 to 1, with a cost-benefit ratio beneath. The y-axis indicates the
standardized net benefit from 0 to 1. The Random Forest model shows better performance across most thresholds compared to All and None.

specificity, enabling clinicians to identify high-risk patients
at early disease stages. Early interventions (e.g., anti-VEGF
therapy, retinal laser photocoagulation) guided by this model
may effectively delay or prevent NVG onset, reduce blindness
risk, and improve visual prognosis. By quantifying individualized
risk, the model provides scientific evidence to support
personalized treatment strategies. For instance, high-risk patients
may receive more aggressive interventions, while low-risk
patients can avoid overtreatment, thereby optimizing resource
allocation.

Hospitals can leverage this model to rationally distribute
medical resources by focusing on high-risk populations,
improving treatment efficacy and quality. Concurrently, reducing
unnecessary follow-ups and examinations for low-risk patients
decreases healthcare costs and enhances resource utilization
efficiency. Early intervention and personalized management can

significantly improve visual outcomes and minimize irreversible
optic nerve damage caused by NVG, ultimately enhancing
patients’ quality of life while alleviating familial and societal
economic burdens.

Furthermore, this model integrates machine learning with
clinical data, showcasing artificial intelligence’s potential in medical
applications. It establishes a reference paradigm for precision
medicine in DR and other ophthalmic diseases, advancing AI
implementation in ophthalmology during the big data era.

4.5 Limitations and future directions

Although the proposed NVG risk prediction model
demonstrates satisfactory performance, several limitations should
be acknowledged. First, this study adopted a retrospective
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FIGURE 7
Bar chart showing variable importance in a Random Forest model. BCVA has the highest mean decrease Gini score, followed by BMI, UA, BUN, Age,
CREA, and ALT. Diabetes Duration, PPV, RLP, Lens Removal, and IOL have lower scores. A color gradient indicates the mean decrease in Gini, ranging
from light to dark blue.

design with a relatively limited sample size. Therefore, future
research should validate the external validity of this model
in multicenter, large-scale cohorts. Second, while the Boruta
algorithm and random forest model effectively selected features
and established the prediction model, the interpretability remains
constrained—particularly with high-dimensional data where the
“black-box” naturemay hinder widespread clinical adoption. Future
research could incorporate advanced interpretability techniques
(e.g., SHAP values, LIME) to enhance model transparency and
operational utility.

Additionally, although diverse clinical variables were
considered, potential factors such as genetic predispositions,
environmental influences, and imaging features were not included.
Future studies should optimize feature selection by integrating
multicenter data, external validation cohorts, and multi-omics
approaches (e.g., genomics, metabolomics) to improve predictive
accuracy and clinical applicability.

5 Conclusion

This study successfully developed a risk prediction model for
NVG in PDR patients by integrating the Boruta feature selection
algorithm with a random forest model. The model demonstrated
excellent performance metrics, achieving 90.74% accuracy, 82.14%
sensitivity, 93.75% specificity, and an AUC of 0.87, indicating high
predictive precision. Calibration curve analysis confirmed strong

predictive consistencywithin the 0.4–0.8 probability range.Decision
curve analysis revealed superior clinical net benefit across the
0.2–0.8 decision threshold spectrum.

The proposed risk prediction model exhibits outstanding
accuracy, sensitivity, specificity, and clinical utility, providing an
effective tool for early screening and personalized management
of NVG in diabetic patients. This finding could hold
significant clinical relevance and practical application value for
ophthalmologic practice.
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